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An application of CFT is to describe the low energy physics
of 1D critical quantum systems, e.g.

- Antiferromagnetic Heisenberg spin chain
- XXZ chain
- Ising model in a transverse field
- Hubbard and t-J chains

CFT, combined with analytical and numerical methods as 
Bethe ansatz, RG, Lanzcos, DMRG, MPS, etc, give information:

- Correlators of operators
- Susceptibilities, finite T properties, etc
- Finite size corrections to energies
- Entanglement entropies



   Another application of CFT is to provide ansatzs for the GS 
and excitations of the Fractional Quantum Hall effect  

- Laughlin-> U(1) CFT 
- Moore-Read-> SU(2)@k=2 
- Read-Rezayi -> SU(2)@k>2

It has been long known the existence of several analogies
between spin systems and the FQHE: 
fractionalization of degrees of freedom and non trivial statistics.

In AFH spinons have spin 1/2 instead of spin 1 (=magnons)
and behave as semions = 

Similar to the quasiparticles of the Laughlin state, which have 
charge 1/m and anyon statistics. 
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Spin chains: CFT description appears at the “end” of a long analysis. 

               Alternative: follow  the FQH strategy

This strategy is also similar to the AKLT ansatz or more generally  
Matrix Produc States (MPS)

MPS/DMRG->  states are “products” of finite dimensional matrices

So CFT gives an infinite dimensional version of MPS (iMPS)
where matrices  are replaced by operators acting on Fock spaces. 

FQH wave functions are the GS of Hamiltonians (contact type)
MPS are the GS of so called Parent Hamiltonians 

CFT -> trial wave functions for GS and excitations of spin systems

As in the FHQ one can compute overlaps with the exact GS
of microscopic Hamiltonians



Question: can we construct the Parent Hamiltonians for the 
spin wave functions built from CFT?  

Answer: Yes we can, when the CFT corresponds to the WZW models

SU(2)@k=1 -> Haldane-Shastry model for spin 1/2 (uniform version)

First example:

We also construct a non-uniform version of this model

Other results:

SU(2)@k=2 -> spin 1 version of the Haldane-Shastry model

SU(2)@k=2 -> spin 1/2 model with degenerate GS’s

The construction can be generalized to k>2 and to 2 dimensions !! 



Plan of the talk

-- Spin wave functions using vertex operators 

-- Applications to spin models

-- Brief review of the Haldane-Shastry model 

-- Relation with the SU(2)@k=1WZW model

-- Generalizations  to SU(2)@k>1

Based on

- arXiv: 0911.3029 (I. Cirac, G.S. )

- arXiv: 1109.5470 (A.Nielsen, I. Cirac, G.S.)



CFT and Infinite Matrix Product States

Consider a 1D spin 1/2 system with N sites and Hamiltonian
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si"Ai si( ) : chiral vertex operator

The iMPS wave functions are conformal block of a CFT



The simplest CFT: massless boson (c=1)

Consider a chiral free boson field             
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The sign factors given by the Marshall rule of antiferromagnets
(Perron-Frobenius theorem)
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Determining the parameters                          in terms of the couplings

- Overlaps with exact wave functions up to chains with N=20 sites
- Spin-spin correlators
- 2-Renyi entropy 

Applications to spin 1/2 Heisenberg like chains:
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XXZ spin 1/2 model
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Phases of the model
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" >1 gapped antiferromagnet

#1<" $1 gapless (c =1CFT)

" $ #1 Ferromagnetic

To find         we minimize the energy of the iMPS
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 The iMPS is exact in two cases                
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At the isotropic AFH model 
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" =1#$ =1/2 Haldane-Shastry spin chain

Overlap of exact and the iMPS wave functions (N=20)
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Renyi entropy                            and spin correlators (MC method)                        
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In the critical regime it agrees with a c=1 CFT



! 

J
1
" J

2
Model (zig-zag chain)

  

! 

H = J
1

r 
S 

i
"

1=1

N

#
r 
S 

i+1+ J
2

r 
S 

i
"
r 
S 

i+2 (J
1

=1)

 frustrated spin system
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Critical c=1

Spontaneously dimerized

Majumdar-Gosh point
Dimer spiral phase

Choice of parameters                 -> rotational invariance
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Brief review of the Haldane-Shastry model (1988)
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Spin-spin correlator (Gebhard-Vollhardt 1987)

Eliminate the states doubly occupied (Gutzwiller projection)
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Compare with the correlator in the AF Heisenberg model
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The Gutzwiller states has only spin degrees of freedom
that can be seen as a hardcore boson
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 ground state of the Hamiltonian (Haldane-Shastry)



                           Properties of the HS model

- spin-spin correlation functions decays algebraically

- elementary excitations: spinons (spin 1/2 with fractional statistics)

- degenerate spectrum described by the Yangian  symmetry

- critical theory at the fixed point of the renormalization group

- this fixed point is described a CFT:                  WZW model
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SU(2)
k=1

  The HS model and the AFH  model belong to the
  same universality class described by the WZW model, but
  the AFH model is a marginal irrelevant perturbation of the 
  WZW which give rise to the log corrections in correlators
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The Haldane-Shastry state is a conformal block 
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(N even) 

The HS state can be written in the spin variables as 
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The HS- Hamiltonian can be written as

Questions: 

- can one derive this Hamitonian using CFT methods?

- can one find a Hamiltonian when z’s are non uniform? 



The conformal block satisfies the Knizhnik-Zamolodchikov eq
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Making a conformal transformation to the cylinder

! 

z = e
w

  

! 

"cyl (w1,K,wN ) = zi
1/ 4

i=1

N

# " plane (z1,K,zN )

The KZ equation becomes

  

! 

k + 2

2
zi

"

"zi

#cyl =
zi + z j

zi $ z jj% i

N

&
r 
S i '

r 
S j #cyl (z1,K,zN )

From explicit computation one also has the “abelian” KZ eq.
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Taking another derivative and combining these two eqs one gets
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In the uniform case 
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and we recover the HS Hamiltonian. 

For other values of        we obtain an non uniform version 

Except for z’n uniform the spectrum has no accidental
degeneracies-> Yangian symmetry is broken  
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Question: How to generalize this construction to
                 SU(2)@k with k > 1? 

1st step  Wave function for spin systems = conformal blocks

2nd step: Construct the Hamiltonian for which these Conformal
                blocks are ground states 

They key lies in the NULL VECTORS



Hamiltonians from null vectors

Kac-Moody algebra
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In each irrep there is a null vector given by (Gepner-Witten)
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To describe the multiplet one defines the projectors
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Define the operators 
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Equations for spin correlators
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Comparison of spin-spin correlators: AFH, HS(N=infty), HS(N)



Four point spin correlator
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Primary fields: 
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This is the GS of the Hamiltonian
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(See also a recent paper by Greiter for a s=1 Hamiltonian)



Spectrum in the uniform case

There are not accidental degeneracies-> No Yangian symmetry



SU(2)@k=2 = Boson + Ising  (c= 3/2 = 1+ 1/2)

Primary spin 1 fields (h=1/2) 
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In the uniform case we expect the low energy spectrum of this
 model to be described by SU(2)@k=2 model

Look at-> Renyi entropy and spin-spin correlator



Renyi entropy
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Spin-spin correlator

CFT prediction
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Example N = 6 -> 4 GS

The spin Hamiltonian contains 4 body terms



Mixing spin 1/2 and spin 1 for SU(2)@k=2
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Moore-Read wave function for FQHE @5/2  (1992)  
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The quasiholes of the Moore-Read state: non abelian anyons
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Basis for Topological Quantum Computation
                         (braids -> gates)
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 FQHE                CFT                   Spin Models

Electron                 field                spin 1
Quasihole              field                spin 1/2

Braiding of        Monodromy            Adiabatic
quasiholes       of correlators         change of H

An analogy via CFT
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live effectively in 2 dimensions

To have “braiding” for the spin systems we need to
generalize these models to 2D



SU(2)@k=1,  spin 1/2, D=2

u and v are the spinor coordinates. This is the GS of the Hamiltonian

  

! 

" s
1
,,K,sN( ) = # sii

$ ui v j % u j vi( )
si s j / 4

i< j
$ = # sii

$ &i j( )
%si s j / 4

i< j
$

! 

H =
3

4
"

i1i2

i1# i2

$
2

+ ["
i1i2

i1# i2

$
2

+ " 
k i1
"

k i2
(u 

i1
u

i2
+

k

$ v 
i1

v
i2
)]t

i1

a
t

i2

a

% i " 
i1 i2
"

i1 i3
(u 

i2
u

i3
+

k

$ v 
i2

v
i3
)]&a b c

t
i1

a
t

i2

b
t

i3

c

i
i
# i2# i3

$

The wave function is defined in the sphere

2D generalization of the Haldane-Shastry model 



Low energy spectrum on the Platonic Solids
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The SU(2)@k=2 in 2D is the analogue of the Moore-Read state

In the FQHE the z’s are the positions of the electrons or quasiholes

In the spin models the z’s parametrize the couplings of the
Hamiltonian. They are not real positions of the spins.

Braiding amounts to change these couplings is a certain way.

So in principle one can do topological quantum computation
in these spin systems.

But one has first to show that  Holonomy = Monodromy

This problem has been recently solved for the Moore-Read state
(Bonderson, Gurarie, Nayak, 2010)



Conclusions

- Using CFT we extended the MPS to infinite dimensional matrices

- Description of critical and non critical systems

- Generalization of the Haldane-Shastry model in several directions
      1) non uniform
      2) higher spin
      3) degenerate ground states
      4) 1D -> 2D
      5) analogues of non abelian FQHE

Prospects

- Physics of the generalized HS Hamiltonians 

- TCQ with HS models




