Twisted mass QCD for weak matrix elements

Carlos Pena

Lattice 2006, Tucson

Thanks to:
P. Dimopoulos
M. Guagnelli
J. Heitger
F. Palombi
M. Papinutto
S. Sint
A.Vladikas
H.Wittig
\# LelpHA
colaboraion

Motivation

- LQCD impact on SM testing via Flavour Physics requires increased control of systematic uncertainties.

O Light light quarks.
O Control of symmetries / Renormalisation.
O Cutoff dependences.
O Conceptual issues.

- Wilson fermions are able to access large volumes and explore dependence on lattice spacing with current computing capabilities.
- tmQCD offers potential advantages related to the control of chiral symmetry breaking and the renormalisation of composite operators.
- Not a review: I will mainly report on Alpha Collaboration work.

Outline

- B_{k}

O Motivation from UT analysis.
O B_{K} with Wilson fermions.
O tmQCD
O The $\mathrm{F}_{\text {collumerion }}^{\text {LePA }}$ computation.

- (Ongoing work on) B_{B}

O Strategy.
O Status.

- Some remarks on tmQCD for $K \rightarrow \pi \pi$ decays.

Outline

- B_{k}

O Motivation from UT analysis.
O B_{K} with Wilson fermions.
O tmQCD
O The $\overline{7}$ Lullubraion computation.

- (Ongoing work on) B_{B}
- Strategy

O Status.

- Some remarks on tmQCD for $K \rightarrow \pi \pi$ decays.

$\Delta S=2$ transitions: ϵ_{K}

$$
\left|\epsilon_{K}\right|=\frac{\mathcal{A}\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{\mathcal{A}\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)} \stackrel{\exp }{=}\left[2.282(17) \times 10^{-3}\right] e^{i \pi / 4}
$$

$$
\left.\left|\epsilon_{K}\right| \approx C_{\epsilon} \hat{B}_{K} \operatorname{Im}\left\{V_{t d}^{*} V_{t s}\right\}\left\{\operatorname{Re}\left\{V_{c d}^{*} V_{c s}\right\}\left[\eta_{1} S_{0}\left(x_{c}\right)-\eta_{3} S_{0}\left(x_{c}, x_{t}\right)\right]-\operatorname{Re}\left\{V_{t d}^{*} V_{t s}\right\} \eta_{2} S_{0}\left(x_{t}\right)\right]\right\}
$$

$$
\hat{B}_{K}=\frac{\left\langle\bar{K}^{0}\right| \hat{O}^{\Delta S=2}\left|K^{0}\right\rangle}{\frac{8}{3} F_{K}^{2} m_{K}^{2}}
$$

Put in NLO PT + Cabibbo angle $+A+m_{c, t}$

$$
\bar{\eta}(1.4-\bar{\rho}) \hat{B}_{K} \approx 0.40
$$

$\Delta S=2$ transitions: ϵ_{K}

$$
\left|\epsilon_{K}\right|=\frac{\mathcal{A}\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{\mathcal{A}\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)} \stackrel{\exp }{=}\left[2.282(17) \times 10^{-3}\right] e^{i \pi / 4}
$$

The case for a precise quenched Wilson computation of B_{K}

- Conceptual uncertainties minimised.
- Numerically cheap \Rightarrow control cutoff dependence.
- Mature non-perturbative renormalisation techniques.
- Control/understanding of all quenched systematics essential to set up techniques and set target precision in unquenched computation.
$B_{K}-$ a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; Gupta et al. I993; Donini et al. 1999

$$
O^{\Delta S=2}=[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)}_{O_{\mathrm{VV}+\mathrm{AA}}}]-[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} d\right)}_{O_{\mathrm{VA}+\mathrm{AV}}}]
$$

$B_{K}-a$ renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of different chiralities mix under renormalisation.

Martinelli I984; Bernard, Draper, (Hockney), Soni I987, I998; Gupta et al. 1993; Donini et al. 1999

$$
\begin{gathered}
O^{\Delta S=2}=[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)}_{O_{V V+\mathrm{AA}}}]-[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} d\right)}_{O_{\mathrm{VA}+\mathrm{AV}}}] \\
\bar{O}_{\mathrm{VV}+\mathrm{AA}}=\lim _{a \rightarrow 0} \mathrm{Z}_{\mathrm{VV}+\mathrm{AA}}\left(g_{0}^{2}, a \mu\right)\left[O_{\mathrm{VV}+\mathrm{AA}}(a)+\sum_{k=1}^{4} \Delta_{k}\left(g_{0}^{2}\right) O_{k}(a)\right]
\end{gathered}
$$

$B_{K}-$ a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of different chiralities mix under renormalisation.

Martinelli I984; Bernard, Draper, (Hockney), Soni I987, I998;
Gupta et al. 1993; Donini et al. 1999

$$
\begin{gathered}
O^{\Delta S=2}=[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)}_{O_{\mathrm{VV}+\mathrm{AA}}}]-[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} d\right)}_{O_{\mathrm{VA}+\mathrm{AV}}}] \\
\bar{O}_{\mathrm{VV}+\mathrm{AA}}=\lim _{a \rightarrow 0} \mathrm{Z}_{\mathrm{VV}+\mathrm{AA}}\left(g_{0}^{2}, a \mu\right)\left[O_{\mathrm{VV}+\mathrm{AA}}(a)+\sum_{k=1}^{4} \Delta_{k}\left(g_{0}^{2}\right) O_{k}(a)\right] \\
\begin{array}{l}
\text { Vanishes if chiral symmetry is preserved } \\
\text { (at least partially) }
\end{array}
\end{gathered}
$$

$B_{K}-a$ renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators of different chiralities mix under renormalisation.

Martinelli I984; Bernard, Draper, (Hockney), Soni I987, I998;
Gupta et al. 1993; Donini et al. 1999

$$
\begin{aligned}
& O^{\Delta S=2}=[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)}_{O_{\mathrm{VV}+\mathrm{AA}}}]-[\underbrace{\left(\bar{s} \gamma_{\mu} d\right)\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)+\left(\bar{s} \gamma_{\mu} \gamma_{5} d\right)\left(\bar{s} \gamma_{\mu} d\right)}_{O_{\mathrm{VA}+\mathrm{AV}}}] \\
& \bar{O}_{\mathrm{VV}+\mathrm{AA}}=\lim _{a \rightarrow 0} Z_{\mathrm{VV}+\mathrm{AA}}\left(g_{0}^{2}, a \mu\right)\left[O_{\mathrm{VV}+\mathrm{AA}}(a)+\sum_{k=1}^{4} \Delta_{k}\left(g_{0}^{2}\right) O_{k}(a)\right] \\
& \bar{O}_{\mathrm{VA}+\mathrm{AV}}=\lim _{a \rightarrow 0} Z_{\mathrm{VA}+\mathrm{AV}}\left(g_{0}^{2}, a \mu\right) O_{\mathrm{VA}+\mathrm{AV}}(a)
\end{aligned}
$$

Protected from mixing by discrete symmetries

Getting rid of mixing

- Straightforward option: preserve chiral symmetry - possibly exactly.
- Wilson I: axial Ward identity (3-point function with $O_{V V+A A} \rightarrow$ 4-point function with $\left.O_{V A+A V}\right)$.

Becirevic et al. 2000

- Wilson 2: tmQCD (3-point function with $O_{V A+A V}$).

ALPHA, Frezzotti, Grassi, Sint \& Weisz, 2001
ALPHA, Dimopoulos et al. 2004
ALPHA, Dimopoulos et al. 2006

- tmQCD bonus: push safely towards low quark masses in quenched simulations.

Twistad mass QCD

```
Break flavour symmetry in non-trivial direction in flavour space }
preserve different subgroup.
No free lunch: break P,T, vector symmetries.
```

- Originally (re)proposed to avoid exceptional configurations in quenched computations.

Frezzotti, Grassi, Sint, Weisz 200 I

- Control of chiral symmetry breaking allows for simpler renormalisation properties of $d=6$ operators \rightarrow "mimic" exact chiral symmetry.

Frezzotti, Grassi, Sint, Weisz 2001
CP, Sint, Vladikas 2004
Frezzotti, Rossi, 2004

- Interest outburst after Frezzotti and Rossi's argument for automatic $\mathrm{O}(\mathrm{a})$ improvement.

Twistəd mass QCD

Basic setup: two mass-degenerate light flavours.

$$
\begin{aligned}
& S_{\mathrm{F}}^{\mathrm{ph}}=a^{4} \sum_{x, y} \bar{\psi}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)+M_{q}\right. \\
&\left.+e^{-i \alpha \gamma_{5} \tau_{3}}\left(-\frac{a r}{2} \nabla_{\mu}^{*} \nabla_{\mu}+M_{\mathrm{cr}}\right)\right\}(x, y) \psi(y) \\
& \psi \rightarrow e^{-i \alpha \gamma_{5} \tau_{3} / 2} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{-i \alpha \gamma_{5} \tau_{3} / 2} \\
& m_{q}=M_{q} \cos \alpha, \quad \mu_{q}=M_{q} \sin \alpha
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{F}}^{\mathrm{tm}}=a^{4} \sum_{x, y} \bar{\psi}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)+m_{q}+i \mu_{q} \gamma_{5} \tau_{3}\right. \\
&\left.+\left(-\frac{a r}{2} \nabla_{\mu}^{*} \nabla_{\mu}+M_{\mathrm{cr}}\right)\right\}(x, y) \psi(y)
\end{aligned}
$$

Twistəd mass QCD

Basic setup: two mass-degenerate light flavours.

$$
\begin{aligned}
S_{\mathrm{F}}^{\mathrm{ph}}=a^{4} \sum_{x, y} \bar{\psi}(x)\{ & \frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)+M_{q} \\
& \left.+e^{-i \alpha \gamma_{5} \tau_{3}}\left(-\frac{a r}{2} \nabla_{\mu}^{*} \nabla_{\mu}+M_{\mathrm{cr}}\right)\right\}(x, y) \psi(y)
\end{aligned}
$$

Tune standard mass

$$
\text { parameter + twist angle } \alpha .
$$

$$
\begin{gathered}
\psi \rightarrow e^{-i \alpha \gamma_{5} \tau_{3} / 2} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{-i \alpha \gamma_{5} \tau_{3} / 2} \\
m_{q}=M_{q} \cos \alpha, \quad \mu_{q}=M_{q} \sin \alpha
\end{gathered}
$$

(Renormalised) composite operators are rotated.

$$
\begin{aligned}
& S_{\mathrm{F}}^{\mathrm{tm}}=a^{4} \sum_{x, y} \bar{\psi}(x)\left\{\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)+m_{q}+i \mu_{q} \gamma_{5} \tau_{3}\right. \\
&\left.+\left(-\frac{a r}{2} \nabla_{\mu}^{*} \nabla_{\mu}+M_{\mathrm{cr}}\right)\right\}(x, y) \psi(y)
\end{aligned}
$$

Tuning of masses

Untwisted quark: $\quad m_{\mathrm{R}}=Z_{\mathrm{m}}\left[m_{\mathrm{q}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}}\right)\right]$

Twisted quark:

$$
\begin{aligned}
& m_{\mathrm{R}}=Z_{\mathrm{m}}\left[m_{\mathrm{q}}\left(1+b_{\mathrm{m}} a m_{\mathrm{q}}\right)+\tilde{b}_{\mathrm{m}} a \mu_{\mathrm{q}}^{2}\right] \\
& \mu_{\mathrm{R}}=Z_{\mu}\left[\mu_{\mathrm{q}}\left(1+b_{\mu} a m_{\mathrm{q}}\right)\right] \\
& m_{\mathrm{q}}=\frac{1}{2}\left(\frac{1}{\kappa}-\frac{1}{\kappa_{\mathrm{c}}}\right)
\end{aligned}
$$

Precise knowledge of κ_{c}, renormalisation constants, improvement coefficients required.

$\bar{A}_{\text {Collaboration }}^{L P H A}$ quenched computation of B_{K}

Guagnelli, Heitger, CP, Sint, Vladikas JHEP 03 (2006) 088
Palombi, CP, Sint JHEP 03 (2006) 089
Dimopoulos, Heitger, Palombi, CP, Sint, Vladikas NPB 749 (2006) 69

- tmQCD \rightarrow no operator mixing, no exceptional configurations.
- SF non-perturbative renormalisation.
- Various physical volumes: check control of finite volume effects.
- Two different regularisations: check control of the continuum limit.
- N.B.: action is $\mathrm{O}(a)$ improved, but four-fermion operator is not \Rightarrow continuum limit approached linearly in a.
- Computations performed on the APEMille installation @ DESY-Zeuthen.

tmQCD regularisations for B_{K}

п/2 strategy:

$$
\begin{aligned}
& S=\sum_{x, y}\left\{\bar{\psi}_{\ell}(x)\left[D_{\mathrm{w}, \mathrm{sw}}+m_{\ell}+i \mu_{\ell} \gamma_{5} \tau_{3}\right](x, y) \psi_{\ell}(y)+\bar{s}(x)\left[D_{\mathrm{w}, \mathrm{sw}}+m_{s}\right](x, y) s(y)\right\} \\
& m_{\ell}, \mu_{\ell} \text { tuned to have } m_{\ell, \mathrm{R}}=0
\end{aligned}
$$

$\Pi / 4$ strategy (specially devised for quenched case):

$$
\begin{aligned}
& S=\sum_{x, y}\left\{\bar{\psi}(x)\left[D_{\mathrm{W}, \mathrm{sW}}+m_{0}+i \mu_{\tilde{q}} \gamma_{5} \tau_{3}\right](x, y) \psi(y)\right\} \\
& m_{0}, \mu_{q} \text { tuned to have } m_{\mathrm{R}}=\mu_{\mathrm{R}}
\end{aligned}
$$

$$
\text { in both cases: } \quad O_{\mathrm{VV}+\mathrm{AA}} \xrightarrow{\text { twist }} O_{\mathrm{VA}+\mathrm{AV}}
$$

NB: we never have only fully twisted quarks \rightarrow Frezzotti-Rossi $\mathrm{O}(\mathrm{a})$ improvement argument does not apply.

Bare matrix element

Correlation functions computed with Dirichlet b.c. (SF framework)

B_{K} extracted from the ratio

$$
R\left(x_{0}\right)=\frac{3}{16} \frac{-i f_{\mathrm{VA}+\mathrm{AV}}\left(x_{0}\right)}{\left[Z_{\mathrm{A}}\left(f_{\mathrm{A}}\left(x_{0}\right)+c_{\mathrm{A}} a \partial_{0} f_{\mathrm{P}}\left(x_{0}\right)\right)-i Z_{\mathrm{V}} f_{\mathrm{V}}\left(x_{0}\right)\right]\left[Z_{\mathrm{A}}\left(f_{\mathrm{A}}^{\prime}\left(x_{0}\right)+c_{\mathrm{A}} a \partial_{0} f_{\mathrm{P}}^{\prime}\left(x_{0}\right)\right)-i Z_{\mathrm{V}} f_{\mathrm{V}}^{\prime}\left(x_{0}\right)\right]}
$$

Systematics related to improvement coefficients / current normalisations \rightarrow compare ALPHA vs LANL.

Quenched simulations

- $\pi / 2$:
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, \mathrm{T} / \mathrm{L} \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, \mathrm{T} / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$

Quenched simulations

- $\pi / 2$:
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, T / L \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, \mathrm{T} / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$
- Control of finite volume effects requires $L \sim 2$ fm for $m_{\mathrm{PS}} \sim m_{K}$.

Quenched simulations

- $\pi / 2:$
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, \mathrm{T} / L \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, \mathrm{T} / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$
- Control of finite volume effects requires $L \sim 2$ fm for $m_{\mathrm{PS}} \sim m_{K}$.
- $m_{s}=m_{d}$ limit. Physical $S U(3)$ breaking effects checked to be small up to moderate values for the strange-down splitting.

Physical $\mathrm{SU}(3)$ breaking effects

$$
\epsilon=\frac{M_{s}-M_{d}}{M_{s}+M_{d}}
$$

Quenched simulations

- $\pi / 2$:
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, \mathrm{T} / L \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, \mathrm{T} / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$
- Control of finite volume effects requires $L \sim 2 \mathrm{fm}$ for $m_{\mathrm{PS}} \sim m_{K}$.
- $m_{s}=m_{d}$ limit. Physical $S U(3)$ breaking effects checked to be small up to moderate values for the strange-down splitting.
- Spurious $S U(3) v$ breaking due to twist checked to be of order few \%, converges to 0 in the continuum limit.

Twisted mass-induced vector symmetry breaking

$\beta=6.0$

$\beta=6.3$

Quenched simulations

- $\pi / 2:$
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, T / L \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, T / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$
- Control of finite volume effects requires $L \sim 2 \mathrm{fm}$ for $m_{\mathrm{PS}} \sim m_{K}$.
- $m_{s}=m_{d}$ limit. Physical $\operatorname{SU}(3)$ breaking effects checked to be small up to moderate values for the strange-down splitting.
- Spurious $\operatorname{SU}(3) v$ breaking due to twist checked to be of order few \%, converges to 0 in the continuum limit.
- No sign of measurable deviations from $B_{K} \propto m_{\mathrm{PS}}^{2}$ in the explored range of masses.

Quenched simulations

- $\pi / 2:$
$4 \times \beta, a \sim 0.06-0.09 \mathrm{fm}, L \sim 1.4-1.9 \mathrm{fm}, T / L \sim 2.3-3.0, m_{\mathrm{PS}} \sim 640-830 \mathrm{MeV}$
- $\pi / 4:$
$5 \times \beta, a \sim 0.05-0.09 \mathrm{fm}, L \sim 1.9-2.2 \mathrm{fm}, \mathrm{T} / L \sim 2.0-2.6, m_{\mathrm{PS}} \sim 460-540 \mathrm{MeV}$
- Control of finite volume effects requires $L \sim 2 \mathrm{fm}$ for $m_{\mathrm{PS}} \sim m_{K}$.
- $m_{s}=m_{d}$ limit. Physical $\operatorname{SU}(3)$ breaking effects checked to be small up to moderate values for the strange-down splitting.
- Spurious $S U(3) v$ breaking due to twist checked to be of order few \%, converges to 0 in the continuum limit.
- No sign of measurable deviations from $B_{K} \propto m_{\mathrm{PS}}^{2}$ in the explored range of masses.
- Approach to continuum limit remains delicate.

Approach to continuum: non-perturbative renormalisation

$$
\text { ALPHA, JHEP } 03 \text { (2006) } 088 \text { \& } 089
$$

- SF technique via finite size scaling: split renormalisation into

O Renormalisation at a low, hadronic scale where contact with typical largevolume values of β is made.

O NP running to very high scales $(\sim 100 \mathrm{GeV})$ where contact with PT is made.

$$
\hat{B}_{K}=\left(\alpha_{s}(\mu)\right)^{-\gamma_{0} / 2 b_{0}} \exp \left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma(g)}{\beta(g)}-\frac{\gamma_{0}}{b_{0} g}\right]\right\}\left[\lim _{a \rightarrow 0} Z\left(g_{0}^{2}, a \mu\right) B_{K}(a)\right]
$$

Approach to continuum: non-perturbative renormalisation

ALPHA, JHEP 03 (2006) 088 \& 089

- SF technique via finite size scaling: split renormalisation into

O Renormalisation at a low, hadronic scale where contact with typical largevolume values of β is made.

O NP running to very high scales $(\sim 100 \mathrm{GeV})$ where contact with PT is made.

Approach to continuum: cutoff effects
Impact of $\mathrm{O}(\mathrm{a})$ ambiguities in current improvement via c_{A}.

$a /\left(2 r_{0}\right)$
$\alpha=\pi / 2$

Approach to continuum: cutoff effects

Impact of $\mathrm{O}(\mathrm{a})$ ambiguities in current improvement via c_{A}.

Problem: \mathcal{K}_{c} value at $\beta=6.1$ found in literature turned out to be wrong.

Approach to continuum: cutoff effects

Impact of $\mathrm{O}(\mathrm{a})$ ambiguities in current improvement via c_{A}.

$$
\begin{array}{|ll}
\hline \mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135496 & \text { Rolf, Sint 2002, interpolation from other } \beta_{\mathrm{s}} \\
\mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135665(11) & \text { direct computation } \\
\hline
\end{array}
$$

Impact of K_{c} on twist angles

$$
\begin{array}{|ll|}
\hline \mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135496 & \text { Rolf, Sint 2002, interpolation from other } \beta \mathrm{s} \\
\mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135665(11) & \text { direct computation } \\
\hline
\end{array}
$$

Approach to continuum: cutoff effects

Impact of $\mathrm{O}(\mathrm{a})$ ambiguities in current improvement via c_{A}.

$$
\begin{array}{|ll}
\hline \mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135496 & \text { Rolf, Sint 2002, interpolation from other } \beta_{\mathrm{s}} \\
\mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135665(11) & \text { direct computation } \\
\hline
\end{array}
$$

Approach to continuum: cutoff effects

Impact of $\mathrm{O}(\mathrm{a})$ ambiguities in current improvement via c_{A}.

$$
\begin{array}{|ll}
\hline \mathcal{K}_{\mathrm{C}}(\beta=6.1)=0.135496 & \text { Rolf, Sint 2002, interpolation from other } \beta \mathrm{s} \\
\mathcal{K}_{\mathrm{c}}(\beta=6.1)=0.135665(11) & \text { direct computation } \\
\hline
\end{array}
$$

Continuum limit

- Combined linear extrapolation of the two regularisations, using ALPHA determination of current normalisations and improvement coefficients.
- Criteria:

O Discard points on which the impact of $\mathrm{O}\left(a^{2}\right)$ ambiguities from currents is well beyond the I sigma level.

O Discard points for which (impossible to fit) curvature in a dependence is manifest.

Continuum limit

- Combined linear extrapolation of the two regularisations, using ALPHA determination of current normalisations and improvement coefficients.

Cf. $\hat{B}_{\mathrm{K}}=0.789(46)$ quoted in NPB 749 (2006) 69.

Comparison with quenched literature


```
    RBC 05
    CP-PACS 01
MILC 03
BosMar 03
Babich et al 06
```

ALPHA 06 Difference with other Wilson fermion
$S P Q_{C D} R 04$
$S P Q_{C D} R 00$
Lee et al 04
JLQCD 97 computations mainly due to method employed to extract B_{k}.

Comparison with quenched literature

MILC 03

BosMar 03
Babich et al 06
ALPHA 06
$\begin{array}{ll}S P Q_{C D} R & 04 \\ S P Q_{C D} R & 00\end{array}$
Lee et al 04 JLQCD 97

Outline

- B_{K}
- Motivation from UT analysis.

O B_{K} with Wilson fermions.
0 tmQCD
○ The $\overline{\mathrm{F}}$ Colaboration 1 computation.

- (Ongoing work on) B_{B}

O Strategy.
O Status.

- Some remarks on tmQCD for $K \rightarrow \pi \pi$ decays.

$\Delta B=2$ transitions and B mass differences

$$
\Delta M_{d}=0.507 \pm 0.005 \mathrm{ps}^{-1} \quad \Delta M_{s}=17.33_{-0.41}^{+0.42} \pm 0.07 \mathrm{ps}^{-1}
$$

CDF measurement 2006

$$
\begin{gathered}
\Delta M_{d}=0.50 \mathrm{ps}^{-1} \times\left[\frac{\sqrt{\hat{B}_{B_{d}}} F_{B_{d}}}{230 \mathrm{MeV}}\right]\left[\frac{\bar{m}_{t}\left(m_{t}\right)}{167 \mathrm{GeV}}\right]\left[\frac{\left|V_{t d}\right|}{0.0078}\right]\left[\frac{\eta_{B}}{0.55}\right] \\
\Delta M_{s}=17.2 \mathrm{ps}^{-1} \times\left[\frac{\sqrt{\hat{B}_{B_{s}}} F_{B_{s}}}{260 \mathrm{MeV}}\right]\left[\frac{\bar{m}_{t}\left(m_{t}\right)}{167 \mathrm{GeV}}\right]\left[\frac{\left|V_{t s}\right|}{0.040}\right]\left[\frac{\eta_{B}}{0.55}\right] \\
\hat{B}_{B_{\ell}}=\frac{\left\langle\bar{B}_{\ell}\right| \hat{O}^{\Delta B=2}\left|B_{\ell}\right\rangle}{\frac{8}{3} F_{B_{\ell}}^{2} m_{B_{\ell}}^{2}}
\end{gathered}
$$

Control of systematics in B-parameters even more needed than for B_{k}.

$\Delta B=2$ transitions and B mass differences

$$
\Delta M_{d}=0.507 \pm 0.005 \mathrm{ps}^{-1} \quad \Delta M_{s}=17.33_{-0.41}^{+0.42} \pm 0.07 \mathrm{ps}^{-1}
$$

CDF measurement 2006

Strategy

Palombi, Papinutto, CP, Wittig JHEP in press

- Treat b-quark in HQET.
- Renormalisation of static-light four-fermion operators \rightarrow wrong-chirality mixing absent in CP-odd sector.
- Extend B_{k} tmQCD strategy: static heavy quark + fully twisted light quark.

O Multiplicatively renormalisable operators only.
O No restrictions on light quark masses (quenched).
O Automatic $\mathrm{O}(\mathrm{a})$ improvement.
See also Della Morte 2004
O Use static actions with good noise-to-signal ratio.
ALPHA 2003-2005

Status: NP renormalisation of the full operator basis in progress, no preliminary results for matrix elements yet.

Preliminary results for RG running of operators

$$
\bar{O}_{L L}^{\Delta B=2}(\mu)=C_{L}\left(m_{b}, \mu\right) \bar{O}_{L L}^{\left.\Delta B=2 ; \operatorname{HQET}^{\prime}(\mu)+C_{S}\left(m_{b}, \mu\right) \bar{O}_{L L, S}^{\Delta B=2 ; \operatorname{HQET}}(\mu)+\mathrm{O}\left(1 / m_{b}\right)\right) .}
$$

$$
\sigma_{O}(u)=\left.\exp \left\{-\int_{\bar{g}(\mu / 2)}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma_{O}(g)}{\beta(g)}-\frac{\gamma_{O}^{(0)}}{b_{0} g}\right]\right\}\right|_{\bar{g}^{2}(\mu)=u}
$$

Preliminary results for RG running of operators

$$
\bar{O}_{L L}^{\Delta B=2}(\mu)=C_{L}\left(m_{b}, \mu\right) \bar{O}_{L L}^{\Delta B=2 ; \operatorname{HQET}^{\prime 2}}(\mu)+C_{S}\left(m_{b}, \mu\right) \bar{O}_{L L, S}^{\Delta B=2 ; \operatorname{HQET}^{2}}(\mu)+\mathrm{O}\left(1 / m_{b}\right)
$$

$$
\sigma_{O}(u)=\left.\exp \left\{-\int_{\bar{g}(\mu / 2)}^{\bar{g}(\mu)} \mathrm{d} g\left[\frac{\gamma_{O}(g)}{\beta(g)}-\frac{\gamma_{O}^{(0)}}{b_{0} g}\right]\right\}\right|_{\bar{g}^{2}(\mu)=u}
$$

Outline

B_{K}

- Motivation from UT analysis.

O B_{K} with Wilson fermions.

- tmQCD

○ The $\overline{\mathrm{F}}_{\text {Colaboration }}^{L P H A}$ computation.

- (Ongoing work on) B_{B}
- Strategy.

O Status.

- Some remarks on tmQCD for $K \rightarrow \pi \pi$ decays.

Wilson fermions for $K \rightarrow \pi \pi$?

- Ginsparg-Wilson fermions put at work, beautiful performance.
- Wilson fermions hindered by presence of power-divergent mixing + unphysical ZMs (quenched).
- Can tmQCD help? Two different proposals:

O Simple twist, use freedom to impose physical symmetries.
CP, Sint, Vladikas 2004

O Ad-hoc valence sector, exploit maximally symmetries of the tmQCD action.

Wilson fermions for $K \rightarrow \pi \pi$?

- CP, Sint, Vladikas JHEP 09 (2004) 069

O Four-flavour theory, maximal twist on two/four flavours, enforce parity up to $\mathrm{O}(a)$ in correlation functions \rightarrow mixing at most linearly divergent.

O Use $\mathrm{O}(a)$ improved action, consistent $\mathrm{O}(a)$ improvement of bilinears \rightarrow only finite subtractions.

- Frezzotti, Rossi JHEP 10 (2004) 070

O Tailored valence sector on twisted sea, adjust valence twists to symmetrykill all divergences.

O Cancellations rely crucially on proper tuning of mass parameters.

Wilson fermions for $K \rightarrow \pi \pi$?

- Take-home message:

O Feasibility of tmQCD approach to $K \rightarrow \pi \pi$ crucially depends on good control over tuning of mass parameters and breaking of global symmetries.

O If approach works, it would supplement nicely the (numerically very demanding) GW results.

Conclusions and outlook

- tmQCD + state-of-the-art techniques for Wilson fermions provide benchmark quenched results for WMEs - ALPHA B_{k}.
- Ideas can be extended to other problems involving $\mathrm{d}=6$ operators.

O B_{B} in progress, result expected for next year.
○ $K \rightarrow \pi \pi$?

- Systematics currently dominated by CL extrapolation: full $\mathrm{O}(a)$ improvement essential in future.

O Frezzotti-Rossi approach?
O Can tmQCD compete with / complement exact chiral symmetry?

