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Motivation

Determination of SM parameters + bounds on beyond the SM physics in LHC 
era requires precise control over hadronic effects.

Obvious first-principles approach: lattice QCD.

Many sources of systematic uncertainty to be brought under control:

Light dynamical quarks effects.

Control of symmetries / Renormalisation.

Cutoff dependences.

Conceptual issues.

New era for lattice QCD  pave the way for precision studies by developing 
methods to control systematics.



Outline

SM Flavourdynamics and kaon decay.

CKM matrix, CP violation, UT triangle and all that.

OPE and hadronic contributions to weak matrix elements.

Kaon decay and indirect CP violation.

Lattice QCD.

Options and choices: conceptual and practical issues.

A precise computation of BK in quenched QCD.

tmQCD setup for weak matrix elements.

Anatomy of the computation and results.

The (immediate) future: incorporating light dynamical quarks.
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SM flavour dynamics and Unitarity Triangle(s)

Non-trivial flavour dynamics of the SM in quark sector encoded in the CKM matrix.

Lcc =
g√
2

W+
µ (ūL, c̄L, t̄L)γµVCKM




dL

sL

bL


 + h.c.

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1 − 1
2
λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 1


 + O(λ4)

Three mixing angles, one CP-violating phase.

=




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1






SM flavour dynamics and Unitarity Triangle(s)

Non-trivial flavour dynamics of the SM in quark sector encoded in the CKM matrix.

Lcc =
g√
2

W+
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ρ̄ = ρ
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1 −

λ

2

)
, η̄ = η

(
1 −

λ

2

)

λ = 0.2258(14) , A = 0.82(1)

A and λ determined from tree-level decays of K and B mesons.

Three mixing angles, one CP-violating phase.



SM flavour dynamics and Unitarity Triangle(s)

9 constraints on CKM parameters / 6 triangle relationsV
†
CKMVCKM = 1 ⇒

Only two triangles have all sides of size λ3:
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Effective theory for weak interactions and UT analysis

High- and low-energy scales separated via Operator Product Expansion:
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Figure 2: (a) Tree level W and Z exchange between four fermions. (b) The effective vertex in
the low energy effective theory (Fermi interaction).

The elements of the CKM matrix are named after which quarks they couple through the
charged current, namely V11 ≡ Vud, V12 ≡ Vus, V21 ≡ Vcd, etc.

The Z0 boson has a mass MZ = MW cos θw and couples to the current

Jµ
Z =

e

sin θw cos θw

(
j3 − sin2 θwjem

)
(26)

where jem is the electromagnetic current, where the neutrinos, charged leptons, up-type
quarks and down-type quarks have Qem = 0,−1, 2

3 and −1
3 respectively.

For many processes the dominant weak interaction is given by the tree level exchange
of a W or Z boson. If the process is at low energy (where the momentum exchanged in any
channel satisfies p2 # M2

W ), then the gauge boson propagators may be approximated by a
constant, by Taylor expanding in p2/M2

1

p2 − M2
= − 1

M2
+

p2

M4
+ . . . (27)

and keeping only the leading term. Since the Fourier transform of a constant is a δ function,
the weak boson exchange gives rise to a point-like current-current interaction:

Lweak
eff = 8

GF√
2

(
Jµ

+J−µ +
1

2
Jµ

ZJZµ

)
, GF =

√
2e2

8 sin2 θwM2
W

= 1.166 × 10−5 GeV2 .(28)

The charged current part, written in terms of leptons and nucleons instead of leptons and
quarks, was postulated by Fermi to explain neutron decay. Neutral currents were proposed
in the 60’s and discovered in the 70’s. The relation between GF and MW is derived by
“matching” — requiring that the two processes in Fig. 2 give the same S-matrix elements.

Since neutrinos carry no electric or color charge, in the standard model all of their low
energy interactions are contained in Lweak

eff in eq. (28). Thus the neutrino cross-section σ
must be proportional to G2

F which has dimension -4. But a cross section has dimensions of
area, or mass dimension -2. If the scattering process of interest is relativistic, then the only
other scale around is the center of mass energy

√
s. Therefore on dimensional grounds, the

cross-section must scale with energy as

σν & G2
F s . (29)

This explains why low energy neutrinos are so hard to detect, and the weak interactions
are weak; they won’t be at the LHC, though, where GF s > 1 and the Taylor expansion of
the W and Z propagators is unjustified.

10

g2
w −→ g2

w

8M2
W

# GF√
2



High- and low-energy scales separated via Operator Product Expansion:

A(i → f ) ≈ 〈 f |Heff
W |i〉

Heff
W =

GF√
2

∑
k

fk(VCKM)Ck(µ/MW)Ōk(µ)

Effective theory for weak interactions and UT analysis
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CKM parameters

Wilson coefficients  high energy, NLO computation
Composite operators  low energy (hadronic) scales

Effective theory for weak interactions and UT analysis
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A(i → f ) ≈ 〈 f |Heff
W |i〉

Heff
W =

GF√
2

∑
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experimental values of decay amplitudes,

measured values for A and λ,

computed values of Wilson coefficients and hadronic matrix elements

Insertion of

yields a geometric locus on the           plane.(ρ̄, η̄)

Effective theory for weak interactions and UT analysis



A(i → f ) ≈ 〈 f |Heff
W |i〉
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Kaon decay and CP violation

Kaons = lightest mesons with strangeness.

K
+
∼ us̄ , K

0
∼ ds̄ , K̄

0
∼ d̄s , K

−

∼ ūs

mK± = 493.677 ± 0.016 MeV

mK0 = 497.648 ± 0.022 MeV

(cf m
π
± ! 140 MeV)

K
0
–K̄

0           (CP eigenstates) mix into mass eigenstates due to CP violating 
electroweak effects:

K
0
S predominant decay modes (99.9%) K

0
S → π

+
π
− , K

0
S → π

0
π

0

predominant decay modes (99.8%)K
0
L

K
0
L → πeνe , K

0
L → πµνµ , K

0
L → 3π



Kaon decay and CP violation

CP violation standard observables:

CP violation in mixing:

p

q
=

1 + ε̃

1 − ε̃

Wu-Yang phase convention: ε̃ = ε

|K0
S〉 = p|K0〉 + q|K̄0〉

|K0
L〉 = p|K0〉 − q|K̄0〉

AL =
Γ(K0

L
→ π

−!+
ν!) − Γ(K0

L
→ π

+!−ν!)

Γ(K0
L
→ π

−!+
ν!) + Γ(K0

L
→ π

+!−ν!)

η+− =
A(K0

L
→ π+π−)

A(K0
S
→ π+π−)

≡ ε + ε′

η00 =
A(K0

L
→ π0π0)

A(K0
S
→ π0π0)

≡ ε − 2ε′

|ε| = (2.232 ± 0.007) × 10
−3

φε = (43.5 ± 0.7)◦

Re(ε
′/ε) ≈ ε

′/ε = (1.66 ± 0.26) × 10−3

AL = (3.32 ± 0.06) × 10
−3



Kaon decay and CP violation

W

W

s d

d s

u,c,t u,c,t

(a)

u,c,t

u,c,t

s d

d s

W W

(b)

Fig. 4.1: Box diagrams contributing to K0 − K
0
mixing in the SM.

where we keep only linear terms in xc ! 1, but of course all orders in xt. The exact expression can be

found in [2].

Short-distance QCD effects are described through the correction factors η1, η2, η3 and the explic-

itly αs-dependent terms in (1). The NLO values of ηi are given as follows [1,3–6]:

η1 = (1.32 ± 0.32)
(

1.30GeV

mc(mc)

)1.1

, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.05 . (5)

It should be emphasized that the values of ηi depend on the definition of the quark masses mi. The

ones in (5) correspond to mt ≡ mt(mt) and mc ≡ mc(mc) . With this definition the dependences
of η2 on mt and of η3 on mt and mc are fully negligible but the dependence of η1 on mc turns out to

be significant. It can be well approximated by the formula in (5). The scale dependence in mt(µt),
where µt = O(mt), present generally in the functions S0(xt) and S0(xt, xc) is canceled to an excellent
accuracy in the products η2S0(xt) and η3S0(xt, xc). The corresponding scale dependence in mc(µc),
where µc = O(mc), is cancelled to a large extent in the product η3S0(xt, xc) but remains still sizable in
η1S0(xc). As we use mc(mc) and mt(mt) we have included the left-over scale uncertainties due to µc

and µt present in (1) in the errors of ηi that also include the uncertainties due to ΛMS, the scale in the

QCD running coupling. The small changes in η1 and η3 relative to the original papers are due to changes

in αs(MZ).

Now, εK is defined by

εK =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
(6)

with I denoting isospin. From (6) one finds

εK =
exp(iπ/4)√

2∆MK

(
ImM12 + 2ξ̄ReM12

)
, ξ̄ =

ImA0

ReA0
(7)

with the off-diagonal element M12 in the neutral K-meson mass matrix representing K0-K
0
mixing

given by

2MKM∗
12 = 〈K0|Heff(∆S = 2)|K0〉 . (8)

The factor 2MK reflects our normalization of external states and A0 is the isospin amplitude. ∆MK

is the KL − KS mass difference that is taken from experiment as it cannot be reliably calculated due

to long distance contributions. The expression in (7) neglects higher order CP-violating terms: see the

discussion in the review article in reference [7].

Defining the renormalization group invariant parameter B̂K by [1]

B̂K = BK(µ)
[
α(3)

s (µ)
]−2/9

[
1 +

α(3)
s (µ)

4π
J3

]
, (9)

144

|εK| ≈ Cε B̂K Im{V
∗
tdVts} {Re{V

∗
cdVcs}[η1 S0(xc) − η3 S0(xc, xt)] − Re{V

∗
tdVts}η2 S0(xt)]}

B̂K =

〈K̄0|Ô∆S=2|K0〉
8

3
F2

K
m2

K

O
∆S=2
LL = [s̄γµ(1 − γ5)d][s̄γµ(1 − γ5)d]

Put in NLO PT + Cabibbo angle + A + mc,t:

η̄(1.4 − ρ̄) B̂K ≈ 0.40

Cε =

G2
F

F2
K

mK M2
W

6
√

2π
2∆mK

= 3.837 × 10
4

ηk , S0 → short distance effects
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Lattice QCD

Lattice sizes, quark masses, . . .

Systematic limitations

Lattice-spacing and finite-volume
effects

The light-quark mass m is larger
than the physical one

a

L

Available range of a, L,m must be such that the results can be
extrapolated to a→ 0, L→∞ and m→ 0

Niels Bohr Institute, 16.–18. August 2006 Lattice sizes, quark masses, ... 6/31

Lattice spacing and finite volume effects (UV 
and IR cutoffs).

Light quark masses difficult to simulate (hard 
lower bounds for some regularisations).

Good field-theoretical control essential.

Simulate wide range of values of a, L, m to control all extrapolations.

a ! 0.05 fm → 0.1 fm

L ≥ 2 fm , mπ L ≥ 3

mπ : 500 MeV → . . .



Lattice QCD  which one?

LQCD formulation not unique.

Slat = S0 + aS1 + a
2
S2 + . . .

Olat = O0 + aO1 + a
2
O2 + . . .

Conceptual clarity  avoid tradeoffs on basic properties.

Preserve symmetries (or break them in a controlled way).

Reduce lattice spacing effects.

Affordable numerical performance.

Emphasis on different requirements:



Lattice QCD  which one?

LQCD formulation not unique.

Slat = S0 + aS1 + a
2
S2 + . . .

Olat = O0 + aO1 + a
2
O2 + . . .

Classic example: chiral symmetry.

Wilson-type fermions: chiral symmetry broken.

Ginsparg-Wilson fermions: chiral symmetry exact with

〈[∂µ Ai
µ(x) − 2mPi(x)]Φ1(y1) · · ·Φn(yn)〉 = contact terms + O(an)

γ̂5 = γ5(1 − aD) , γ5D + Dγ5 = 2aDγ5D



Lattice QCD  which one?

No compromise on good field-theoretical control:

Wilson fermions.

Plain  large cutoff effects.

O(a) improved  complicate renormalisation problems.

Twisted mass QCD  trade axial/vector symmetries, simplify 
renormalisation.

Exact Ginsparg-Wilson fermions (overlap): numerically very demanding, 
some systematic uncertainties difficult to control.

Choice for this work: tmQCD.



BK − a renormalisation classic

In the presence of explicit chiral symmetry breaking four-fermion operators 
of different chiralities mix under renormalisation.

Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]
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ŌVV+AA = lim
a→0

ZVV+AA(g2
0, aµ)

[
OVV+AA(a) +

4

∑
k=1

∆k(g2
0)Ok(a)

]
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Martinelli 1984; Bernard, Draper, (Hockney), Soni 1987, 1998; 
Gupta et al. 1993; Donini et al. 1999

O
∆S=2 = [(s̄γµd)(s̄γµd) + (s̄γµγ5d)(s̄γµγ5d)

︸ ︷︷ ︸

OVV+AA

] − [(s̄γµd)(s̄γµγ5d) + (s̄γµγ5d)(s̄γµd)
︸ ︷︷ ︸

OVA+AV

]

ŌVA+AV = lim
a→0

ZVA+AV(g2
0, aµ) OVA+AV(a)

Protected from mixing by discrete symmetries

ŌVV+AA = lim
a→0

ZVV+AA(g2
0, aµ)

[
OVV+AA(a) +

4

∑
k=1

∆k(g2
0)Ok(a)

]



Getting rid of mixing

Straightforward option: preserve chiral symmetry  possibly exactly.

Wilson 1: axial Ward identity (3-point function with OVV+AA → 4-point 
function with OVA+AV).

Wilson 2: tmQCD (different symmetry breaking pattern, 3-point function 
with OVV+AA).

tmQCD bonus: push safely towards low quark masses in quenched 
simulations.

Becirevic et al. 2000

ALPHA, Frezzotti, Grassi, Sint & Weisz, 2001

ALPHA, Dimopoulos et al. 2006

ALPHA, Dimopoulos et al. 2004



Twistǝd mass QCD

Originally (re)proposed to avoid exceptional configurations in quenched 
computations.

Control of chiral symmetry breaking allows for simpler renormalisation 
properties → “mimic” exact chiral symmetry.

Interest outburst after Frezzotti and Rossi’s argument for automatic O(a) 
improvement.

Frezzotti, Grassi, Sint, Weisz 2001

Frezzotti, Grassi, Sint, Weisz 2001

CP, Sint, Vladikas 2004

Frezzotti, Rossi 2004

Frezzotti, Rossi, 2004

Break flavour symmetry in non-trivial direction in flavour space → 
preserve different subgroup.
No free lunch: break P,T, vector symmetries.



Twistǝd mass QCD

Basic setup: two mass-degenerate light flavours.

DtmQCD =
1

2
γµ(∇∗

µ + ∇µ) + m0 + e
−iαγ5τ3

(
−

ar

2
∇

∗
µ∇µ + mcr +

i

4
cswσµν F̂µν

)

Facultative Sheikholeslami-Wohlert term to remove O(a) effects.

α=0 → standard Wilson fermions.

Additional degree of freedom used to control chiral symmetry breaking.

Additive mass renormalisation preserved wrt standard case.

Precise knowledge of improvement coeffiecients and renormalisation factors 
inherited from previous studies.

ALPHA non-perturbative renormalisation programme



Outline

SM Flavourdynamics and kaon decay.

CKM matrix, CP violation, UT triangle and all that.

OPE and hadronic contributions to weak matrix elements.

Kaon decay and indirect CP violation.

Lattice QCD.

Options and choices: conceptual and practical issues.

A precise computation of BK in quenched QCD.

tmQCD setup for weak matrix elements.

Anatomy of the computation and results.

The (immediate) future: incorporating light dynamical quarks.



            quenched computation of BK

tmQCD → no operator mixing, no exceptional configurations.

SF non-perturbative renormalisation.

Various physical volumes: check control of finite volume effects.

Two different regularisations: check control of the continuum limit.

N.B.: action is O(a) improved, but four-fermion operator is not ⇒ continuum 
limit approached linearly in a.

Computations performed on the APEMille installation @ DESY-Zeuthen.

LPHAA
Collaboration

Dimopoulos, Heitger, Palombi, CP, Sint, Vladikas NPB 749 (2006) 69

Guagnelli, Heitger, CP, Sint, Vladikas JHEP 03 (2006) 088
Palombi, CP, Sint JHEP 03 (2006) 089



The case for a precise quenched Wilson computation of BK

Minimal conceptual uncertainties (cf. staggered, DW fermions).

Numerically cheap ⇒ control cutoff dependence (cf. overlap fermions).

Mature non-perturbative renormalisation techniques (cf. all other 
regularisations).

Control/understanding of all quenched systematics essential to set up 
techniques and set target precision in unquenched computation.



tmQCD regularisations for BK

π/2 strategy:

π/4 strategy (specially devised for quenched case):

→ fully (α=π/2) twisted u-d doublet

→ untwisted s quark

→ (π/4) twisted s-d doublet

→ other flavours untwisted

in both cases               renormalises multiplicativelyOVV+AA



Quenched simulations

π/2: 

π/4: 

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV



Quenched simulations

π/2: 

π/4: 

Control of finite volume effects requires                 for                  .

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV

L ∼ 2 fm mPS ∼ mK



Quenched simulations

π/2: 

π/4: 

Control of finite volume effects requires                 for                  .

        limit. Physical SU(3) breaking effects checked to be small up to 
moderate values for the strange-down splitting.

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV

ms = md

L ∼ 2 fm mPS ∼ mK



Physical SU(3) breaking effects

ε =
Ms − Md

Ms + Md



Quenched simulations

π/2: 

π/4: 

Control of finite volume effects requires                 for                  .

        limit. Physical SU(3) breaking effects checked to be small up to 
moderate values for the strange-down splitting.

Spurious SU(3)V breaking due to twist checked to be of order few %, 
converges to 0 in the continuum limit.

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV

ms = md

L ∼ 2 fm mPS ∼ mK



Twisted mass-induced vector symmetry breaking

UT tmQCD BK BB conclusions bme checks continuum SPQCDR

flavour symmetry breaking effects

β = 6.0 β = 6.3

CERN - 09.12.05 filippo palombi K − K̄ and B − B̄ mixings from tmQCD



Quenched simulations

π/2: 

π/4: 

Control of finite volume effects requires                 for                  .

        limit. Physical SU(3) breaking effects checked to be small up to 
moderate values for the strange-down splitting.

Spurious SU(3)V breaking due to twist checked to be of order few %, 
converges to 0 in the continuum limit.

No sign of measurable deviations from               in the explored range of 
masses.

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV

ms = md

L ∼ 2 fm mPS ∼ mK

BK ∝ m
2
PS



Quenched simulations

π/2: 

π/4: 

Control of finite volume effects requires                 for                  .

        limit. Physical SU(3) breaking effects checked to be small up to 
moderate values for the strange-down splitting.

Spurious SU(3)V breaking due to twist checked to be of order few %, 
converges to 0 in the continuum limit.

No sign of measurable deviations from               in the explored range of 
masses.

Approach to continuum limit remains delicate.

4× β, a ∼ 0.06 – 0.09 fm, L ∼ 1.4 – 1.9 fm, T/L ∼ 2.3 – 3.0, mPS ∼ 640 – 830 MeV

5× β, a ∼ 0.05 – 0.09 fm, L ∼ 1.9 – 2.2 fm, T/L ∼ 2.0 – 2.6, mPS ∼ 460 – 540 MeV

ms = md

L ∼ 2 fm mPS ∼ mK

BK ∝ m
2
PS



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (~100 GeV) where contact with PT is 
made.

B̂K = (αs(µ))−γ0/2b0 exp

{
−

∫ g (µ)

0
dg

[
γ(g)
β(g)

−

γ0

b0g

]} [
lim
a→0

Z(g2
0, aµ) BK(a)

]

ALPHA, JHEP 03 (2006) 088 & 089



Approach to continuum: non-perturbative renormalisation

SF technique via finite size scaling: split renormalisation into

Renormalisation at a low, hadronic scale where contact with typical large-
volume values of β is made.

NP running to very high scales (~100 GeV) where contact with PT is 
made.

Figure C.3: Left column: The step scaling function σ+
VA+AV;s(u) (discrete points) as

obtained non-perturbatively from combined fits to Clover and Wilson data. The
shaded area is the result of fit D to the points (see text). The dotted (dashed) line is
the LO (NLO) perturbative result. Right column: RG running of O+

VA+AV obtained
non-perturbatively (discrete points) at specific values of the renormalization scale µ,
in units of Λ (taken from ref. [4]). The lines are perturbative results at the indicated
order for the Callan-Symanzik β-function and the operator anomalous dimension γ.
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ALPHA, JHEP 03 (2006) 088 & 089



Continuum limit

Combined linear extrapolation of the two regularisations, using ALPHA 
determination of current normalisations and improvement coefficients. 

Criteria:

Discard points on which the impact of O(a2) ambiguities are checked to 
be beyond the 1 sigma level.

Discard points for which (impossible to fit) curvature in a dependence is 
manifest.



Continuum limit

Combined linear extrapolation of the two regularisations, using ALPHA 
determination of current normalisations and improvement coefficients. 

B̂K = 0.735(71)

B̄
MS
K (2 GeV) = 0.534(52)

Dimopoulos et al., in preparation

Crucial for the future: adopt framework that keeps cutoff effects at O(a2).



Comparison with quenched literature

 RBC 05
 CP-PACS 01

 MILC 03
 BosMar 03
 Babich et al 06

 ALPHA 06

 Lee et al 04
 JLQCD 97

Difference with other Wilson fermion 
computations mainly due to method 
employed to extract BK.
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Outline

SM Flavourdynamics and kaon decay.

CKM matrix, CP violation, UT triangle and all that.

OPE and hadronic contributions to weak matrix elements.

Kaon decay and indirect CP violation.

Lattice QCD.

Options and choices: conceptual and practical issues.

A precise computation of BK in quenched QCD.

tmQCD setup for weak matrix elements.

Anatomy of the computation and results.

The (immediate) future: incorporating light dynamical quarks.



Entering a new era: dynamical light quarks

Pessimistic early 00’s views on light quarks defused after 5 years.

Better physical understanding of algorithmic issues → breakthrough in 
algorithmic efficiency. Many groups going light with Wilson fermions.

Moore’s law helps, too ... Very powerful installations allow for dynamical chiral 
fermions.

Ukawa, Berlin Lattice Conference (2001)5
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Giusti, Tucson Lattice Conference (2006)

Tflops-years required for 100 gauge fields in two-flavour QCD (O(a) improved Wilson quarks, T=2L)

ALPHA, CERN-ToV, ETMC, PACS-CS, QCDSF ...

JLQCD 2006



Entering a new era: dynamical light quarks

Public databases of dynamical configurations / public code available.

MILC configurations/code (but: beware of staggered fermions!).

International Lattice Data Grid.

M. Lüscher’s highly optimised PC cluster code released under GPL.

No foreseeable difficulty to extend to 2+1(+1) dynamical flavours.

Sharpe, Lattice 2006

Challenge for the immediate future: extract physics!

→ light quark physics, contact with ChiPT

→ precision phenomenological computations



Entering a new era: dynamical light quarks

Various possible strategies:

“Pure” → same fermion action for sea and valence quarks (tmQCD, chiral 
fermions).

Mixed action approach (sea Wilson, chiral valence).

Techniques for chiral fermions ripe and ready for use, ability to reach even 
deep chiral regime.

Detailed studies of systematics will be crucial.

Giusti, Hernández, Laine, CP, Weisz, Wennekers, Wittig 2004-2006

Prepare for many exciting lattice QCD results!



Conclusions and outlook

Lattice QCD reaching maturity: all sources of systematic uncertainties can be 
brought under control.

State-of-the-art techniques with Wilson fermions provide benchmark 
quenched results.

tmQCD techniques extended to other cases (K→ππ, BB).

Light dynamical quarks running in machines worldwide: start of a new era.

CP, Sint & Vladikas 2004
Palombi, Papinutto, CP & Wittig 2006

Prepare for many exciting lattice QCD results!


