Toroidal compactification of closed
bosonic string theory

1 Motivation

As discussed in the overview lectures, a canonical mechanism to obtain four-
dimensional physics at low energies out of a theory with D > 4 is to consider
the theory in a curved background of the form M, x Xp 4, with Xp 4 a
(D —4)-dimensional compact manifold, called the internal space. At energies
E < 1/L, where L is the typical size of the dimensions in Xp_4, the physics
is essentially 4d, we do not have enough resolution to see the internal space.
This is called compactification of the theory.

One of the simplest possibilities is to consider the internal space to be a
(D —4)-torus. In this section we are interested in exploring this possibility in
string theory. Happily, the most interesting phenomena are already present
in we compactify just one dimension on a circle, and reduce the 26d bosonic
string theory to a 25d theory at low energies.

We start with a discussion of compactification in field theory. As we
know,this provides a good approximation to the dynamics of string theory
when o corrections are negligible !. That is, when the internal space radius
is much larger than the string length scale. Even in this regime there are
interesting phenomena, like the Kaluza-Klein mechanism to generate gauge
vector bosons out of the higher dimensional metric.

Next we turn to the explicit discussion of compactification in full-fledged
string theory. This can be carried out for toroidal compactification because

it is described by a free worldsheet theory, which can be quantized exactly

'Recall the picture 1.



Figure 1: Picture of compactification spacetimes; thick small lines represent string
states which are light in the corresponding configuration. When the internal man-
ifold has size of the order of Ly, stringy effects (which do not exist in theories
of point particles) become relevant; for instance, string winding modes (where a

closed string winds around some internal dimension) may become light.

in the sense of the o/ expansion. This means that for compactification on
circles of radius comparable or smaller than the string length, string theory
may (and does) differ from field theory.

Among the most surprising effects, we will find i) new light (and even
massless) particles arising from closed string winding around the internal
circle, and ii) T-duality, a complete physical equivalence of two theories living
in different spacetimes.

Results in this section are useful in discussing toroidal compactifications
in other string theories, like superstrings. Also, they will be useful in the

construction of 10d heterotic string theories.



2 Toroidal compactification in field theory

Here we roughly follow ideas in section 8.1 of [1]. Our discussion is sketchy
and provides most results without their detailed derivation.

Let us first consider circle compactification in field theory, which is a good
approximation to the situation in string theory for circle radius much larger
than the string length, so that o' effects (which are the ones related to the
fact that the string is an extended object) are negligible.

So we consider field theories in D-dimensions, propagating on a back-
ground spacetime of the form M, x S!, with D = d + 1. To explain
why the low-energy physics is d-dimensional, consider first a toy model of

D—l)

a D-dimensional massless scalar field p(z°,..., propagates with D-

dimensional action

S5d(p = /desl dD{L'AD_‘laMSOaMSO (1)

with M =0,...,D — 1 and where A is some scale which we have introduced
for dimensional reasons.

Since zP~! parametrizes a circle, it is periodic, and we can expand the
2P~ dependence in Fourier modes

QO(.’EO, s 7$D_1) = Z e27rikzD_1/L on(xoa R xd_l) (2)
kEZ

where L = 27 R is the length of §'.

From the d-dimensional viewpoint, we see a bunch of d-dimensional scalar
fields (2, ..., 2471), labeled by the integer index k, which defines the mo-
mentum in the extra dimension pp ; = k/R. The d-dimensional spacetime
mass of those fields increases with k2. To see that, take the D-dimensional

mass-shell condition
P>=0, that is Py, +pH_ =0 (3)
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For the field ¢, we have
Py, + (k/R)* =0 (4)
which means that the d-dimensional mass of the field ¢y is
my; = (k/R)? (5)

Equivalentely, we may obtain this result from the d-dimensional wave equa-
tion for the field

OomwpdM =0 — 0,000 + (k/R)> =0 (6)

where = 0,...,d — 1. And we recover (5).
At energies much lower than the compactification scale M, = 1/R, F <
1/R, the only mode which is observable is the zero mode (2, ...,2471). So

we see just a single d-dimensional field, with a d-dimensional action, which is

obtained by replacing ¢(z°,...,zP71) in (1) by the only component we are
able to excite g(2?, ..., 297 "). The 2”~' dependence drops and we get
Sorp = [ diz —L— 5,000" (7)
eff — M, x AD—4 uP00" Qo

So we recover d-dimensional physics at energies below M,.. This is the Kaluza-
Klein mechanism, or Kaluza-Klein reduction. The massive d-dimensional
fields ¢y are known as Kaluza-Klein (KK) excitations or KK replicas of .

Obs: If the higher-dimensional field theory contains massive fields with
mass M, the 4d KK tower has masses m; = M? + (k/R)?, so they will not
be observable at energies below M.

The Kaluza-Klein reduction works for any higher dimensional field. An
important new feature arises when the original higher dimensionl field has
non-trivial Lorentz quantum numbers. The procedure is then to first decom-

pose the representation of the SO(D) higher-dimensional Lorentz group with
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respect to the lower-dimensional one SO(d) (i.e. separate different compo-
nents according to their behaviour under d-dimensional Lorentz), and finally
perform KK reduction for each piece independently. For instance, for a D-

dimensional graviton we have the KK reduction on S?!

Gun(2,...,2" ) = Gu@®....2P )= GO ... 2%
Gup-1(2°...,2P71) — Gi& (z°,...,2%71)
Gp1p1(a® ..., 2P » GQ°,...,2% 1) (8)

where the first step is just decomposition in components, and the second is
KK reduction. We therefore obtain, at the massless level, a d-dimensional
graviton, a d-dimensional U(1) gauge boson, and a d-dimensional scalar.

To be more specific, the only piece of the D-dimensional metric which is

visible from the low-energy d-dimensional viewpoint is
ds® = G da” dz” + Gaq (dz® + A,dz*)’ (9)

where the fields G, G44, A, are already taken to be the zero modes of the
KK tower, and so depend only on the non-compact coordinates z°, ..., z% .

The original D-dimensional invariance under diffeomorphism has a rem-
nant in this truncation of the theory. In particular, it is clear that we have
d-dimensional diffeomorphism invariance acting on 2°,...,2% 1 (for which
G is the graviton). There is an additional freedom to reparametrize the

internal coordinate as
' = 24 Mzt (10)
The effect of this tranformation is to change the d-dimensional vector boson
A, = Ay — O (11)

So gauge transformations of this vector boson follow from coordinate reparametriza-

tion in the internal dimension. This remarkable result (gauge invariance from
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diffeomorphism invariance in higher dimensions) was the original motivation
for the Kaluza-Klein program of unification of interactions, which has moti-
vated much of the modern research in extra dimensions.

Another field whose KK reduction we will be interested in is a D-dimensional
2-form Bjy;y. By an argument similar to the above one for the graviton, the
result is a d-dimensional theory with a d-dimensional 2-form B, and a U(1)
gauge boson A u- Just as above, gauge invariance of the D-dimensional 2-form

inplies invariance of the d-dimensional 2-form under
BNV — Buua[“ Ay] (.T)‘) (12)

We will be interested in performing the KK reduction of the effective field
theory for the light modes of the closed bosonic string. This includes a 26d
graviton Gy, a 26d scalar dilaton ¢, and a 26d 2-form field By,

As discussed in the overview lectures, the original action is

1 1
Ser. = 512 / X (=G)"? e { R — = Hunp HY"" + 40460" 6} + O(a)(13)

where HMNP = a[MBNP]
Substitution of the 26d fields by the 25d zero modes of the KK tower,
leads to the 25d effective action for the latter. Defining Gosos = €27, it is

given by 2
Sosg = % [d®X (—G)1/2 e~ 20+0 [R — 40,00"0 + 40,00"¢ +
1 o v 1 v 1 o L u-
—162 FI“/FM — E “,//\H“)\ — 262 FHVF“ | =

_ 27R i dB X (_G)1/2 e 2%254 [R _ 46110-6“0- + 48“¢8N¢+

2k2

1 o v 1 v 1 o L u-
—ZeQ T unH" — 162 Fu F* _(14)

2This combines eqs (8.1.9) and (8.1.13) in [1].




where H,,,» = 0, B,y — A[uﬁ,,,\], and where we have defined ¢o5y = ¢ — /2,
the effective 25d dilaton, which fixes the 25d interaction strength.

Notice that the vev for the scalar field G595 is related to the radius of
the internal circle. In fact, only the combination p = Re“ labels inequivalent
theories. Therefore, the radius is not an external parameter, but the vev
of a 4d dynamical scalar field. On the other hand, the compactification
background is consistent (solves the D-dimensional equations of motion) no
matter what circle radius we choose; this implies that in the d-dimensional
effective action there is no potential for this scalar, it parametrizes what is
called a flat direction of the potential. The field is called a modulus, and its
vev parametrizes inequivalent vacua of the theory. The set of vevs for this
modulus is called the moduli space (of circle compactifications).

A last important comment. It is interesting to notice that states carrying
momentum in the circle direction are charged with respect to A,. This is be-
cause the global version of the corresponding gauge symmetry is a translation
along 2%, hence the corresponding charge is internal momentum. This is a
lower-dimensional remnant of the fact that the higher dimensional gravition
couples to the energy momentum tensor. On the other hand, the original
field theory did not have states charged under the 2-form field, hence the
lower-dimensional theory does not have any states charged under the gauge
boson A,. Later on we will see that string theory does contain such charged

states.

3 Toroidal compactification in string theory

Let us discuss the circle compactification of the closed bosonic string in string

theory language. Naively, to do that, we need to specify the worlsheet action



for a string propagating ® in M5 x S, by replacing the Minkowski metric in
Mg in the Polyakov action by the metric in Mos x St. The puzzling feature
is that the latter metric is also flat, locally a Minkowski metric as well, so
the worldsheet action is still

1 2 1/2 ab v
[ PE(=0) " g0, X P X (15)

The difference between My x S and Mg is a global effect, they have

Sp =

different topology although the local metric is the same for both. The effects
of the compactification will arise not at the level of the local structure of
the worldsheet, but in the boundary conditions we have to impose on the 2d
worldsheet fields.

3.1 Quantization and spectrum

Indeed, the light-cone quantization can be carried out without change as in

the uncompactified theory until we reach the hamiltonian

14 ¢ 1 . .
== d 2 IHZ' Hz —— 8,,XZ &,X’ ]_6
dralpt /o o |2ma + 2mad! ] (16)

In order to rewrite it in terms of oscillator modes, etc, we need to specify
the boundary conditions obeyed by the 2d physical fields X*(o,t). For X?,

1=1,...,24, we need to impose
X' (o+4,t) = X'(o,t) for i=1,...,24 (17)

as usual. However, the fact that X?° parametrizes a circle of radius R means
that X?° and X?° 4+ 27 R correspond to the same point in spacetime. Hence,

the following boundary condition defines a consistent closed string

X®(o+4,t) = X*®(0,t) + 2rRw, , weZ (18)

31t is possible to work in general and finally show that consistency requires the total

dimension of spacetime to be D = 26 so we settle this from the start.
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Figure 2: States representing closed strings winding around the compact dimen-

sion.

It corresponds to a closed string winding around the internal circle a number
of times given by w, which is called the winding number, see fig 2. *
Each value of w corresponds to a different closed string sector. The complete
spacetime 25d spectrum is given by the set of states of closed string in all
possible winding sectors.

The existence of winding is possible only because strings are extended
objects. The sector w = 0 corresponds to taking strings which are already
closed without the compactification. These are the fields that appear in the
approximation of compactifying the effective 26d field theory. We will see

that for large radius states in non-zero winding sectors are very heavy, and

Tt is amusing to notice that, from the viewpoint of the 2d theory, configurations of
fields X%(o,t) satisfying boundary conditions with non-zero winding correspond to solitonic
states of the 2d field theory. The topological quantity associated to these solitons is the
spatial integral of the derivative of the 2d field, namely f(f 0,X?® = 2nrRw. As usual,
solitons of a field theory are associated to non-trivial topology of the target space where
the fields take values (recall that in the ’t Hooft-Polyakov monopole, the existence of a
soliton in the 4d theory was associated to the non-trivial topology of the space of vacua,
namely the space where the Higgs field takes values). Please recall that here we are talking

about solitons on the worldsheet, and have no relation at all with spacetime solitons.
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Figure 3: String interactions conserve winding number.

this is a good approximation. For small radius, non-zero winding state lead
to very interesting surprises!

Winding number is conserved in string interactions, see figure 3

Since the X*, i = 2,..., 24 behave as usual, we only center on the analysis

of X?°. The mode expansion for the boundary conditions (2) are

pt 14 n n

neZ—{0}
Notice that the momentum must be quantized p,s = k/R, with k € Z just
like in the field theory discussion.

For future convenience, we may recast the expansion in terms of left and
right movers X*(0,t) = X?(0 +t) + X (0 — 1)

X£5(a+t) = & + 21170_5r (t+0) + Z\/g Znezf{o} %6_2“”(“"5)/‘5
XPo—-1t) = % + & (t—o) + z\/% Snez{o} T2 e2min(o=0/t (20)
with
ko whR k wR
TR o =5 = 21
br R * of Pr R o (21)

These will be called left and right moving momenta (although notice that

each is a combination of the real spacetime momentum and winding).
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The hamiltonian differs from the one in the non-compact situation only

in the new contributions of winding terms to 9, X?°. In terms of modes, etc,

we obtain
/ ¢ 1 2nrRw
H = Hyo+ ——— / d 2 _
=0+ dra'pt o 27ra’( V4 )
24 9 2 2,92
D; (k/R) R*w 1 -
_ N4+ N-—2 29
Z:ZQ 2p* " 2pt 2a”pt " a’p+( * ) @)

where H,_g is the usual hamiltonian in the non-compact case. As usual, we
build the Hilbert space of the theory by taking oscillator groundstates (each
one labeled by a 25d momentum, a quantized momentum & € Z in the circle,
and a winding number) and applying oscillator creation operators to it.

The level matching constraint is P = 0 with

Y4 . p+ l . .
P = / do 11,0, X" = —/ do 8,X 9, X =
0

k/RerRw 27
_ P+ MR
ot T 7

(N — N + kw) (23)

Each state corresponds to a particle in 25d spacetime. The 25d mass of

the corresponding state is given by

2
My, = 2p"H — > p} (24)
i=2
We obtain
k? R? 2 ~
M25d=R2+—w +_(N+N_2) (25)

As mentioned above, for large R%/c/, the states with non-zero winding
have large o/ M? and decouple. For not so large R?/c/, effects of winding
states are very relevant and we cannot trust results obtained from the field

theory approximation (namely, the physics obtained only from the w = 0
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sector). Winding states, equivalentely o/ effects, lead to important modifi-
cations of the physics, which can be regarded as important modification to
how string theory feels the geometry when curvature lengths are as small as
the string length (this is called stringy geometry for instance in the book by
B. Greene).

For future convenience, we split the hamiltonian and mass in left and

right handed pieces. We have H = Hy, + Hg with

1 24 ) ) 1
Ho = g |JZ—1pi +pL] g OV E)
1 24 ) ) 1 B B
H, = — p; +p ] + N+ E 26
R= e [z |+ eV + Eo) (26)
and M? = M? + M2 with
2
b1, 2
M? = 2L 4 Z(N-1
= g (V-
2
D 2 -
M = 7R+E(N—1) (27)

We see that one may carry out the quantization of the left and right moving
coordinates independently, reach a mass formular for each side, and finally
combine things together (satisfying the level matching constraint) at the end.
This is only to re-emphasize the fact that in 2d the field theory of purely left-
moving and purely right-moving fields make sense independently °. At a last
stage, states of both theories are combined together to give physical states.

The level-matching constraint is
M} = M3 (28)
It is an easy exercise to obtain the one-loop partition function for this
theory. For a two-torus worldsheet with geometry specified by 71, 7, we have

Z(T) = tr %closed [ e_TZZH eZTIZP ] =

5This observation will be crucial in the construction of heterotic string theorires.
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k,w=—o00

Here H} 4, is the closed string sector with momentum k& and winding number
w. Most of this computation is already familiar, the only new piece is the
contribution over discrete momenta and the windings. We get

o

Z(1) = |n(1)| 7% (2ma/rp) ~2/2 > exp[—7r72<

k,2w=—o00

od'k?>  R*w?
R2 + o

This expression is modular invariant. Invariance under 7 — 7 + 1 is obvi-
ous, whereas invariance under 7 — —1/7 can be shown by using Poisson

resummation formula

00
- rN"24 o , 2 2,2/ 1 N : N
— Z tr He [6 T Ei:l P o T2mQ (k/R) e TomR*w? /o e 2nTy(N+N—-2) 627TZ’T'1(N N)

(&

2miT1 kw ]

+ 2mim kw) ] (29)

S exp[—mA(n+0)2 +21i (n+0)¢] = AN exp[—mA T (k + ¢)? — 2mike](30)

neZ keZ

on both sums over £ and w. It is interesting to point out that the sum
over winding and momenta is almost invariant under 7 — —1/7, except for

picking up a factor of (T?)l/ 2 which compensates for the lack of invariance
of ()|~ (r) /2

It is important to point out that in string theory compactified on a circle,
winding states are crucial in obtaining a modular invariant partition partition
function. One intuitive way to argue about this is as follows. Consider

starting with the partition function of the uncompactified theory
ZLIIICOIIIP. == tr Huncomp. [677_22H eiTIEP] (31)

In order to describe the theory compactified on a circle, we may do by ex-
plicitly forcing that the only states that propagate are those invariant under

translations of 2R in X%, by inserting the projector

I = Z ei’w?ﬂ'RH25 (32)

wEZ
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Figure 4: Under the modular transformation 7 — —1/7, the roles of o and
t are exchanged. An insertion of T), in the ¢ (appearing from the insertion of
the projector onto states invariant under discrete X2° translations) is mapped to
an insertion of T,, in the o direction, implying that we obtaine string closed up
to translation in X?°, namely strings with winding w. Recall that sides of the

rectangle are identified to make the worldsheet a two-torus.

in the trace. Here Ily5 is the momentum operator, and 7,, = e'2"®wRllzs

translates X?° by 2r Rw. The partition function is

Zcomp. = Z tr %uncomp. [e_TQZH eiTleP Tw ] (33)

weZ

This can be shown pictorially as in figure 4a. As the closed string propagates
along the ¢ direction, it crosses a cut along which the field X?(o,t) jumps
an amount 27 Rw.

Under the modular transformation 7 — —1/7, the roles of ¢ and t are
exchanged, so the cut is found in the o direction, as in figure 4b. Such pic-
ture represents a 1-loop diagram for a closed string which is closed up to a
translation of the coordinate X?° by 2r Rw, namely a closed string satisfying
the boundary conditions (18). This means that to achieve a modular invari-

ant partition function it is absolutely essential to add sectors with non-zero

14



winding; namely, we have additional pieces

Z tr Ho [e—rzéHw einéP] (34)
weZ

where the trace is taken over the Hilbert space of string states in the sector
of winding w.

Subsequently, we would have to enforce that in these new sectors the
propagating modes are also invariant under translations of Xss5, by introduc-
ing a projector. The total result is the double sum in k,w in (29). Sum
in w sums over different sectors, whereas the sum in k projects onto states

invariant under X2° translations.

3.2 o effects I: Enhanced gauge symmetries

At large values of R, one easily recovers that the string spectrum reproduces
the spectrum obtained using the field theory approximation. Indeed, winding
states are very heavy, so only the w = 0 sector has a chance of being light.
States with different &£ are merely KK replicas of the basic fields that exist
in the 26d theory.

Forgetting the tachyon and its KK replicas (which can be lighter than
M? = 0 for large enough R), the massless modes are o™ &%, |0), suitably
decomposed according to whether M, N = 25, or M, N = u. Explicitly, we
get

which are the 25d graviton, 2-form, and a scalar (from the trace). We also

have

oa%00) ,  o®yat|0) (36)
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two 25d gauge bosons. Taking symmetric and antisymmetric combinations,
they are easily seen to arise from the 26d metric and 2-form, respectively.
Hence the generic gauge symmetry in 25d is U(1) x U(1).

Finally we also have
042—515‘2—51 |0) (37)

which is an additional scalar. This and the trace of (35) are the 25d dilaton

and geometric moduli.

As in field theory, the charge of states under the gauge boson arising
from the 26d graviton is given by their internal momentum, k. It is also easy
to argue that the charge of states under the gauge boson arising from the
26d 2-form is given by their winding number w. Namely, starting from the

coupling of a string to the 2-form field in 26d
/ BuN 8, XM 9, XV e (38)
b

It is clear that we obtain a coupling of a string wrapped on S! to the mixed

component B, s,
£ X
/ dt / do Bas 9, X% 9,X" ~ w / dt A,0,x" (39)
0

the state behaves as a 25d point particle coupling to flﬂ with charge w.

As announced before, as we let R approach the string length scale L, =
Vo' new surprising features arise. In fact we can check that at R = o/
there appear new massless states from sectors of non-zero winding. The

mass formulae in this point in moduli space are
1
o M; = 5(lc +w)*+2(N - 1)

odME = —(k—w)>+2(N—1) (40)

1
2
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Denoting |k, w) the vacuum in the sector of momentum £ and winding w,
there are additional massless states, satifying the level matching condition
(28).

We obtain four additional gauge bosons

O/iﬂl,—l) ) O/il‘ - 1:1>
&ﬁl‘lal) ) CNyllil| - 1,_1>

One should recall that they are charged under the generic U(1) x U(1) gauge
symmetry, with charges given precisely by the pairs (k,w). The total gauge
group is non-abelian and it is in fact SU(2)?.

We also obtain eight new additional massless scalars

CV2—51|17_1) ’ CV2—51| - 171>
&%51|151> 3 d%51| - 15_1>

12,0) , |-=2,00 , |0,2) , 0,—2) (41)

Checking the charges under the generic U(1)? symmetry, it is possible to
see that these scalars, along with the radial modulus (37) transform in the
representation (3,3) of SU(2) x SU(2). The set of charges for the gauge
bosons, and the scalars are shown in figure 5, and can be seen to correspon
to roots of SU(2)? and weights of (3, 3).

This is a very surprising effect. For a particular value of the compacti-
fication radius R = /o, stringy effects (namely the existence of winding)
generate an enhanced gauge symmetry in spacetime (enhanced as compared
with the symmetry at a generic value of R). Indeed a dramatic effect! This
mechanism of generating gauge bosons goes well beyond what was achievable

from the field theory KK mechanism.

Of course it is possible to cook up a new 25d effective field theory by

including by hand the new massless modes. So this effective field theory
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a) W

Figure 5: Charges of gauge bosons (a) and scalars (b) at the enhanced symmetry
point R = v/o/. The charges tell us that the gauge bosons fill out a SU(2) x SU(2)
group (the roots of each SU(2) factor point along the dashed lines), whereas the

scalars fill out a representation (3,3) of SU(2)2.

would contain gravity and non-abelian SU(2)? gauge interactions, and a
bunch of 9 scalars transforming in the representation (3,3) coupled to these

gauge bosons. It is important to understand two facts:

e This effective field theory is not derived from the 26d effective field
theory by compactification; we know that the latter missed the crucial issue of
winding states, and is a good approximation at large R, and not at R = Vo'

e This effective field theory is a good approximation to the 25d physics
for R close to vo'. As we will see shortly, going away from R = v/o' makes
some fields massive, so for R very different from V! these masses are too
large and it is not a good idea to include the corresponding fields in the

effective field theory.

It is interesting to understand what happens when we vary slightly the
value of R away form the value v/o/. Since we have solved the string states
for all values of R, we simply read off the mass formulae and see that the
additional gauge bosons, as well as the additional scalars get masses (pro-
portional to the deviation of R and v
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This sounds very much like a Higgs mechanism, with gauge bosons be-
coming massive and some scalars being eaten and becoming the longitudinal
components of the massive vector bosons. Indeed this is correct: for small
departures from R = v/a' the 25d effective field theory language should be
appropriate and the breaking of the gauge group is just a Higgs mechanism
triggered by the scalars in the (3, 3).

A finer point is that the number of scalars that disappears is larger than
the number of gauge bosons becoming massive. This is however consistent.
Out of the original 9 massless scalars, 4 of them are eaten by the 4 gauge
bosons associated to the broken generators, 1 of the remaining remains mass-
less (and is interpreted as the geometric modulus parametrizing R), and the
4 remaining become massive due to couplings between them and the scalars
picking up a vev.

As discussed by Polchinski (around eq (8.3.22), organizing the 9 scalars
in a 3 x 3 matrix M;;, the scalar potential for the theory at R = V! includes

an SU(2)? invariant term
V(M) = 7% T8 My M My (42)
Giving a vev to one of the scalars, say M3z, we generate mass terms
€TelT" M M;ji (43)
for 7,4, 4,5/ = 1,2. Namely four fields become massive due to the scalar

potential.

A tantalizing (but more advanced) comment is that the field that has
received the vev has flat potential, so it is a modulus, and parametrizes the
deviation of R from v/a/. So it is what we have called the geometric modulus.
Increasing the vev for this field would eventually lead us into the large volume

regime.

19



However notice that in principle any of the 9 fields in M;; can be the
one in getting the vev. They are in the same SU(2)? multiplet, so gauge
invariance tells us that none of these fields is priviledged. Therefore, starting
from the enhanced symmetry point, there seem to exist different regimes
which can be interpreted as large volume regimes in suitable variables. This

will become clearer after we study next section.

3.3 « effects II: T-duality

The existence of winding states in string theory leads to another amazing
surprise. Recall the mass formula (44)
k? R? 2 ~
Mz§d=§+@w2+g(N+N—2) (44)
It is invariant under the so-called T-duality transformation

al

R—>E ;o kew (45)

Namely the complete spectrum of the theory at radius R is the same as
the spectrum of the theory at radius o//R, up to a relabeling of k£ and w.

This is extremely striking. If we are 25d observers and measure the
spectrum of states, we would be unable to distinguish whether it is coming
from a string theory compactified on a circle of radius R or o/ /R.

Striking again! The theory at large R — oo has infinite towers of mo-
mentum states becoming massless (the KK step 1/R is very small); this is
a typical signal of a decompactification limit. On the other hand, in the
T-dual theory the radius is going to zero R’ = o/ /R — 0, and we still recover
infinite towers of states becoming massless, but now they are coming from
string with winding number w (since the T-dual circle is small, it costs almost

no energy to increase the winding number). So the small R limit looks also
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as a decompactification limit, and it is a decompactification limit in T-dual
language!

One might thing that this puzzling feature is not a property of full-fledged
string theory, but just an accidental property of the spectrum. This is not
correct, and one can show that string interactions also respect T-duality. T-
duality is the complete physical equivalence of the theories compactified on
circles of radius R and o//R.

In other words, both theories are described by exactly the same worldsheet
theory, and differ on how the spacetime coordinates (the spacetime geometry)
is recovered from the 2d worldsheet theory.

To be more specific, it is convenient to describe our worldsheet theory as
given by two sets of 2d fields X% (o +t) and X% (o — t), which are decoupled.
Now there are two ways to construct the true spacetime coordinates X*(c, t)

out of them. One possibility is

X ot) = Xi(o+t)+Xplo—1t) ; i=2,...,24
X®(0,t) = Xp(o+t)+Xg(0—1) (46)

whereas there is another

X'(o,t) = Xi(o+t)+Xh(c—1t) ; i=2,...,24
X®(o,t) = XP(o+t)—Xp(o—1) (47)

The relation between one and the other is
i A A e (48)
which corresponds to the T-duality transformation (45).

The implications of this are difficult to overemphasize. It certainly sug-

gests that spacetime is a secondary concept in string theory, and that it is
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derived from more fundamental concepts like the worldsheet theory. What
this means for our understanding of the nature of spacetime in string theory

is still unclear.

A final comment we would like to make in this respect is that T-duality is
in fact a Z, remnant of a gauge symmetry. Indeed, there is a value of R for
which the theory is self-dual, this is our old friend R = v/o/'. At this point,
the complete spectrum is invariant under k£ <> w.

It is also easy to see that the effect of this transformation is nothing but
a gauge transformation within the enhanced gauge group SU(2)%. Finally, it
is possible to see that two T-dual deviations from R = v/o/ are mapped to
each other by a relabeling transformation which is a subroup of this group:
indeed, regarding SU(2) as SO(3) (the rotation group in 3d) a rotation of
7 around the axis distinguished by the field getting a vev (the direction 3
if M3, gets the vev) in the first SO(3) has the effect of mapping the vev
for one of the modulus to its negative. Hence maps a deformation toward
R > V' to a deformation towards R < vo.

This means that two T-dual theories are identified by a gauge transfor-
mation, so should not be considered as really different. Hence the moduli
space of compactification is not really parametrized by the real line (i.e. pos-
sible values of R) but rather by the real line modulo R — 1/R. The moduli
space can therefore be described (with no redundancy) by the set of points
R> V'

Again this has amazing implications, since it suggests the existence of
a minimum distance in string theory. These issues must be taken with a
grain of salt, however, since in the study of D-branes the community has
realized that there exist other objets in string theory which are able to probe

distances much shorter than L; [2].

We see that even the simplest compactification is rich enough to illustrate

22



the amazing features of string theory regarding the nature of spacetime.

3.4 Additional comments

Let us conclude by pointing out some generalizations of the concepts we have

studied in toroidal compactifications

e Toroidal compactification of more than one dimension

This is studied nicely enough in section 8.4 in [1]. One can proceed in
analogy with the circle case. Some of the new features of this situation
are the appearance of scalars from the KK reduction of the 26d 2-form.
They have flat potential and are new moduli from the viewpoint of
the lower-dimensional theory, characterizing the background B-field in
the internal space. The complete moduli space (without taking into
account dualities) is called Narain moduli space and is described as a
coset
O(k,k,R)
O(k,R) x O(k,R)

(49)

The set of T-dualities is larger, and is given by the group O(k, k, Z),
so the true moduli space is

O(k, k,R)
O(k,R) x O(k,R) x O(k, k, Z)

(50)
A standard reference on all these issues is [3].

e Buscher’s T-duality

The existence of T-dual configuration does not require spacetime to
be a cartesian product with one factor given by a circle. In fact, T-
duality can be extended to geometries with one Killing vector with

compact orbits (with finite length, at least asymptotically). Buscher’s

23



formulae provide the backgroud obtained by applying T-duality along
the orbits of this Killing vector. Surprisingly T-duality is even able to
relate geometries with different topology.

e Compactification on non-toroidal geometries

Although this can be considered in bosonic string theory, it has found
more applications in the supertring context. We will discuss some of

this for heterotic string theories in later lectures.
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