Heterotic superstrings

1 Heterotic superstrings in bosonic formula-

tion

1.1 Heteroticity

We have discussed that in closed string theories the left and right moving
sectors have independent hamiltonian evolution. The only relation between
both is in the construction of physical states, the level matching conditions.

We have also discussed two consistent (say, left moving) sectors. That of
the bosonic string, given (in the light-cone gauge) by 24 2d bosons X (o +1),
i=2,...,25 and that of the superstring, given by 8 bosons X? (o + ) and 8
fermions ¢t (0 +t),1=2,...,9.

The basic idea in the construction of the heterotic string theories is to
consider using the bosonic 2d content for the left moving sector and the
superstring 2d content for the right moving sector !. Let us denote our right
movers by X% (o —t) 1% (0 —t), and our left movers by X% (o +t), X7 (0 +1),
withi=2,...,9, I =1,...,16.

The theory is rather peculiar at first sight. The left moving bosons
X% (o +t) can combine with the right moving ones X%(o — t) to make out
the coordinates of physical spacetime (which therefore has ten dimensions).

On the other hand, it is not clear what meaning the remaining left moving

IThat this can be done is already very non-trivial. In a Polyakov description we are
coupling a 2d chiral field theory (since it is not invariant under 2d parity, i.e. exchange
of left and right) to a 2d metric. In order for the path integral over 2d metrics to be well
defined the 2d field theory must be free of 2d gravitational anomalies; this is true precisely

for the matter content of left and right moving degrees of freedom that we have proposed.



bosons X[ (o + t) have. We will see that, in a precise sense to be explained
below, they do not correspond to physical spacetime dimensions, but rather
should be though of as parametrizing a 16d compact torus, with very small
and fixed radius R = /. Since this distance is of order the string scale, it is
not very meaningful to assing a geometric interpretation to the corresponding

dimensions.

1.2 Hamiltonian quantization

The worldsheet action is the expected one, namely the Polyakov action for left
and right movers independently, with the right moving sector coupling also
to a 2d gravitino. Since we will be interested in the light cone quantization,
we simply say that it proceeds as usual, and that the only physical fields left

over are those mentioned above. We now review the main features

Right movers
In the right moving sector, bosons parametrize non-compact directions,

so they must be periodic in o
Xh(o—t+0) = Xh(oc —1) (1)

They have the usual integer mode expansion
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Right moving fermions can be either periodic (R) or antiperiodic (NS)
NS i(o+t+1£) =—i(o+1)
R vi(o+t+10) =i(o+1) (3)

so we have the mode expansion

7 o 70 wi(r+v)(o—
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reZ

2



with » = 0,1/2 for R, NS fermions.

The complete right moving hamiltonian is
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Left movers
For the left sector, the bosons Xt (o +t) are paired with the right moving

bosons, so they are pediodic
Xi(o+t+/0) = Xi(o+1) (6)

and have a mode expansion
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We now need to propose mode expansions for the remaining left moving
bosons X’ (o +1t). To put it in a heuristic way, we propose a mode expansion
that corresponds to the left moving sector of a bosonic theory compactified
on a 16d torus, consistently with making the corresponding right moving
degrees of freedom identically vanish.

Namely, recall the mode expansion for left and right moving bosons in a
circle compactification of the bosonic theory (see lesson on toroidal compact-

ification), in the sector of momentum £ and winding w (k,

Xp(o+t) =35+ g5 (E+0)+ z\/% ez o} e 2T (7+0/¢
Xp(o—1) =2+ L& (t—0) + i\/T Tpez oy L e2mn@ 0/t (g)
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In order to be compatible with making all right handed dynamics trivial,

namely Xz = 0, we need
=0 ; @=0 ; k=w ; R=Vd (10)

So the center of mass position degree of freedom is removed, momentum is
related to winding, and the internal torus is frozen at fixed radius vo'.

Generalizing to 16 dimensions, we propose the following expansion for
the left moving fields X (o + t)

! - o al, —2min(o
Xlo+1) = L5 (t+0) +i)L Toezqo) e/ (1)

where P! is a 16d vector in a lattice A of internal quantized momenta. The
whole right moving sector can be though of as consistenty truncated from
the theory (to check complete consistency would require to verify that right
handed dynamical modes are not excited in interactions, either; we skip this
more involved issue).
The total left moving hamiltionian is
H, = Yip! + > PP + 1 (N —1)
dp* 4p* o'p*

N = Y3 o, Y o af (12)
i N I N

We have the spacetime mass formulae

a'm%/? = NB+NF—2V(]_—Z/)
2

P
omi/2 = Np + 5 —1 (13)

and the level matching conditions are given by

m% = m%{ (14)



1.3 Modular invariance and lattices

Let us describe a modular invariant partition function and then discuss what
kind of physical spectrum it is describing. We can assume the simple ansatz
that the complete partition function factorizes as a product of a left and a

right moving piece, namely
Z(r) = (4ra'ms) ™" In(7)|7° Zy(7) Zau () (15)

The first factor corresponds to tracing over the 10d spacetime momentum
degrees of freedom, the second to the trace over the oscillators of the X%,
X% . The factor Zy(7) is the trace over the right moving fermionic oscillators.
From our experience with type II superstrings, an almost modular invariant

partition function for this sector is

4 4 4 a4\ *
_ 0 0 1/2 1/2
Zy = (nH* |9 -9 -9 / +9 / (16)
0 1/2 0 1/2
The two choices for the sign eventually lead to the same theory (up to a 10d
parity transformation), so for concreteness we pick the — sign.

For Z,:(7) we have the trace over the oscillators and the 16d momentum

degrees of freedom

Zor(7) = (1)1 3 ¢ (17)

PecA

Now we need to require modular invariance, and this will impose some
restrictions on the possible choices of A.
i) As 7 — 7+ 1, the momentum and bosonic oscillator part is invariant,

while we have



0 0 0 0
) T4+1) =19 T ; v T4+1)=9 T
{0 (r+1) [1/210 [1/2 (r+1) M()
1/2 . 1/2 1/2 1/2
9 / (T+1)=e ™4y / (r)y ; 9 / (T+1)=e ™4y / (1)
0 0 1/2 1/2
n(r+1) = e ()
and hence
Zy(r+1) = ™37, (18)
Hence we need
Zor(T+1) = >3 7, (19)
This is so, provided
Z ezm'(r+1)P2/2 — Z ezmﬂﬂ/Q (20)
PeA PeA

Namely, we need P? € 2Z for any P € A. Lattices with this property are
called even.

For future use (see next footnote), let us point out that even lattice are
always integer lattices. An integer lattice is such that for any v,w € A, we
have v - w € A. To show this, notice that in an even lattice, for any v, w we
have (v+ w)? is even, but (v+w)? = v? + w? + 2v - w. Since v?, w? are enen,
it follows that v - w € Z and A is integer.

ii) As 7 — —1/7, the spacetime momentum times spactime bosonic os-

cillator piece is invariant. For the fermionic piece we have

W [ ° ] (=1/7) = (=in)'/? 9 [ 12 ] (1)

g [ Dy = i | } ™ s g

1/2 | o an o0 2] e o] 12
19[ 0 (=1/71) = (—it)"/ 19_1/2](7') 19[1/2]( 1/7) = i(—ir)Y 19[1/2](7')

n(=1/7) = (=ir)/2n(7)



and hence

Zy(=1/7) = Zy(7) (21)
So we need
Zat (=1/7) = Zar(7) (22)
The left hand side reads
Zat(=1/7) = (=ir)Sp(r)71 Y S IPL (23)
PeA

Using the Poisson resummation formula ?

Seer exp[—m(v+0)-A-(v+0)+2mi(v+6)-0] =
= W Seen- exp[—m(k+ @) - A7V (k+ ¢) — 2mikf]  (24)

we have

Zurl=1/7) = (=ir) () o (in)® X e (25)

KeA*

So we have invariance if Ax = A. Such lattices are called self-dual.

The compactification lattice A must be even and self-dual to obtain a con-
sistent modular invariant theory. Even self-dual lattices (with euclidean sig-
nature scalar product) have been proved by mathematicians to be extremely
constrained. They only exist in dimensions multiple of eight; happily we
need 16d lattices, so the dimension is in the allowed set of values.

Moreover there are only two inequivalent 16d even and self-dual lattices.

These are the following

2Here A* is the lattice dual to A, which is formed by the vectors k such that k-v € Z
for any v € A. For integer lattices, A is a sublattice of A*, and the quotient A*/A is a
finite set. Its cardinal |A*/A| is called the index of A in A*.
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i) The Eg x Ejg lattice

It is spanned by vectors of the form

L1 i . 1 1.1
(n1,...,mg;nY,...,ng) ; (n1+35,...,n8+5;n, ...
1
! ! . 1 1. .1 1
(nl,...,ng,nl+§,...,n8+§) ; (n1+35,-.-,ns+ 500 +35,--.

with ny,n} € Z, and Y ; n; = even, Y p n} = even
ii) The Spin(32)/Z, lattice

Spanned by vectors of the form

(’I’Ll, . .,TL16)

(n1+%,...,n16+%)

So these define two consistent heterotic superstring theories.

1.4 Spectrum

(27)

The spectrum of these theories is found by constructing left and right moving

states in the usual way (constructing ladder operators and Hilbert spaces,

and applying the GSO projections dictated by the partition function), and

glueing them together satisfying level-matching.

We will simply discuss massless states, although the rules to build the

whole tower of string states should be clear.

The right moving sector is exactly the same as one of the sides of the type

IT superstrings. The two choices of Z give two final theories which differ by

a 10d parity operation, so are equivalent; hence we choose one of them. The

massless states suriviving the GSO projection are

Sector State SO(8)
NS 7/321/2 |0> 8y
R AF(0) 8¢
AL ALAL0)
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We will denote the states in the R sector by £(%,=,=+,+) (with odd
number of —’s), i.e. by the SO(8) weights.
For the left movers, the mass formula is given by
P2
o'm? /2 = Np + 5 — 1 (28)
Lightest states are

State a'm2/2 SO(8)

Ng=0,P=0 |0 -1 1
Ng=1,P=0 «o,|0) 0 8y
Ng=1,P=0 ol,|0) 0 1
Ng=0,P2=2 |P) 0 1

Notice that there is a tachyon, but it will not lead to any physical state
in spacetime since it has no tachyonic right-moving state to be level-matched
with.

The latter states with P? = 2 are different for the two choices of lattice.

For the Eg x FEg lattice, these states have internal momentum P of the form

(+,+,0,0,0,0,0,0;0,0,0,0,0,0,0,0)

$(£, £, £, £, +,4,4,+;0,0,0,0,0,0,0,0) #— = even
(0,0,0,0,0,0,0,0; 4, +,0,0,0,0,0,0)

£(0,0,0,0,0,0,0,0; +, =+, +, 4, +, 4, +,4) #— = even (29)

We note that these are the non-zero root vectors of Eg x Eg (hence the name
of the lattice).
States with P? = 2 in the Spin(32)/Z lattice have P of the form

(£,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0) (30)




We note that these are the non-zero root vectors of SO(32) (hence the name
of the lattice). Notice that momenta of the form P = 1/2(+,...,£) have

P? = 4 and give rise to massive states.

We should now glue together left and right states. The schematic struc-

ture of massless states is
(gv + éc) X (8V + OZI + |P>) (31)
Namely, we have the states

7y—1/2|0> X ail‘()) 8y X 8 =1+ 28y + 35
%(:l:,zl:,:l:,:t) ><0/;1|0> 80 X 8y = 8g + Hbg

The massless fields are a scalar dilaton ¢, a graviton G, a 2-form By,
and fermion superpartners, including a 10d chiral gravitino (56g). This is
the N = 1 10d supergravity multiplet, so the theory turns out to have N =1
spacetime susy. Notice that this is half the susy of type II theories, since
we have GSO projection only on one of the sides, and this produces half as
many gravitinos.

We also obtain the states

¢i1/2|0> x al,[0) 8y
L+, 4, +,4) x al4|0) 8¢

they correspond to 16 gauge bosons and superpartner gauginos. The
gauge group is U(1)®.

Finally we have the states

1/;i—1/2|0> x |P) 8y
s(£, £, +,+) x |[P) 8¢
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These are also gauge bosons and gauginos. It is possible to see that
they are charged under the U(1)'® gauge symmetries (this is analogous to
how winding and momentum states are charged with respect to the gauge
symmetries obtained in toroidal compactifications), so the gauge group will
be enhanced to a non-abelian symmetry. We would like to identify what is
the final gauge group, for each of the two choices of internal lattice. The
U(1)'® gives the Cartan subalgebra of the group, which hence has rank 16.
The charge of a state |P) under the I'" U(1) factor is given by P’ hence
the vectors P must correspond to the non-zero roots of the gauge group. As
we have mentioned before, the P? = 2 states of the compactification lattices
precisely correspond to the non-zero roots of the groups Fg x Eg and SO(32),
respectively for each of the lattices. Hence states from the a! oscillators and
from momentum P give altogether 10d N = 1 vector multiplets of Eg x Fg
or SO(32).

The complete massless spectrum for the two consistent (spacetime super-
symmetric) heterotic theories is 10d N = 1 supergravity coupled to Eg X Ejg
or SO(32) vector multiplets. These theories are chiral, so there is a very
stringent consistency issue arising from 10d anomalies. This will be reviewed
later on in this lecture.

Notice that the spectrum of these theories is very exciting. It contains
non-abelian gauge symmetries and charged chiral fermions. In later lec-
tures we will see that this structure allows to obtain interesting theories
with charged chiral 4d fermions upon compactification. In particular this is
possible due to the existence of fundamental vector multiplets in the higher
dimensional theory, therefore avoiding diverse no-go theorems about getting
charged chiral fermions in Kaluza-Klein theories with pure (super)gravity in

the higher dimensional theory.
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2 Heterotic strings in the fermionic formula-
tion

In this section we discuss a different construction of the same heterotic string
theories as before. Readers comfortable with the above bosonic formulation
may therefore skip this section.

We refer the reader to the last section in the lesson about type II super-
string to the discussion of bosonization/fermionization. There we discussed
that a theory of &k left-moving boson paramerizing compactified directions
is equivalent to a theory 2k fermions with a sum over boundary conditions
determined by the compactification lattice.

This motivates introducing a different description of the heterotic strings
we have constructed. Indeed, we construct a string theory whose worldsheet,
degrees of freedom (already in the light-cone gauge) are right moving fields
Xb(o—1t), vh(o—t),i=2,...,9 and left-moving fields X} (o +1), \}(c+1),
withs=2,...,9and A=1,...,32.

The quantization of these is standard: Bosons X}QJ, g are periodic in o and
give rise to integer-modded oscillators, fermions v’ can be NS or R and have
consequently half-integer or integer modded oscillators. Finally fermions A4
can also be NS or R, but in contrast with the preivous A4’s with different
boundary condition can coexist in the same sector (recall the ¢’s must be all
NS or all R in order not to violate spacetime Lorentz invariance).

With these ingredients, we can construct two possible modular invariant
partition functions, which have the familiar GSO projection on the right-
moving piece. They define two consistent heterotic string theories, which will
turn out to be the two heterotic strings constructed above, but described in

2d fermionic language.
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The two partition functions have the structure
Z(r) = (Ama'n) ™ [n(1)[7'° Zy (1) Zx(7) (32)

with two possible opctions for Z)

16 16

19[0 49| ° + 9 1/2] +19[1/2]

b i - L0 1/2 0 1/2

) 4 GE 2
TH R AR ES RIS

i) Zy(r) = " 12 " 12 (33)

) 5 n(r)*

They differ in the way the 32 fermions A4 are grouped. It is possible to use the
expressions of the 1 functions as infinite sums and write the above partition
functions as sums over momenta in the Spin(32)/Zs and Eg x Eg lattices, thus
showing the equivalence with the bosonic formulations above. We have recov-
ered exactly the same heterotic string theories starting from a different world-
sheet formulation (related to the previous by bosonization/fermionization).
It is however interesting to construct the spectrum directly in the fermionic
formulation. We review it now, with special emphasis on the massless sector.
The right-moving sector is very familiar, and works exactly as one of the
sides of the type II superstring. At the massless level, we obtain NS states
1/?11/2|0) in the 8y of SO(8) and R states in the 8.
For the left-moving sector, we treat the two possible cases separately.
The SO(32) heterotic in fermionic language

We start with i), the partition function Z, has the structure
i 30ys (14 (=)") + trae (1 + (-)") (34)
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Hence the 32 fermions are all with NS or all with R boundary conditions. In
each sector there is an overall GSO projection.
NS sector

The mass formula is given by
o/m?/2 = Ng+ Np —1 (35)

There are no fermion zero modes, so the vacuum is non-degenerate; the
Hilbert space is obtained by applying negative modding oscillators on it.
The GSO projection requires the number of fermion oscillators to be even

for physical states. The lightest states are

State a'm? /2
10) —1
o' 110) 0

A1 pAZ 5[0) 0

The latter states correspond to antisymmetric combinations of the in-
dices A and B. Therefore and for future convenience we associate them
to the generators of an SO(32) Lie algebra (whose generators in the vector
representation are given by antisymmetric matrices).

As before, the left-moving tachyon cannot be level-matched with any
right-moving state and does not lead to spacetime tachyon states.

R sector The mass formula is given by
o'm3 /2 = Ng+ Np+1 (36)

There are 32 fermion zero modes, so the vacuum is 2'%-fold degenerate, split
in two chiral spinor irreps of the underlying SO(32) symmetry (acting on
the A4). The GSO projection selects states with even number of fermion

oscillators on one of them, and states with odd number of fermion oscillators

14



on the other. All states in the R sector are however massive, hence we will

not be too interested in them.

The total spectrum is found by glueing left and right moving states in a

level-matched way. The states
8y x ' ]0) ; 8¢ xa,[0) ; (37)

reproduce the 10d N = 1 supergravity multiplet 1 + 28y + 35y + 8¢ + 565.
The states

8y X )\é1/2)‘l—31/2|0> ;8¢ X )\é1/2>\l—31/2|0> ; (38)

reproduce 10d N = 1 vector multiplets with gauge group SO(32) (as can be
guessed by noticing that we have 32 x 32/2 states associated with antisym-
metric combinations of indices in the vector of SO(32).

Hence we have reproduced the (massless) spectrum of the SO(32) het-

erotic superstring.

The Fs x FEg heterotic in fermionic language

We now study ii), the partition function Z, has the structure

[67 305 + (1 + ()] (39)
Hence the 32 fermions are split in two sets of 16, which we denote A\, A%,
They have equal boundary conditions within each set, but with independent
boundary conditions. For each set of 16 fermions: the NS boundary condi-
tions imply the groundstate is unique, and GSO requires an even number of
fermion oscillators to be applies; the R boundary conditions imply a 28-fold
degenerate groundstate, split as two chiral spinor irreps of the underlying
SO(16), denoted 128 and 128’, with GSO requiring even number of fermion

oscillators acting on 128 and odd number on 128’.
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With this information we can construct the complete left-moving spec-
trum. The lightest states which will finally level-match with right-moving
ones are the massless ones, so we look only at these

N816N816

The mass formula is

a’m3/2 = Np+ Np—1 (40)
The massless states are
State Remark
o’ ,]0) 8y of SO(8)

M AP 010)  Adj. of SO(16)
M A 510)  Adj. of SO(16)'

R16NS6
The vacuum is 2°-fold degenerate due to the 16 R fermion zero modes.

The mass formula is
a'm3 /2 = Np+ Np (41)

The massless states are the groundstates, which transform as 128 of the
SO(16)

NSi6R16

Similarly to the above, the massless states are the groundstates, which
transform as 128 of the SO(16)’

RisRi6

In this sector even the groundstate is massive.

The total massless spectrum is obtained by tensoring the right-moving
8y + 8¢ with the above left handed states. It is easyy to recover the 10d
N = 1 supergravity multiplet by tensoring the right-moving 8y 4 8¢ with the
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left-moving 8y.. On the other hand, by tensoring the right-moving 8y + 8¢
with the left-moving SO(8) singlets we obtain 10d N = 1 vector multiplets
with gauge group Eg x E§. The gauge group can be guessed by rememebering
that the adjoint of Eg decomposes as an adjoint plus a 128 of SO(16). Hence

we recover the complete massless spectrum of the Fg x FEg heterotic.

3 Spacetime Non-susy heterotic string theo-
ries

There are other ways to construct modular invariant partition functions,
beyond the factorized proposal used above. These are more easily constructed
using the fermionic formulation of superstrings (a bosonized formulation is
also possible, but more involved since it would require lattices mixing the
internal bosons and spacetime fermionic degrees of freedom).

Without aiming at a general classification, let us simply give one example

of such a modular invariant partition function

e BL LT L]
i 0] |0 0 0
_5{1/2] 19[1/2] (12
1/2 1/2

o1 T o
7 [ 0
The interpretation in terms of the GSO projection is that we correlate the

1/2 | | 1/2

—1)F quantum number of the right moving fermions with the (—1)¥ quan-
(=D q g g q
tum number of the internal left-moving fermions.

Schematically the spectrum at the massless level is
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Sector State a'm? SO(8) internal

NS-NS 10) @ ¢, 5[0) -2 1 32
Pl 510) ® a4 |0) 0 1+28y+35, 1
V17o[0) @ YLy 00y [0) 0 8y 50(32)

Notice that the left moving R states has only massive modes, so by level
matching the NS-R, R-NS and R-R sector have only massive modes. The
theory contains the graviton, 2-form and dilaton field, as well as SO(32)
gauge bosons. The theory is spacetime non-supersymmetric, and contains
tachyons, transforming in the 32 of SO(32). As in other cases of tachyons in
closed string theories, the fate of this instability is not known. Finally, the
theory contains fermions, but all of them are massive. Overall, the theory is
not too interesting, and is given just as an example of non-supersymmetric
heterotic strings.

This heterotic string can also be constructed in the bosonic formulation,
by reading off the required lattice from the above partition function. Note
as we said that the lattice would involve the internal bosons as well as the
bosonization of the right moving fermions.

We conclude by pointing out that all 10d non-supersymmetric heterotic
theories contains tachyons, except for the so-called SO(16) x SO(16) het-
erotic. Details on this can be found in [2] (although discussed in a language

perhaps not too transparent).

4 A few words on anomalies

Anomaly cancellation in theories with chiral 10d spectrum is an astonishing
example of self-consistency of string theory. Therefore it is an interesting

topic to be covered. We leave its discussion for the evaluation project.
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4.1 What is an anomaly?

Let us start giving a set of basic facts about anomalies, directed towards
understanding in what situations they may appear. A complete but formal
introduction may be found in [3].

When a classical theory has a symmetry which is not present in the
quantum theory, we say that the symmetry has an anomaly or that the theory
is anomalous. Namely, what happens is that quantum corrections generate
terms in the effective action which are not invariant under the symmetry.
Since the classical lagrangian was invariant, such terms cannot be removed
with local counterterms, and the quantum theory is not invariant.

In the path integral formalism of quantum field theory, the lack of invari-
ance of the quantum theory (the anomaly) arises from the non-invariance
of the measure of the functional integration (this is Fujikawa’s method of
computing anomalies).

Notice that if there exists some regularization which preserves a classi-
cal symmetry of the classical theory, then the symmetry is not anomalous.
Namely, the regularized theory is still invariant under the symmetry, so reg-
ularized quantum corrections preserve the symmetry, and when the cutoff is
taken to infinity the symmmetry is still preserved. Hence the only symme-
tries which can be anomalous are those for which no symmetry-preserving
regularization exists.

This has the important consequence that only chiral fields can contribute
to anomalies. The contribution from non-chiral fields can always be reg-
ularized by using the Pauli-Villars regularization, which preserves all the
symmetries of the system.

This implies that anomalies can arise only in even dimensions > D = 2n

3There exists different class of anomalies, called global anomalies (what I mean here

is different from anomalies for global symmetries), which are different from the ones we
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Figure 1: Different hexagon diagrams contributing to gravitaional, gauge and

mixed anomalies.

because only then there exist chiral representations of the Lorentz group.
Anomalies arise from very precise diagrams, they appear only from contri-
butions at one loop (and not at higher order, this is Adler’s theorem), in a
diagram of one loop of chiral fields (usually fermions) with n+1 external legs
of the fields associated to the symmetry (gauge bosons for gauge symmetries,
gravitons for diffeomorphism invariance (gravitaional anomalies), and exter-
nal currents for global symmetries). For instance, in 10d theories, anomalies
arise from hexagon diagrams (see fig ?? with external legs corresponding to
gravitons and/or gauge bosons, if they are present in the theory.

We will center on gauge anomalies, which are lethal for the theories.
Namely, in preserving unitarity of the theory it is essential that unphysical
polarization modes decouple, and this happens as a consequence of gauge
invariance. If an anomaly spoils the gauge invariance in the quantum theory,
the latter is inconsistent (non-unitary, etc). Namely, by scattering physical
polarization modes we can create unphysical ones by processes mediated by

the anomaly diagram. Hence, the latter must vanish in order to have a

study here and may also exist in odd dimensions; for instance the parity anomaly in odd

dimensions.
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consistent unitary theory.

Anomalous gauge variations of the effective action can be obtained from
the so-called anomaly polynomial I which is a formal (2n + 2)-form con-
structed as a polylnomial in the gravitational and gauge curvature 2-forms,
R and F, resp. It is therefore closed and gauge invariant. For instance, in
a 10d theory with gravitons and gauge bosons, the anomaly polynomial is a
linear combination of things like tr RS, tr R*tr R?, tr FS, tr Fitr F?, (tr F?)3,
etc, with wedge products implied. Coeflicients of the anomaly polynomial
are determined by the spectrum of chiral fields of the theory. The anomalous
variantion of the 1-loop effective action under a symmetry transformation

with gauge parameter A is of the form

0rSeit = / 0 (43)

where IM) is an n-form, obtained by the so-called Wess-Zumino descent pro-
cedure, as follows. Since the anomaly polynomial I is closed, it is locally
exact and can be written as I = dI® with 1® a (2n 4 1)-form. It can be
shown that the gauge variation of I©©) under any symmetry transformation
is closed, hence it is also locally exact and we can write 6,10 = dI(), where

)\ is the gauge parameter and I(Y) is the above n-form. Hence we have
I=dI® ; 6§19 =qr® (44)

To give one simple example, consider a 4d U(1) gauge theory with n chiral
fermions carrying charge +1. The anomaly polynomial is given by I = n F3.
We then have I©®© = n AF? and 6,/ = nd\ F?, hence I(V) = n)\F?, leading
to the familiar form of the 4d anomaly.

Notice that the fact that the anomaly is a topological quantity is related
to the fact that it is determined by the spectrum of chiral fermions. The

latter is unchanged by continuous changes of the parameters of the theory,
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like coupling constants, etc, hence so is the anomaly, i.e. it is a topological
quantity.

The fact that all anomalies in a theory can be derived from a unique
anomaly polynomial implies that the anomalies for diverse symmetries (and
for diagrams involving different kinds of gauge fields) obey the so-called Wess-
Zumino consistency conditions. Roughly speaking, they imply that if a gauge
variation wrt a symmetry ‘a’ generates a term involving the gauge curvature
of a symmetry ‘b’, then a gauge variation of ‘b’ should generate terms in-
volving the curvature of ‘a’. This is clear from the fact that the diagram

mediating the anomalies contains external legs of both ‘a’ and ‘b’.

4.2 Anomalies in string theory and Green-Schwarz mech-

anism

In string theory, the spacetime theory is often chiral, for instance type IIB
or heterotic superstrings in 10d (also type I, see next lectures).

From the string theory viewpoint, the theory is however finite and gauge
invariant. This implies that the underlying string theory is providing a reg-
ularization of the corresponding effective field theory containing the chiral
fields. From this viewpoint it is clear that string theory should lead to theo-
ries free of gauge and gravitational anomalies (In fact, the relation between
modular invariance (ultimately responsible for finiteness of string theory)
and absence of anomalies has been explored in the literature [4]).

In type IIB theory, the fields contributing to the gravitational anomalies
are the 8¢, 565 and 35¢, i.e. the fermions and the self-dual 4-form. With this
matter content there is a miraculous cancellation of all terms in the anomaly
polynomial, which then automatically vanishes. The theory is therefore non-

anomalous [5].
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Figure 2: The low-energy limit of the six-point function for gravitons and gauge
bosons contains two contributions, the familiar field theory hexagon, and a dia-
gram of exchange of closed string modes at tree level with tree and one-loop level

couplings to external legs.

In heterotic theories, the field content also leads to some miraculous can-
cellations of terms in the anomaly polynomial. For instance, the fact that
the gauge group has 496 generators leads to the absence of tr F® terms. This
is called cancellation of the irreducible anomaly. However, even after these
miracles, the anomaly polynomaly still is non-vanishing, but has a special

structure, it is of the form
I ~tr F* (tr F? — tr R?) (45)

This residual anomaly, known as reducible anomaly, is cancelled by a special
contribution to the six-point function of gauge bosons and gravitons, which
does not have the standard field theory hexagon interpretation. As is shown
in figure 7?7, the contribution to the 1-loop amplitude with six external legs
lead to two kinds of low-energy contributions. One of them is the familiar
field thery hexagon diagram, of massless particles running in a loop. The
second is however of the form of an exchange of massless modes along a tree

level diagram, and a subsequent 1-loop coupling to some gauge fields.
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The existence of the second contribution was noticed by Green and Schwarz
4 who provided the right field theory interpretation for it. The massless
mode propagating along the tube is the 2-form B, (or its dual Bg) which has

couplings to the curvatures as follows

By Atr F* Bg A (tr F? — tr R?)

; 46
10d 10d (46)

which arise at tree level and 1-loop respectively. The last coupling is often

expressed by saying that By obeys the modified Bianchi identity
dHz = tr F? — tr R? (47)
Using these couplings, the gauge variation of the effective action is

§ fr0a Hs A (tt FH©) = [0 Hs AS(tr FH)O = [, Hy Ad(tr F)) = (48)
Ji0a AHz A (tr FHD) = [0, (tr F2 — tr R?)(tr F4) ~ [0, [(tr F? — tr R?)(tr F*) ]
The total anomalous variation therefore vanishes. This is the so-called Green-

Schwarz mechanism. This is very remarkable, indeed so remarkable that

triggered a lot of interest in string theory since the mid 80’s.
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