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In recent years low-D quantum lattice systems have been actively
investigated using a variety of numerical methods:

- Density Matrix Renormalization Group (DMRG)
- Matrix Product States (MPS)
- Projected Entangled Pair States (PEPS=2D version of MPS)
- Multiscale Entanglement Renormalization Ansatz (MERA)

The performance of the DMRG can now be  explained using
quantum information tools, e.g. if the entanglement entropy of the
subsystems is finite and small, then the DMRG performs well, but for
critical systems, where the entropy increases logarithmically, one has
to use finite size methods.

The MPS are the variational ansatzs underlying the DMRG method.
They can be obtained by means of the Schmidt decomposition of the
wave function into two parts A U B. The limitations of the DMRG are
explained by the fact that the MPS matrices are finite dimensional.



To overcome this limitation one can try to generalize the MPS 
to infinite dimensional matrices, so that long range entanglement
is not a problem. 

We shall show that this be done using CFT. The wave functions so
obtained will resemble those used in the Fractional Quantum Hall
Effect. 

Moreover, in some particular cases these infinite MPS allow 
us to make contact  with the Haldane-Shastry model. 



This model describes a spin 1/2 Heisenberg chain whose ground state
 is a quantum spin liquid. The exchange interactions are long range 
decaying as         . This model shares many properties 
with the nearest-neighbour AF Heisenberg model:

- exotic elementary excitations: spinons
- spin-spin correlation functions decay algebraically
- thermodynamic limit described by a CFT:                  WZW model
- integrable but not à la Bethe
- highly degenerate spectrum described by a Yangian symmetry

 Unlike the AFH model, the GS wave function has a simple structure
obtained by the Gutzwiller proyection of the half-filled Fermi sea and
it has a Jastrow type form which is reminiscent of the Laughlin wave
function for the FQHE. The latter wave function can be constructed 
using the vertex operators of CFT. A similar construction can be 
done for the HS wave function. 
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The Haldane-Shastry model (1988)



Matrix Product States

Consider a 1D spin 1/2 system with N sites and Hamiltonian
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The GS wave function is given in a local spin basis by
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The number of parameters to describe this wave function grows 
exponentially as          . The matrix product state is an ansatz for
the wave function given by the product of D-dimensional matrices: 
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The entanglement entropy of the MPS in a bipartition A U B
scales as
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In a critical system (periodic BCs)    
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hence one needs very large matrices to describe critical systems
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An alternative to this is to propose a MPS with 
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(Holzhey et al, Vidal et al. 
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(Tagliacozzo et al, Pollmann et al)



Infinite MPS: Vertex operators in CFT

Consider a chiral free boson field             with a two point correlator
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Vertex operators are the normal order exponentials
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Two point correlator is given by 
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The vertex operators act on the Fock spaces generated by all the 
oscillators of the bosonic field. This allows for an infinite dimensional
version of the MPS: 
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The wave function is
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Using the vertex correlators one gets
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                        are variational parameters obtained by minimization
of the GS energy. If the GS state is translationally invariant one
can choose 
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If                 NN antiparallel spins are favoured, which suggests
that this wave function describes AF states.  
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Using the Marshall sign rule we choose
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- Anisotropic Heisenberg model 
-             spin chain
- Random AFH model
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Determining the parameters                          in terms of the couplings

- Overlaps with exact wave functions up to N=20 sites
- Spin-spin correlators
- Entanglement entropy

We have applied this ansatz to the following models
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Anisotropic spin 1/2 Heisenberg model
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Hamiltonian periodic BCs

Phases of the model
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" >1 gapped Neel

#1<" $1 gapless (c =1CFT)

" $ #1 Ferromagnetic

To find         we maximize the overlap between the 
exact numerical GS wave function and the ansatz 
for N=10 up to 20
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Overlap of exact wave function and the ansatz



 The ansatz is exact at two values                
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Isotropic Ferromagnetic chain

XX chain

At the isotropic AFH model 

! 

" =1#$ =1/2 Haldane-Shastry chain



Spin-spin
Correlations
N=200
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"1<# $1% 0 <& $1/2Algebraic decay in the critical region

Exacts results of the XXZ chain (Luther-Emery, Lukyanov)
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Correlator of the Calogero-Sutherland model computed approximately 
using a replica trick (Astrakharchik, et al.) 
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At                 the exact expression of the correlators are
given by (Gebhard and Vollhardt) 
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Where Si(x) is the sine integral
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The correlators show AF long range order 



Reny entropy                                 using MonteCarlo simulations:
agree with CFT prediction with c = 1
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Exact GS wave function at 
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Apply the unitary transformation                 
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The Hamiltonian with J = -1 describes free hard-core bosons.
The GS is the absolute value of the Slater determinant
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where                   are the positions of the bosons in the lattice   
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The many body state can be written as
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where                    is the n-th site is empty or occupied
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Map: hard core boson --> spin 1/2 system
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In the spin variables the GS is 



! 

J
1
" J

2
Model (zig-zag chain)

  

! 

H = J
1

r 
S 

i
"

1=1

N

#
r 
S 

i+1+ J
2

r 
S 

i
"
r 
S 

i+2 (J
1

=1)

 frustrated spin system

Phases
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Spontaneously dimerized
Majumdar-Gosh point

Dimer spiral phase

Choice of parameters
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Relation with the Haldane-Shastry model

The wave function for               can be written in the hard core
 boson variables as 

! 

" =1/2

  

! 

" # e
i$ x

n
n

%

x1 ,K,x
N / 2

% sin
$ (x

n
& x

m
)

N
n<m

'
2

a
x1

*
Ka

x
N / 2

*
0

This state is the Gutzwiller projection of the one-band Fermi state
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and it is the GS of the long range AF Hamiltonian 
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CFT derivation of the HS Hamiltonian
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The vertex operators

are the primary fields           of spin 1/2 and conformal weight h=1/4
of the                WZW model at level k=1. The fusion rule of
this field is
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 implies that there is a unique conformal block involving N fields
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This conformal block satisfies the Knizhnik-Zamolodchikov eq
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Making a conformal transformation to the cylinder
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From explicit computation one also has the “abelian” KZ eq.
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Computing the Laplacian in two different ways one gets

  

! 

H ="
z

n
z

m

(z
n
" z

m
)
2

+
1

12
w

n,m
(c

n
" c

m
)

# 

$ 
% 

& 

' 
( 

n)m

*
r 
S 

n
+
r 
S 

m

In the uniform case 
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and we recover the usual HS Hamiltonian. For other values of
        we obtain an inhomogenous version of it.  
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Conclusions

-Infinite dimensional version of the MPS using CFT

-Description of critical and non critical systems in various phases

-Inhomogenous version of the Haldane-Shastry model 
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Prospects

-Generalizations of the HS model to               with k>1 

-Infinite dimensional version of PEPS


