Type II Superstrings

We are already familiar with bosonic string theory, and have learned how
to solve the issue of reducing it to lower dimensions via compactification.
However, we have been unable to construct a theory with fermions in space-
time.

In this and coming lectures we study string theories whose massless spec-
trum contains spacetime spinor particles. These are the superstring theories,
and today we will center on a particular kind of them: type II superstrings
(leaving other superstrings, like heterotic strings and type I strings, for later
lectures).

Before getting started, let us mention that in order to identify the quan-
tum numbers of states with respect to the spacetime Lorentz group, it is
quite crucial to have in mind the representation theory of SO(2n) Lie alge-

bras, which can be found in section 6 of the appendix on group theory.

1 Superstrings

1.1 Fermions on the worldsheet

To describe a new string theory we have to modify the worldsheet theory.
Clearly, if we keep the same field content as in the bosonic string and simply
add interactions, the spectrum in spacetime will not be very different from
that in the bosonic theory, and in particular it will not contain spacetime
fermions. Addint interactions is more similar to just curving the background
on which the string is propagating.

Instead, we propose to change the field content of the 2d theory describing

the worldsheet. A simple possibility which preserves D-dimensional Poincare



invariance is to make the 2d worlsheet theory supersymmetric !. Namely, to
add 2d fermion fields ¥*(o,t), partners of the 2d bosonic fields X*(o,t),
and gravitino partners for the worldsheet metric gq4(o,t) (notice that since
supersymmetry commutes with global symmetries, the 2d fermionic fields
should transform in the vector representation of the D-dimensional space-
time Lorentz group, just like the 2d bosonic fields). It is important to em-
phasize that at this stage it is not obvious at all that such theory will lead
to spacetime fermions or spacetime supersymmetry; in fact, the 2d fermion

fields are bosons with respect to the spacetime Lorentz group!

Two-dimensional theories of this kind are sometimes refered to as ‘fermionic
strings’. We will not write down the 2d action for those fields, etc, but instead
use the simple practical rules to give the final result of physical fields and
hamiltonian after light-cone quantization. Recall that upon light-cone quan-
tization of the bosonic theory the physical fields where the bosonic fields
associated to the transverse coordianates X‘(o,t), i = 2,...,D — 1, with
hamiltonian given by an infinite set of decoupled harmonic oscillators.

The light-cone quantization for the fermionic sector also leaves the trans-
verse fermionic coordinates v¢'(c,t), i = 2,..., D — 1 as the only remaining

physical fields. Their hamiltonian corresponds to an infinite set of fermionic

'One may wonder if 2d susy is really necessary to achieve spacetime fermions. In our
discussion it would seem that we are emphasizing just the need of worldsheet fermions,
and that 2d susy appears as an accidental symmetry in the system of decoupled fermionic
and bosonic harmonic oscillators; however it is possible to argue as in the first section
of chapter 10 in [1] that the equation of motion for spacetime spinors arises from the
conserved supercurrent of the 2d theory. From this viewpoint 2d susy is quite crucial. In
fact, even in our simplified discussion spatime fermions are seen to arise from fermionic
zero modes in the R sector, where the zero point energy exactly vanishes due to 2d susy;
hence susy turns out to be crucial as well in our description, although not in a very explicit

way.



harmonic oscillators.

In closed string theories it is possible to carry out the quantization etc
independently for left- and right-moving degrees of freedom. This is quite
convenient for us, so we split our degrees of freedom in X¢ (o +1), ¥ (0 + 1),
Xb(o —1t), v4(o —t), and work with just the left moving piece. The level

matching constraints etc will be discussed at a later stage.

1.2 Boundary conditions

We are interested in discussing closed fermionic strings in flat D-dimensional
Minkowski space. To have closed string in flat space, the 2d bosocic fields

must be periodic in o
Xi(o+t+0)=Xt(o+1) (1)

and we have the oscillator expansion

i
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with modes having commutation relations
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and hamiltonian
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For fermions, there is a subtlety in discussing boundary conditions. In

the two-dimensional worldsheet field theory, as in any quantum field theory,



the only observables are expressions that go like products of two fermion
fields. That means thae periodicity in ¢ of observables is consistent with an-
tiperiodicity of the fermion fields . Hence there are two consistent boundary

conditions

Neveu — Schwarz NS ¢ (0 4+t +€) = =% (0 +1)
Ramond R ol(oc+t+4£) =i(o+1) (5)

These can be chosen independently for left and right sectors. It is important
to notice that consistency, e.g. Lorentz invariance, already requires that in a
given sector, fermions fields ¢¢ for all 7 are all periodic or all antiperiodic.
Hence it would seem that we can define four different kinds of closed
strings, according to whether the left and right sectors have NS or R fermions;
namely we would have NS-NS, NS-R, R-NS and R-R strings. Very surpris-
ingly, we will see that modular invariance requires these different boundary
conditions to coexist within the same theory. In a sense, in the same way that
a consistent string theory requires us to sum over different worlsheet topolo-
gies (topological sectors of the embedding functions X*), it also requires us
to sum over different topological sectors (boundary conditions) for the 2d
fermion fields, in a precise way dictated by the requirement to get a modular
invariant partition function. This has been formulated very precisely as a

sum over spin structures on the worldsheet [2].

1.3 Spectrum of states for NS and R fermions

Before going further, it will be useful to compute the oscillator expansion,
hamiltonian and spectrum of states for 2d fermions with NS and R boundary
conditions. We describe this for the left-moving sector, being analogous (and

independent) for the right-moving one.



1.3.1 NS sector

Antiperiodic boundary conditions require the oscillator modding to be half-

integer. We have the oscillator expansion

wL(U + t Z wH—l 727ri(r+1/2)(a—|—t)/£ (6)

reZ
Notice that there are no zero modes in the expansion. The oscillators have

anticommutation relations

{7/);+1/2a¢il+1/2} = oY Om+1/2,~(n+1/2) (7)

The hamiltonian for the fermionic degrees of freedom is

o0

1 1
Hpns = — n Z (r+ 5) WL, 1/2 ¢r+1/2 + EFNS (8)
a’p r=0

where the zero point energy for NS fermionic oscillators is

oo

B = LY () (9)

evaluated with the exponential regularization. It is useful to compute in

general (for o > 0)

%in—i—a (10)
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so we get
Zy =——+-a(l —a) (12)
and

Eg™s = —— (D ~2) (13)

The total bosonic and fermionic hamiltonian for the 2d theory in the NS

sector is

ZiPibi i —1
Hy, = Za—n n+ZT+ wrl/? r+1/2+(D_2)E (14)

dp* ap+ L>0

The contribution of the left-moving sector to the spacetime mass is
1
i
namely

(D—2)

o/m%/Q = lz ol o + Z 7"+ 1/Lr 1/2 r+1/2 T T 16 (16)
n>0

The spectrum in the NS sector is obtained by defining a groundstate |k)ys

with spacetime momenta k;, and annihilated by all positive modding oscilla-

tors
wé+1/2‘k>NS =0 5 Vn2>0
a;‘k)NS =0 ; Vn>0 (17)

and applying negative modding oscillators in all possible ways.

The lightest left moving states (for zero spacetime momentum) are

State o'm? /2
(D -2)
|0) s T
. 1 (D-2)
¢71/2|0>NS 5 - 16 (18)



Now we realize that the first excited state is a vector with respect to spactime
Lorentz transformations, and that it only has D — 2 components. So it forms
a representation of the group SO(D — 2), which is the little group of a
massless particle in a Lorentz invariant D-dimensional theory. This means
that in order to be consistent with Lorentz invariance, the state should be
massless, and this requires (D — 2)/16 = 1/2, namely D = 10. Namely we
obtain the result that the string theory at hand propagates consistently only
in a spacetime of ten dimensions.
The states we have transform under the SO(8) group as
State a'm? /2 SO(8)
10)Ns -1/2 1

YL1)2l0) s 0 8v
where 8y is the vector representation of SO(8).

1.3.2 Ramond sector

Periodic boundary conditions require integer modding for fermionic oscilla-

tors

. I . .
,(/)2(0_+t) =4 % Z 1/1; e—2mr(a+t)/£ (19)
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An important difference with respect to the NS sector is the existence of
fermion zero modes 1.

The anticommutation relations read
{,l/]?zz’wﬁn} = 69 5m,—n (20)

The hamiltonian for the fermionic degrees of freedom is

o

1 % i F
HFaR = a/p+ Z de—r wr + EO f (21)

r=1




with Ef® = (D —2) x (—1/2) %2, 7, which for D = 10 equals E,® = 8 x =
The total bosonic plus fermionic zero point energies cancel in the R sector 2
The total bosonic and fermionic hamiltonian for the 2d theory in the NS

sector is

DD 1 o 00 S
Hy = ZPP L LIS ool 4 Y (22
4p ap n>0 r=1

The contribution of the left-moving sector to the spacetime mass is

1
my = 2p*Hy, — 7 > p; (23)
i
namely
[e o]
a'mp/2 = |} olan + 3 rvt, o (24)
n>0 r=0

To compute the spectrum we have to be careful with the definition of the
ground state, because of fermion zero modes. Given a groundstate, applica-
tion of some 1} costs no energy and we get another groundstate. The system
has a degenerate set of groundstates, and we have to find how the fermionic
operators act on them. Clearly we can require that positive modding oper-
ators annihilate it; however we cannot require that all fermionic zero modes

annihilate it, since this is not consistent with the zero mode anticommutators
{v5, 90} = ¥ (25)

which is a Clifford algebra (see section 6 of the lesson on group theory). In
fact, defining the action of the v} on the set of groundstates is constructing

a representation of the corresponding Cliffor algebra

2In the NS sector the local 2d susy is broken by the different boundary conditions
betwen bosons and fermions, leaving a finite zero point energy contribution; in the R
sector the 2d susy is globally preserved by the boundary conditions, so the zero point

energies cancel.



By now we know that to construct such a representation we should define

the operators

AL = 2o+ 2t for a=1,...,4 26
0 0

a

define a lowest weight state by A.|0) = 0, and build the set of states by

application of the AT operators

0) A, 10)
ALALIO) AL AL ALID)
AT A AF AL |0) (27)

A representation of the Clifford algebra splits into two spinor representations,
of different chiralities, of the SO(8) Lie algebra. These correspond to the
two above columns; we denote the corresponding states by 8g and 8¢, or
equivalently by the corresponding weights %(i, +, 4, +) with the number of
—’s even for 8s and odd for 8¢.

The Hilbert space in the R sector is obtained by applying the negative
modding operators to these groundstates in all possible ways. At the massless

level, the only states are the groundstates, transforming under SO(8) as
8s + 8¢ (28)

Our results, to summarize, are that the light modes in the NS and R

sectors are

NS State a'm?2/2  SO(8)
10) v —1/2 1
W_W\O)Ns 0 8v
R 1(£,+,+,4) #— =even 0 8s
s(£, £, +,+) #— =odd 0 8c



We can choose these states independently for left and right movers. We
now need to discuss how to glue them together to form physical states. One

conditions is the level matching constraint, which amounts to
m; = my (29)

The glueing is also constrained from modular invariance. Namely, a string
in one of these sectors, namely NS for left movers and NS for right movers,
is not modular invariant.

The real, physical, string theories are formed by combining NS and R
sectors in a way consisntent with modular invariance. In a sense we need to
sum over boundary conditions for the fermions, i.e. combine the spectra of

different sectors.

1.4 Modular invariance

We would like to discuss the partition function
Z(1) = try (e ™ ) (30)

In order to keep discussion about left and right movers independently it
is useful to recall that the trace over the physical level-matched Hilbert space
of a string theory can be extended to a trace over an unconstrained Hilbert
space, with independend left and right sectors, with level matching imposed
upon integration of the 71 piece of the modular parameter (see lesson on
modular invariance).

Using that
Y pi2

H =
2a/p*

+H,+Hr ; P=Hp—Hg (31)
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with H;, = ﬁ(]\f—i—EO), Hi = ﬁ(ﬁf—i—ﬁo), the expression for the partition

function can be written as

Z(1) = trye ™™ 2 gNtEo g +Bo — ¢y o €T pp o NP g Hp
= (4r2a's) "ty VTP trgy, qN—i—Eo

where factorization follows from considering the left and right movers inde-

pendently.

Within each sector we have such factorization. We would now like to
compute the left movers partition functions for NS and R boundary condi-
tions. At this point, it will be useful to recall some useful modular functions,
(see appendix of the lesson on modular invariance), which we gather in the
appendix.

The partition function in the left sector contains a trace over the bosonic

oscillators, which is computed just like in bosonic string theory
B —
tr Hpos qNB+E0 = 77(7') 8 (33)

To obtain the partition function over the infinite set of fermionic oscil-
lators, consider first the simplified situation of the partition function of a
single fermionic harmonic oscillator. It has just two states, the vacuum |0)

and ¢_,|0), where v denotes the oscillator moding. For this system we have
tra g™t =¢"" (1+¢") (34)

For several decoupled fermionic harmonic oscillators, we simply get the prod-
uct of partition functions for the individual ones.

NS fermions

Using this, the partition function for 8 NS fermionic coordinates is the

product of partiton functions for eight infinite sets of fermionic harmonic

11

q

—N+Ey

(32)



oscillators with half-integer moddings n + 1/2, namely

0 4
tTHNs qNF+E§ _ q71/48 H(1+qn1/2)] _ _ Lt~ 4 (35)

n=1

R fermions
This is the product over the partition function of eight infinite sets of
fermionic harmonic oscillator with integer modding, times the multiplicity of

16 due to the degenerate ground state, namely

121
R e ’ 0
tra, ¢Vt = 16 lql/% H(l—i—q”)] = ——0 (36)
n=1 n
Now we easily observe that modular transformations may mix different
boundary conditions, and even require the introduction of new pieces in the

partition function. For instance

0 ! 0 ! 1/2 !
o) b)Y
0 Tﬂl 1/2 7'—);1)/7 0 T—);l)/T

n* n* n* (87)

Clearly a modular invariant partition function must be a sum over sectors

with different boundary conditions.

1.5 Type II superstring partition function

Instead of working by trial and error, let us simply give the final result of a
possible modular invariant partition function, and then interpret it in terms

of the physical spectrum of the theory.

12



Consider the two partition functions for left movers

2 1_N-2 -8 4 04_ 0 4_ 1/2
(Ar“a'me) “m °n 19[0] 19[1/2] 19[ 0

4

1/2
+9 /

ya—
* 1/2

] (38)

N | =

The first piece is half of the contribution from spacetime momenta, then fol-
lows the piece from left bosonic oscillators, then the piece from left fermionic
oscillators. Either of the two choices is invariant under 7 — —1/7, and they
transform as 7, — — 74 under 7— — 7+ 1. Therefore, it is possible to cook
up several modular invariant partition functions for the complete left times

right theory. Namely we consider the partition functions
Z_|_7_|_ 3 Z_7_ 3 Z_|_7_ 3 Z_7_|_ (39)

This means that there are four consistent string theories! (in fact, we will

see later on that there are only two inequivalent ones).

1.6 GSO projection

It is now time to address the question of what is the meaning of pieces like
0 1/2

Y [ ] or v [ 1;2 ] in the partition function. For NS fermions it is easy

1/2
to realize that

o] s S e
n 19 [ . = g 1/48 H(1+q 1/2)2 =l qN+E§
n=1
0] s D e .
Y [ o | = IO = T (1)
n=1

(40)

On the second line we sum over NS fermions, weighting each fermionic os-

cillator mode by a minus sign; this can be implemented in the trace as the

13



insertion of an operator (—1)¥ which anticommutes with all fermionic oscil-
lator operators.
Using this, we are now ready to interpret the meaning of one of the pieces

of the left partition functions Z,.. Namely

0 1/2
= tray "0 (11— (—)F) (41)

4 4
0 0
n_4 ! l ] Y [ ] - %tr%NS qN+E§ — gy qN+EéP (_)F =

The operator (1 — (—)*) is a projector that allows to propagate only modes
with an odd number of fermionic oscillators. This piece of the partition
function traces over 8 fermions with NS boundary conditions, projecting
out modes with an even number of fermionic oscillators. This is the GSO
projection in the NS sector.

The effect on the light NS states is to remove the tachyonic groundstate

|0) s from the physical spectrum, and leave the states ¢ /2|0)ws.

Similarly, the remaining pieces of the partition function correspond to

U 19[1/2} iﬂ[l/Ql =
0 1/2

= tr0, ¢V L(1 £ (—)T) (42)

F F
tra, ¢V T £ tray, ¢V (—)F =

N[

which implements a GSO projection on the R sector. Namely, for the par-
tition function Z; the GSO projection leaves states with even number of
excitations over the groundstate 8 and states with odd number of excita-
tions over the groundstate 8¢ (and projects out other possibilities); while Z_
leaves states with odd number of excitations over the groundstate 8¢ and
states with even number of excitations over the groundstate 85 (and projects

out other possibilities).

14



1.7 Light spectrum

The product form of the left times right partition function implies that left
NS and R sectors can combine with right NS and R sectors. More explicitly,

the fermionic piece of the partition function has the structure

— Y=
Zd) (T) = (tr Huns,eso_ — T Hreso_ ) X (tr Hysaso — T HR,GSO4 ) =
= tryygeso tr HNns,gso_ U 3y s,650_ T HRrGsoy
* *
—tr HRr,Gso_ tr HNs,GSO_ +tr HRr,Gso_ tr HRr,Gsoy (43)

where the subindex GSO. implies we trace only over the states surviving
the GSO projection $(1 + (—)%). Notice the minus sign in the contributions
from the NS-R and R-NS partition function, which implies that loops of the
corresponding spacetime fields are weighted with a minus sign, namely they
are fermions. We will see that these states have half-integer spin, so these
string theories automatically implement the spin-statistics relation.

We discuss the light (in fact massless) spectrum of the theories in what

follows.

Type IIB superstring
Consider the theory described Z,Z_.. Using the above projections, it is
easy to realize that (both for left and right sectors) the massless NS states
are simply the 1" /2|0>, transforming in the 8y, while in the R sector the
states surviving the GSO projection transform as 8. These states can be
glued together satisfying the level matching condition.
The SO(8) representation of the complete states is obtained by tensoring
the representations of the left and right pieces. Hence we have
NS-NS 8y ®8y 1428y + 35y
NS-R 8y ® 8¢ 8s + 96¢
R-NS 8- ® 8y 8g + 56¢
R-R  8:®8c 1+28¢+ 35¢

15



The NS-NS sector contains an scalar (dilaton), a 2-index antisymmetric
tensor (2-form B),), and a 2-index symmetric tensor (graviton G ).

The R-NS and NS-R sectors contain fermions, in fact the 565 arising from
a vector and a spinor under SO(8) is a gravitino (a spin 3/2 particle).

The RR sector contains a bunch of p-forms, namely p-index completely
antisymmetric tensors. In particular, a 0-form (scalar) a, a 2-form B, and a
4-form (of self-dual field strength) Af. It is sometimes convenient to intro-
duce the Hodge duals of these, which are a 6-form Bg, an 8-form (. Finally,
it is also useful to introduce a 10-form C4q, which does not have any prop-
agating degrees of freedom, since it has no spacetime kinetic term (since its
field strength would be a 11-form in 10d spacetime).

The theory is invariant under spacetime coordinate reparametrization,
and gauge transformations of the p-forms. It is also invariant under local
supersymmetry. It is easy to verify from the tables in [4] that the massless
spectrum is that of 10d N = 2 chiral supergravity. String theory is providing
a finite ultraviolet completion of this supergravity theory, remarkable indeed!

Finally, this theory is chiral in 10d, and has potential gravitational anoma-
lies. It was checked in [3] that the chiral sector of the theory is precisely such
that all anomalies automatically cancel (in a very non-trivial, almost mirac-
ulous, way).

This is the TYPE IIB superstring.

Consider now the theory described by Z_Z_. It is similar to the above
by simply exchanging C' <> S in the SO(8) representations. Hence, clearly
the two theories are the same up to a redefinition of what we mean by left
and right chirality in 10d (namely, up to a parity transformation). So we do
not obtain a new theory from Z_Z_. Similarly Z_Z, and Z,Z_ are related,
and is enough to study just one of them.

Type ITA superstring

16



Consider the theory described Z,Z_. Using the above projections, the

massless sector is
NS-NS 8, ®8y 1+ 28y + 35y

NS-R 8y ® 8y 8¢ + 56¢
R-NS 80 ® 8\/ 85 + 565

R-R  8:® 8¢ 8y + 96y
The NS-NS sector contains an scalar (dilaton), a 2-index antisymmetric

tensor (2-form B),), and a 2-index symmetric tensor (graviton G, ).

The R-NS and NS-R sectors contain fermions, in fact the 565, 56 arising
from a vector and a spinor under SO(8) are gravitinos (a spin 3/2 particle).

The RR sector contains a bunch of p-forms, namely p-index completely
antisymmetric tensors. In particular, a 1-form (scalar) A;, and a 3-form Cs.
It is sometimes convenient to introduce the Hodge duals of these, which are
a b-form Cf, a 7-form A;. Finally, it is also useful to introduce a 9-form Cy,
which does not contain much dynamics (and is related to Romans massive
ITA supergravities [5]).

The theory is invariant under spacetime coordinate reparametrization,
and gauge transformations of the p-forms. It is also invariant under local
supersymmetry. It is easy to verify from the tables in [4] that the massless
spectrum is that of 10d N = 2 non-chiral supergravity. String theory is pro-
viding a finite ultraviolet completion of this supergravity theory, remarkable
indeed!

Finally, this theory is non-chiral in 10d, hence is automatically anomaly
free.

This is the TYPE ITA superstring.

Some comments
e The construction we have described seems a bit intricate. However,

it follows naturaly from the underlying worldsheet geometry of the string,

17



Figure 1: The four theta function contributions to the partition function can

be understood as for possible boundary conditions in ¢ and t for fermions in a

F insertions

2-torus. (Anti)periodicity in ¢ is correlated with the presence of (—)
in the trace, while (anti)periodicity in o is correlated with the choice of NS or R
fermions. Clearly modular transformations relate different contributions, so that

a modular invariant theory needs to combine all of them.

namely from modular invariance, i.e. invariance under (large) coordinate
transformations on the worldsheet. The reason why modular transformations
mix different boundary conditions can be understood intuitively from figure
1: Starting with a GSO projected trace over NS states, the piece involving the
(=1)F insertion implies that 2d fermions pick up a minus sign as they evolve
in ¢; upon the modular transformation 7 — —1/7, we obtain that fermions
pick up an additional sign as o varies, namely the boundary condition is not
NS any longer, but is flipped to R in this sector. All contributions in the
partition function may be understood in this language.

e We re-emphasize that the appearance of spacetime fermions is subtle,
and is not automatically obtained from the existence of 2d fermions. Indeed,
in the NS sector we have 2d fermions but no spacetime fermions. Similarly,
the existence of spacetime supersymmetry does not automatically follow from

2d susy, rather it is implemented due to the GSO projection. This is one of

18



the remarkable features of string theory, the deep relation between physics of
the worldsheet (modular invariance, etc) and spacetime physics (spacetime
susy).

e Spacetime supersymmetry is not manifest in the formalism we have
described. It would be nice to find a formalism which describes type II su-
perstring, and which makes spacetime supersymmetry manifest. Intuitively,
we would like to describe the worldsheet theory by describing string configu-
rations by an embedding of the worldsheet into 10d superspace, namely a set
of embedding superfunctions (X#(o,t),©%(o,t)), where ©% transform in the
spinor representation of the spacetime Lorentz group and parametrize the
fermionic dimensions of superspace. Such a formulation exists and is known
as the Green-Schwarz superstrings. For type II theories it is equivalent to
the formulation we used (called the NSR formulation), but it is more difficult
in some respects. Some useful comments on it may be found in section 12.6
in [1].

e Recall that the partition function is the vacuum energy of the spacetime
theory. Spacetime supersymmetry implies that the spectrum is fermion/boson
degenerate, and that this vacuum energy vanishes. Indeed, the theta func-

tions satisfy the ‘abstruse identities’

L oo ][] o o]
0 1/2 0 1/2

So the 1-loop cosmological constant vanishes in these theories.

e If the partition function is exactly zero, why should we bother about
whether it is modular invariant or not?? The key observation is that modu-
lar invariance of the vacuum amplitude (without use of abstruse identities)
guarantees that other more complicated amplitudes (with external legs) are

also invariant under large coordinate reparametrizations on the worldsheet.
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e Recall that the contribution Z(7) must be integrated over the funda-
mental domain in 7 to get the complete contribution. As discussed in the
bosonic theory, the ultraviolet region is related, namely is equivalent geomet-
rically, to the infrared region. A difference with the bosonic theory is that
the type II superstrings do not contain tachyons, so there are no infrared

divergences.

2 Type 0 superstrings

We would like to discuss (the only) other possible modular invariant par-
tition functions that one can construct with the basic building blocks we
have, namely the 2d fields of the (2d supersymmetric) strings. Interestingly
enough, the theories we are about to construct, called type 0 theories, are not
spacetime supersymmetric, and moreover do not contain spacetime fermions.
So they clearly illustrate the fact that 2d fermions/susy do not guarantee
spacetime fermions/susy.

The complete left times right partition function is given by

Ll ]
0 1/2 0 1/2

We obtain two new inequivalent theories, whose structure in the fermionic

1 _ _ _
7o = S(an%a'n) " n| | S

partition function is

£ *
tr Hns,gsoy tr HNs,Gso, +tr Hns,gsoy tr HNs,GSO_ +

* *
T 34 650, Whins aso, T T Hreso 1T Hrsos (46)

The lightest modes of the two theories are
Type OA
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Sector  States SO(8) a'm? Fields

NS-NS 1®1 1 -2 T
8y ®8y 1+28y+35 0 & By, Gu
R-R 8¢ ®38s 8y + 56y 0 Ay, Cs
8s®8c 8y + 56y 0 A, C
Type 0A
Sector  States SO(8) o'm?  Fields
NS-NS 1®1 1 -2 T

8y ®8y 1428y 435, 0 ¢, By, G
R-R 8:®8 1+28:+35c 0 a, By, Af

8s®8s 1+28¢+355 0 d, By A7
The theories contain a tachyon in the NS-NS sector. As usual, one inter-

prets the tachyon as an instability of the theory, which is sitting at the top
of some potential for the corresponding field. There are many speculations
on what is the stable vacuum of type 0 theories, and even whether it exists
or not. The issue remains for the moment as an open question.

Due to this feature, and to lack of fermions, most research is centered on

type Il strings, rather than type O.

3 Bosonization

We would like to finish with some comments on bosonization. Bosoniza-
tion/fermionization is a phenomenon relating certain two-dimensional field
theories; it is the complete physical equivalence of a 2d quantum field the-
ory with bosonic degrees of freedom and one with fermionic degrees of free-
dom. This can happen two dimensions since all representations of the SO(2)
Lorentz group are one-dimensional, there is no real concept of spin.

For our simplified discussion, we will be interested in discussing simply

the equivalences of partition functions of the corresponding 2d theories. But
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let us emphasize that bosonization/fermionization is complete equivalence
of all physical quantities in both theories). Notice however that equivalence
of partition functions implies a one-to-one map between states in the two
Hilbert spaces, and agreement in their energies.

A simple example of bosonization/fermionization is that the 2d theory of
two left-moving free fermions (with NS boundary conditions on the circle)
is equivalent to the 2d theory of one left-moving boson compactified on a
circle of radius R = v/o'. Indeed, let us compute the partition function of

the theory with two fermions

7oy = | L0 -7 = = (a7
n=1
This final expression can be rewritten using (54) as

3 g (48)

S
N7 nez

which corresponds to the partition function of one left-moving boson parametriz-
ing a compact direction of radius v/o'. The 7 corresponds to the trace over
the oscillator degrees of freedom, while the sum over n corresponds to the
sum over left-moving momentum py. Finally, purely left-moving bosons with
no right-moving partner have no center of mass degrees of freedom, so there

is no trace over center of mass momentum. Some of these issues will appear

back in the study of the heterotic.

Using this kind of computations, it is possible to bosonize the complete
left-moving sector of a type II superstring. Indeed it is possible to recast the
left-moving fermion partition function in terms of a bosonic interpretation.

In fact, starting with the GSO projected fermionic partition function

e (T[] (8T w[])
2 0 1/2 0 1/2
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and writing the 9 functions as infinite sums, we obtain

1 ; .

n1,12,13,14 n1,N2,13,14

_ Z qzi(nﬁl/?) 2 =+ Z qzi(”ﬁ‘l/Q) 2 ew’i Ei(ni+1/2) )

ni,n2,n3,n4 n1,n2,Nn3,N4

By gathering terms we may write

Z: = 77‘4( > (= (m)Zm) - > q’ﬂ%(li(—l)zz’m))
=

n1,n2,13,N4) r=(n14+1/2,...,n4+1/2)

DN | =

Defining lattices A* of vectors of the form
(ny,n9,n3,n4) n,€Z ; Zni = odd (50)
(n1+%,n2+%,n3+%,n4+%) ; n, €% ; Zni:odd, evenfor AT, A~

we can write
Zi = 7t Y ¢ (51)
reA*

Which corresponds to the partition function of four left-moving bosons parametriz-
ing a four-torus defined by the lattice A*. Recall that this is not a fake trick,
but a complete physical equivalence of 2d theories.

We will not use much this bosonic description. However, it is sometimes
used in discussing more complicated models, like orbifolds, since it provides

an easy bookeeping of the GSO projections in terms of a lattice.

A Appendix: some useful modular function

We introduce the eta and theta functions

or) = @ IL0-a) 62)
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0 . oo . .
9 [ QS ] (7_) — 77(7_) 627r20¢ q%éﬂ—ﬁ H (1 +qn—|—0—1/2 equ&) (1 +qn—6—1/2 e—2m¢)

n=1

For particular interesting values of 6, ¢ we have

19[8 (1) = ﬁl(l—qw(lw"“f
19_1(/)2_ (r) = ,ﬁl(l—q") =gy
9 1(/]2 (1) = ¢ o_o<1—q">(1+q"><1+q“> =
= 248 10__01(1—Q")(1+qn)2
9 [ 53 ] (r) = iq"® nﬁl (1-¢"(1-q¢"") =0 (53)

They have easy modular transformation properties

— 0 e _ e—ﬂ'i(92—9) 0 e
ﬁ_gb_(—i_l)_ 9 9+¢_1/2]()
6] PP
79_¢_ (=1/7) = (—i7) 19!_0 (1)
n(r+1) = e"n(r)
n(=1/r) = (=ir)/*n(r) (54)

In particular
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o]y |+ = [ 132_ O (0) (—1/7) = (—ir)/2 9 g -

! 132 (r+1) =9 [ g (7) ;0 1?2 (—1/7) = (=ir)/2 9 122 (7)
’ 132: (reay = ety 1(/)2: M 59 1é2: (=1/7) = (=ir)!/? 9 1(/)2: (7)
¥ 1;2 (T+1)=e ™9 — 1;; — (r) 5 9 [ 1;; ] (=1/7) = i(—iT)/2 ¥ [ 1;; ] (r)

Finally we will need the expression of the ¥ functions as infinite sums

0 2 :
9 l j| (7_) — Z q(n+0) /2 e27rz(n+9)¢ (55)

¢ neZ
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