understanding the anatomy of the $\Delta I = I/2$ rule

Carlos Pena

in collaboration with: E Endress L Giusti P Hernández M Laine J Wennekers H Wittig

[PRL 98 (2007) 082003] [JHEP 0805 (2008) 043] [PRD 90 (2014) 9 094504] [arXiv:1402.0831]

trobada 🔊 🐨 📉, 03/12/2014

in memoriam Jan Wennekers 1978-2009

BUICK USHERS IN A NEW MOTORING ERA

WITH DYNAFLOW DRIVE

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 July 1964

EVIDENCE FOR THE 2π DECAY OF THE K_2^0 MESON*[†]

J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have served^{1,2} to set an upper limit of 1/300 for the fraction of K_2^0 's which decay into two charged pions. The present experiment, using spark chamber techniques, proposed to extend this limit.

FIG. 1. Plan view of the detector arrangement.

The Nobel Prize in Physics 1980

James Watson Cronin Prize share: 1/2

Val Logsdon Fitch Prize share: 1/2

The Nobel Prize in Physics 1980 was awarded jointly to James Watson Cronin and Val Logsdon Fitch *"for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons"*

K_S^0	Ι(.	$J^{P}) = \frac{1}{2}(0^{-1})$	-)					
	Mean life $ au = (0.8954 \pm 0.000)$ ing <i>CPT</i> Mean life $ au = (0.89564 \pm 0.00)$ <i>CPT</i>	$(4) imes 10^{-10} ext{ s}$ $(0033) imes 10^{-10}$	s $(S=1.1)$ $^{-10}$ s Not assu	Assum- uming				
κ_S^0 DECAY	MODES Fracti	ion (Γ_i/Γ)	Confidence level	р (MeV/c)				
$\pi^{0}\pi^{0}\pi^{0}$ $\pi^{+}\pi^{-}$	Hadronic m (30 (69	nodes 0.69±0.05) % 0.20±0.05) %		209 206				
			κ_L^0			$I(J^P) = \frac{1}{2}(0^-)$		
			m 	$K_L - m_{K_L}$ = (0.5293 = (3.484 = (0.5289 Mean lit	$egin{aligned} &5 \ &\pm 0.0009) imes 10^{-12} \ &\pm 0.006) imes 10^{-12} \ &\pm 0.0010) imes 10^{-12} \ &\pm 0.0010) \ &\pm 0.00100 \ &\pm 0.0010) \ &\pm 0.0010) \ &\pm 0.0010) \ &\pm 0.0010) \ &\pm 0.00100 \ &\pm 0.0010) \ &\pm 0.00100 \ &\pm 0.001000 \ &\pm 0.0010000 \ &\pm 0.00100000\ &\pm 0.00100000\ &\pm 0.0010000\ &\pm 0.00000\ &\pm 0.00000\ &\pm 0.00000\ &\pm 0.00000\ &\pm 0.00000\ &\pm 0.0000\ &\pm 0.000\ &\pm 0.0000\ &\pm 0.000\ &\pm 0.000$	${}^{10}~\hbar~{ m s}^{-1}~~({ m S}=1.3)^2~{ m MeV}~~{ m Assuming}$ ${}^{10}~\hbar~{ m s}^{-1}~~{ m Not}~{ m ass}$ $0.021) imes 10^{-8}~{ m s}~~(2)$	B) Assuming C CPT ming CPT S = 1.1) Scale factor (PT
				Y MODES		Fraction (Γ_i/Γ)	Confidence level (ρ [MeV/c)
			$\pi^{\pm} e^{\mp} \nu_e$	^	Semile [0]	ptonic modes (40.55 ±0.11) %	S=1.7	229
			$\pi^{\pm}\mu^{\mp}\nu_{\mu}$	-	[0]	(27.04 ± 0.07) %	S=1.1	216
			Hadronic $3\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$	modes, ir	CPV [q] CPV	onjugation × Parity (19.52 ± 0.12) % (12.54 ± 0.05) % (1.967 ± 0.010) × 1 (8.64 ± 0.06) × 1	Violating (<i>CPV</i>) S=1.6 0^{-3} $S=1.5$ 0^{-4} $S=1.8$	modes 139 133 206 209

Hamiltonian for $K^0 - \bar{K}^0$ system determined by hermiticity + CPT

$$H = M - \frac{i}{2}\Gamma = \left(\begin{array}{cc} A & p^2 \\ q^2 & A \end{array}\right)$$

eigenstates of Hamiltonian are $|K_{1,2}\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle \pm |\bar{K}^0\rangle)$ if CP conserved (p = q = 0). CP violation in SM leads to mixing:

$$|K_{\rm S}\rangle = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}}(|K_1\rangle + \bar{\varepsilon}|K_2\rangle), \quad |K_{\rm L}\rangle = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}}(|K_2\rangle + \bar{\varepsilon}|K_1\rangle), \quad \bar{\varepsilon} = \frac{p-q}{p+q}$$

CP-violation parameters accessible via decay amplitudes into two pions

 $-iT[K^0 \to (\pi\pi)_I] = A_i e^{i\delta_I} \qquad T[(\pi\pi)_I \to (\pi\pi)_I]_{l=0} = 2e^{i\delta_I} \sin\delta_I$

$$\varepsilon = \frac{T[K_{\rm L} \to (\pi\pi)_0]}{T[K_{\rm S} \to (\pi\pi)_0]} \simeq \bar{\varepsilon} + i \frac{{\rm Im}A_0}{{\rm Re}A_0}$$
$$\varepsilon' = \frac{\varepsilon}{\sqrt{2}} \left(\frac{T[K_{\rm L} \to (\pi\pi)_2]}{T[K_{\rm L} \to (\pi\pi)_0]} - \frac{T[K_{\rm S} \to (\pi\pi)_2]}{T[K_{\rm S} \to (\pi\pi)_0]} \right) \simeq \frac{1}{\sqrt{2}} e^{i(\delta_2 - \delta_0 + \pi/2)} \frac{{\rm Re}A_2}{{\rm Re}A_0} \left(\frac{{\rm Im}A_2}{{\rm Re}A_2} - \frac{{\rm Im}A_0}{{\rm Re}A_0} \right)$$

experiment:

Average: $(16.7 \pm 2.3) \ 10^{-4}$ $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ NA48 $(14.7\pm2.2)10^{-4}$ $\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = (1.65 \pm 0.26) \times 10^{-3}$ KTeV $(20.7\pm2.8)10^{-4}$ NA31 (23.0±6.5)10⁻⁴ E731 $(7.4\pm6.0)10^{-4}$ $\left|\frac{A_0}{A_2}\right| = 22.35$ 0.002 0 0.004 0.006

 $\text{Re}(\epsilon'/\epsilon)$

experiment:

$$|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = (1.65 \pm 0.26) \times 10^{-3}$$

$$\left|\frac{A_0}{A_2}\right| = 22.35$$

$$|\varepsilon| = 22.35$$

experiment:

$$|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = (1.65 \pm 0.26) \times 10^{-3}$$

$$\left|\frac{A_0}{A_2}\right| = 22.35$$

$$|\varepsilon| = 22.35$$

(similar observations in baryon sector e.g. $\Lambda / \Sigma \rightarrow N\pi$, heavy meson decay, ...) [fully?] satisfactory understanding of result within SM framework lacking for 40 years

outline

- computing kaon decay amplitudes
 - EW effective Hamiltonian analysis
 - why is it so difficult?
 - O status
- understanding the anatomy: strategy
 - disentangling scales
 - Iow-energy effective description and the role of chiral symmetry
 - O can's and cannot's
- some results
 - O long-distance effects in GIM limit
 - O towards the physical charm mass scale
- conclusions and outlook

outline

- computing kaon decay amplitudes
 - EW effective Hamiltonian analysis
 - why is it so difficult?
 - O status
- understanding the anatomy: strategy
 - O disentangling scales
 - O low-energy effective description and the role of chiral symmetry
 - O can's and cannot's
- some results
- O long-distance effects in GIM limit
- O towards the physical charm mass scale
- conclusions and outlook

effective weak Hamiltonian

effective weak Hamiltonian

effective weak Hamiltonian

CP-violation effects neglected ($\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} \sim 10^{-3}$), keep active charm quark:

$$\mathcal{H}_{w}^{\text{eff}} = \frac{g_{w}^{2}}{2M_{W}^{2}} V_{us}^{*} V_{ud} \sum_{\sigma=\pm} \{k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma} + k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\}$$
$$Q_{1}^{\pm} = (\bar{s}_{\text{L}} \gamma_{\mu} u_{\text{L}}) (\bar{u}_{\text{L}} \gamma_{\mu} d_{\text{L}}) \pm (\bar{s}_{\text{L}} \gamma_{\mu} d_{\text{L}}) (\bar{u}_{\text{L}} \gamma_{\mu} u_{\text{L}}) - [u \leftrightarrow c]$$
$$Q_{2}^{\pm} = (m_{u}^{2} - m_{c}^{2}) \{m_{d}(\bar{s}_{\text{L}} d_{\text{R}}) + m_{s}(\bar{s}_{\text{R}} d_{\text{L}})\}$$

(do not contribute to physical $K \to \pi\pi$ transitions)

$$\left. \frac{A_0}{A_2} \right| = \frac{k_1^-(M_W)}{k_1^+(M_W)} \frac{\langle (\pi\pi)_{I=0} | Q_1^- | K \rangle}{\langle (\pi\pi)_{I=2} | Q_1^+ | K \rangle} \qquad \frac{k_1^-(M_W)}{k_1^+(M_W)} \simeq 2.8$$

• bulk of effect should come from long-distance QCD contribution

o reliable non-perturbative determination mandatory

[Cabibbo, Martinelli, Petronzio; Brower, Maturana, Gavela, Gupta 1984]

effective weak Hamiltonian: integrating out the charm

$$\mathcal{H}_{w}^{\text{eff}} = \frac{g_{w}^{2}}{2M_{W}^{2}} V_{ud} V_{us}^{*} \sum_{i=1}^{10} \left[z_{i} + \tau y_{i} \right] Q_{i} \qquad \tau = -\frac{V_{td} V_{ts}^{*}}{V_{ud} V_{us}^{*}}$$

 o several four-fermion operators contribute (2 current-current, 4 QCD penguins, 4 EW penguins)

- missing GIM mechanism leads to quadratic divergences in penguin operators (cf. log divergences if charm active)
- o suggests enhancement mechanism due to peculiar role of charm scale

effective weak Hamiltonian: integrating out the charm

[Shifman, Vainshtein, Zakharov 1975-77]

large N?

 $\mathcal{H}_{\rm w}^{\rm eff} \sim G_{\rm F} J_{\rm w}^{\mu} J_{\rm w}^{\mu}$

[Fukugita et al. 1977; Chivukula, Flynn, Georgi 1986]

since then, much work to refine the analysis by incorporating contributions from resonances / chiral theory effects, ...

[see review in Buras, Gérard, Bardeen EPJ C74 (2014) 5]

lattice QCD?

lattice QCD?

no-go theorems

Maiani-Testa: physical decay amplitudes with more than one hadron in final state cannot be extracted from Euclidean correlation functions [in infinite volume]

[Maiani, Testa 1990]

Lellouch-Lüscher: avoid by working at large finite volume to disentangle pion rescattering effects (requires volumes being reached only now)

[Lellouch, Lüscher 1998; Lin, Martinelli, Sachrajda, Testa 2001]

chiPT: use effective low-energy description of weak Hamiltonian to relate physical $K \rightarrow \pi\pi$ amplitudes to computable quantities

[Bernard et al. 1985]

no-go theorems

Maiani-Testa: physical decay amplitudes with more than one hadron in final state cannot be extracted from Euclidean correlation functions [in infinite volume]

[Maiani, Testa 1990]

Lellouch-Lüscher: avoid by working at large finite volume to disentangle pion rescattering effects (requires volumes being reached only now)

[Lellouch, Lüscher 1998; Lin, Martinelli, Sachrajda, Testa 2001]

chiPT: use effective low-energy description of weak Hamiltonian to relate physical $K \rightarrow \pi\pi$ amplitudes to computable quantities

[Bernard et al. 1985]

Nielsen-Ninomiya: no ultralocal lattice regularisation preserves full chiral symmetry

[Nielsen, Ninomiya 1982]

absence of chiral symmetry leads to complicate operator mixing and severe power divergences

[Bochicchio et al. 1985; Maiani et al. 1987]

use regularisations with exact chiral symmetry (not ultralocal), or better chiral properties

[Capitani, Giusti 2001; CP, Sint, Vladikas 2004; Frezzotti, Rossi 2004]

renormalisation and chiral symmetry

active charm:

$$Q_1^{\pm} = (\bar{s}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}) (\bar{u}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}) \pm (\bar{s}_{\mathrm{L}} \gamma_{\mu} d_{\mathrm{L}}) (\bar{u}_{\mathrm{L}} \gamma_{\mu} u_{\mathrm{L}}) - [u \leftrightarrow c]$$

mixes with $(m_u^2 - m_c^2) \{ m_d(\bar{s}_L d_R) + m_s(\bar{s}_R d_L) \}$

resp. $(m_u - m_c)\bar{s}d, \ (m_u - m_c)(m_s - m_d)\bar{s}\gamma_5 d, \ Q_1^{\pm;(k)}[\Gamma \otimes \Gamma']$

charm integrated out:

 Q_i always mixes with lower-dimensional operators via power divergences (no GIM factor); more severe mixing/divergences if chiral symmetry is broken

direct computations

state of the art: computation by RBC/UKQCD collaboration

[Blum et al. 2011]

- o two-pion final state
- o (almost) exactly chiral fermion regularisation (DW)
- o effective Hamiltonian with charm integrated out

$\frac{\mathrm{Re}A_0}{\mathrm{Re}A_2}$	=	9.1(2.1) for $m_K = 878 { m MeV} m_\pi = 422 { m MeV}$
$\frac{\mathrm{Re}A_0}{\mathrm{Re}A_2}$	=	12.0(1.7) for $m_{K} = 662 { m MeV} m_{\pi} = 329 { m MeV}$

[plenary talk by N Garron at Lattice 2014]

improvement in the way (smaller pion masses / larger volumes)

direct computations

state of the art: computation by RBC/UKQCD collaboration

outline

- computing kaon decay amplitudes
 - EW effective Hamiltonian analysis
 - why is it so difficult?
 - O status
- understanding the anatomy: strategy
 - disentangling scales
 - Iow-energy effective description and the role of chiral symmetry
 - O can's and cannot's
- some results
- O long-distance effects in GIM limit
- O towards the physical charm mass scale
- conclusions and outlook

a strategy to understand the role of the charm quark

[Giusti, Hernández, Laine, Weisz, Wittig 2004]

several possible sources for $\Delta I = 1/2$ enhancement:

- o physics at charm scale (penguins)
- O physics at "intrinsic" QCD scale $\sim \Lambda_{
 m QCD}$
- o final state interactions
- o all of the above (no dominating "mechanism")

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

O active charm

o use chiral fermions (good renormalisation, access to all kinematical regimes)

o give up direct computation (chiral fermions too expensive) \Rightarrow no control of FSI

effective low-energy description

dynamics of Goldstone bosons at LO given by chiral Lagrangian

$$\mathcal{L} = \frac{1}{4} F^2 \operatorname{Tr} \left[\partial_{\mu} U \partial_{\mu} U^{\dagger} \right] - \frac{1}{2} \Sigma \operatorname{Tr} \left[U M^{\dagger} e^{i\theta/N_{\mathrm{f}}} + \mathrm{h.c.} \right]$$

weak interactions accounted for by low-energy counterpart of effective Hamiltonian

heavy charm:

$$\begin{aligned} \mathcal{H}_{w}^{(3)} &= \frac{g_{w}^{2}}{4M_{W}^{2}} V_{us}^{*} V_{ud} \left\{ g_{27} \mathcal{Q}_{27} + g_{8} \mathcal{Q}_{8} + g_{8}^{\prime} \mathcal{Q}_{8}^{\prime} \right\} \\ \mathcal{Q}_{27} &= \frac{2}{5} \mathcal{J}_{\mu}^{su} \mathcal{J}_{\mu}^{ud} + \frac{3}{5} \mathcal{J}_{\mu}^{sd} \mathcal{J}_{\mu}^{uu} , \\ \mathcal{Q}_{8} &= \frac{1}{2} \sum_{q=u,d,s} \mathcal{J}_{\mu}^{sq} \mathcal{J}_{\mu}^{qd} , \\ \mathcal{Q}_{8}^{\prime} &= m_{l} \Sigma F^{2} \left[U e^{i\theta/N_{\mathrm{f}}} + U^{\dagger} e^{-i\theta/N_{f}} \right]^{sd} , \end{aligned}$$

effective low-energy description

dynamics of Goldstone bosons at LO given by chiral Lagrangian

0

$$\mathcal{L} = \frac{1}{4} F^2 \operatorname{Tr} \left[\partial_{\mu} U \partial_{\mu} U^{\dagger} \right] - \frac{1}{2} \Sigma \operatorname{Tr} \left[U M^{\dagger} e^{i\theta/N_{\mathrm{f}}} + \mathrm{h.c.} \right]$$

weak interactions accounted for by low-energy counterpart of effective Hamiltonian

light charm:
$$\mathcal{H}_{w}^{(4)} = \frac{g_{w}^{2}}{4M_{W}^{2}} V_{us}^{*} V_{ud} \sum_{\sigma=\pm} \{g_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma} + g_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma}\}$$

 $g_{27}(0) = g_{1}^{+}, \qquad g_{8}(0) = g_{1}^{-} + \frac{1}{5} g_{1}^{+}$

neavy charm:
$$\mathcal{H}_{w}^{(3)} = \frac{g_{w}^{2}}{4M_{W}^{2}} V_{us}^{*} V_{ud} \left\{ g_{27} \mathcal{Q}_{27} + g_{8} \mathcal{Q}_{8} + g_{8}^{\prime} \mathcal{Q}_{8}^{\prime} \right\}$$

 $|g_{27}^{\exp}(\overline{m}_c)| \sim 0.50, \qquad |g_8^{\exp}(\overline{m}_c)| \sim 10.5$

determination of low-energy constants: light charm

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

QCD SU(4) ChPT $\mathcal{R}_i^{\pm}(x_0, y_0) = \frac{\mathcal{C}_i^{\pm}(x_0, y_0)}{\mathcal{C}(x_0)\mathcal{C}(y_0)}$ $R_i^{\pm}(x_0, y_0) = \frac{C_i^{\pm}(x_0, y_0)}{C(x_0)C(y_0)}$ $C_i^{\pm}(x_0, y_0) = \int d^3x \int d^3y \, \langle J_0^{du}(x) \, Q_i^{\pm}(0) \, J_0^{us}(y) \rangle$ $\mathcal{C}(x_0) = \int \mathrm{d}^3 x \, \langle \mathcal{J}_0^{ud}(x) \, \mathcal{J}_0^{du}(0) \rangle_{\mathrm{SU}(4)} \,,$ $\mathcal{C}_i^{\pm}(x_0, y_0) = \int \mathrm{d}^3 x \int \mathrm{d}^3 y \, \langle \mathcal{J}_0^{du}(x) \, \mathcal{Q}_i^{\pm}(0) \, \mathcal{J}_0^{us}(y) \rangle_{\mathrm{SU}(4)}$ $C(x_0) = \int \mathrm{d}^3 x \left\langle J_0^{\alpha\beta}(x) J_0^{\beta\alpha}(0) \right\rangle,$ $\mathcal{Z}_{1}^{\pm}R_{1}^{\pm}(x_{0}, y_{0}) = g_{1}^{\pm}\mathcal{R}_{1}^{\pm}(x_{0}, y_{0})$

match suitable correlation functions in QCD and ChPT (infinite volume: $K \rightarrow \pi$ amplitudes)

$$\begin{array}{l} \label{eq:started_start$$

kinematical regimes in ChPT

[Gasser, Leutwyler 1987; Hansen 1990; Hansen, Leutwyler 1991]

 $m\Sigma V\gg 1$

standard ChPT in finite volume: $m \sim p^2$ $L^{-1}, T^{-1} \sim p$

 ϵ -regime: $m_{\pi}L \lesssim 1$

 $m\Sigma V \lesssim 1$ reordering of expansion: $m \sim p^4 \sim \epsilon^4 \qquad L^{-1}, T^{-1} \sim \epsilon$

o LECs universal

o only a subset of NLO terms in chiral Lagrangian survive in the E-regime

o chiral effective Hamiltonian has no NLO terms in the E-regime

[Giusti, Hernández, Laine, Weisz, Wittig 2004; Hernández, Laine 2006]

kinematical regimes in ChPT

[Giusti, Hernández, Laine, Weisz, Wittig 2004; Hernández, Laine 2002/2004/2006]

setup summary + remarks

- o we are after a computation of chiral effective couplings governing kaon decay
- setup allows to disentangle charm scale physics from low-energy QCD physics, not including FSI
- keeping active charm crucial for disentanglement + renormalisation
- o access to different kinematical regimes crucial to control systematics
- o (expensive) exactly chiral fermions mandatory (use of ChPT, renormalisation)
- o only QCD computation of matrix elements of four-quark operators needed, other pieces available
 - Wilson coefficients [Ciuchini et al. 1998; Buras, Misiak, Urban 2000]
 - ChPT computations

- [Hernández, Laine 2002-2006]
- non-perturbative composite operator renormalisation [Dimopoulos et al. 2006]

outline

- computing kaon decay amplitudes
 - EW effective Hamiltonian analysis
 - why is it so difficult?
 - O status
- understanding the anatomy: strategy
 - disentangling scales
 - O low-energy effective description and the role of chiral symmetry
 - O can's and cannot's
- some results
- O long-distance effects in GIM limit
- O towards the physical charm mass scale
- conclusions and outlook

lattice computation

proof of concept + qualitative exploration:

- o stay quenched (dynamical fermion effects not crucial, chiral reg. expensive)
- o keep all three light quarks degenerate $m_s = m_u = m_d \equiv m_l$
- o access very light masses (€-regime): severe variance problem
- o outside GIM limit \Rightarrow penguin ("eye") contractions: severe variance problem

lattice computation: variance problems

light charm: strong signal-to-noise ratio dependence on quark mass

heavy charm: simple computational techniques do not yield a signal at all

lattice computation: variance problems

Traditional way: point-to-all

Goal: all-to-all

Source at any x

solution for large variances related to very light quark masses: accurate all-to-all propagators in space of low Dirac modes (low-mode averaging)

[Giusti, Hernández, Laine, CP, Wennekers, Wittig 2005]

solution for large variances related to closed quark loops: approximate all-to-all propagators involving all dirac modes (stochastic volume sources and probing)

[[]Endress, CP 2014]

Simulation parameters:

 $\beta = 5.8485 \qquad \frac{V}{a^4} = 16^3 \cdot 32 \qquad a \approx 0.125 \text{ fm} \qquad V \approx 2^3 \cdot 4 \text{ fm}^4$ Quark masses: p-regime $m \sim m_s/2 - m_s/6$ O(200) cfgs ϵ -regime $m \sim m_s/40, m_s/60$ O(800) cfgs

Quenched approximation.

Simulation parameters:

 $\beta = 5.8485 \qquad \frac{V}{a^4} = 16^3 \cdot 32 \qquad a \approx 0.125 \text{ fm} \qquad V \approx 2^3 \cdot 4 \text{ fm}^4$ Quark masses: p-regime $m \sim m_s/2 - m_s/6$ O(200) cfgs ϵ -regime $m \sim m_s/40, m_s/60$ O(800) cfgs

Quenched approximation.

Expected ε -regime features — independence of R^{\pm} on (x_0, y_0) , *m* and ν — are all well reproduced by the data.

Simulation parameters:

$$\beta = 5.8485 \qquad \frac{V}{a^4} = 16^3 \cdot 32 \qquad a \approx 0.125 \text{ fm} \qquad V \approx 2^3 \cdot 4 \text{ fm}^4$$

Quark masses: p-regime $m \sim m_s/2 - m_s/6$ O(200) cfgs
 ϵ -regime $m \sim m_s/40, m_s/60$ O(800) cfgs

Quenched approximation.

Fits for LECs:

- Choose quantities with smaller mass corrections and statistical errors: R⁺, R⁺R⁻
- → Fit to NLO χPT to extract g^{\pm} and Λ^{\pm} (exploit smooth ε/p-regime transition).

Tension between ε - and p-regime may indicate non-negligible higher order corrections \rightarrow systematic error included to account for this.

o $\Delta I=3/2$ comes in the right ballpark (n.b. charm enters only via loops — but also suggests quenching subdominant [?])

- $\circ \Delta I = 1/2$ about a factor 4 too small to reproduce physical enhancement
- o remarkable enhancement of $\Delta I = 1/2$ channel already present for light charm: pure "no-penguin" effect

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

[Endress, CP 2014]

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

[Endress, CP 2014]

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

probing: new technique to compute diagonal of inverse of large sparse matrices

[Tang, Saad 2012]

$$\mathcal{D}(S) \approx \mathcal{D}(\begin{array}{c} SV_s \\ V_s \end{array} V_s^T) \mathcal{D}^{-1}(V_s V_s^T)$$

[Stathopoulos, Laeuchli, Orginos 2013] [Endress, CP, Sivalingam 2014]

separate low-energy QCD and charm-scale physics: consider amplitudes as a function of charm mass for fixed u,d,s masses

$$m_c = m_u = m_d = m_s \quad \longrightarrow \quad m_c \gg m_u = m_d \le m_s$$

probing: new technique to compute diagonal of inverse of large sparse matrices

[Tang, Saad 2012]

also need to compute contribution from the subtraction term

$$\mathcal{H}_{w}^{\text{eff}} = \frac{g_{w}^{2}}{2M_{W}^{2}} V_{us}^{*} V_{ud} \sum_{\sigma=\pm} \left\{ k_{1}^{\sigma} \mathcal{Q}_{1}^{\sigma} + k_{2}^{\sigma} \mathcal{Q}_{2}^{\sigma} \right\}$$
$$Q_{1}^{\pm} = (\bar{s}_{\text{L}} \gamma_{\mu} u_{\text{L}}) (\bar{u}_{\text{L}} \gamma_{\mu} d_{\text{L}}) \pm (\bar{s}_{\text{L}} \gamma_{\mu} d_{\text{L}}) (\bar{u}_{\text{L}} \gamma_{\mu} u_{\text{L}}) - [u \leftrightarrow c]$$
$$Q_{2}^{\pm} = (m_{u}^{2} - m_{c}^{2}) \left\{ m_{d} (\bar{s}_{\text{L}} d_{\text{R}}) + m_{s} (\bar{s}_{\text{R}} d_{\text{L}}) \right\}$$

complicated in practice, leads to new technical issues not completely sorted out yet — work with perturbative estimate

$$\begin{aligned} \mathcal{H}_{\mathrm{w}} &= \sum_{\sigma=\pm} k_{1}^{\sigma}(\mu) Z_{11}^{\sigma}(\mu) \left\{ \mathcal{Q}_{1}^{\sigma} + \boldsymbol{c}^{\sigma} \mathcal{Q}_{2}^{\sigma} \right\} \\ \left\langle \left(\mathcal{Q}_{1}^{\pm} + \boldsymbol{c}^{\pm} \mathcal{Q}_{2}^{\pm} \right) (0) \left[J_{\mathrm{L}0} \right]_{ds} (x) \right\rangle = 0 \end{aligned}$$

[Bernard et al. 1985]

- $\beta = 5.8485,$
- 32×16^3 ,
- $N_{\rm low} = 20$
- Dilution: time, spin, color
- Quenched approximation

 $a \approx 0.124 \text{ fm}$

L = 2 fm

	am_u	$m_{\pi}[\text{MeV}]$	am_c	# cfgs
ϵ -regime	0.002		0.04, 0.2	$\mathcal{O}(400)$
n rogimo	0.02	320	0.04, 0.2, 0, 4 (50, 250, 500 MeV)	$\mathcal{O}(400)$
<i>p</i> -regime	0.03	370	0.04, 0.2	$\mathcal{O}(400)$

[Endress, CP 2014]

- $\beta = 5.8485,$
- 32×16^3 ,
- $N_{\rm low} = 20$
- Dilution: time, spin, color
- Quenched approximation

 $a \approx 0.124 \text{ fm}$

L = 2 fm

	am_u	$m_{\pi}[{ m MeV}]$	am_c	# cfgs
ϵ -regime	0.002		0.04, 0.2	$\mathcal{O}(400)$
m magima	0.02	320	0.04, 0.2, 0, 4 (50, 250, 500 MeV	\mathcal{N} $\mathcal{O}(400)$
<i>p</i> -regime	0.03	370	0.04, 0.2	$\mathcal{O}(400)$

[Endress, CP 2014]

o did a good job at tackling eye diagrams, work missing for subtraction

- O very mild extra enhancement for charm masses up to $m_c \sim \Lambda_{
 m QCD}$
- O analysis of subtraction term suggests that I=0 amplitude grows quadratically with charm mass for $m_c \gg \Lambda_{\rm QCD}$

O better understanding of subtraction crucial

outline

- computing kaon decay amplitudes
 - EW effective Hamiltonian analysis
 - why is it so difficult?
 - O status
- understanding the anatomy: strategy
 - disentangling scales
 - O low-energy effective description and the role of chiral symmetry
 - O can's and cannot's
- some results
- O long-distance effects in GIM limit
- O towards the physical charm mass scale

conclusions and outlook

conclusions and outlook

- status of problem
 - understanding of field theory issues in late 90s crucial for progress
 - algorithmic aspects important, but not crucial
 - huge progress by RBC/UKQCD in direct computation, others in hot pursuit

- understanding of anatomy
 - our strategy works well, is easy to extend to realistic setup (unquenching, direct computation, ...)
 - significant enhancement due to pure low-energy QCD effects seen
 - role of charm / precise amount of total QCD enhancement still unclear: go to larger charm masses (smaller lattice spacings), control subtraction
- Iooks like the problem may be settled within a decade [standard conclusion for seminars in 1984, 1994, 2004]

