Modular invariance

1 Generalities

In this Section we mainly follow the line of thought of section 7.3 in [1]. Our
computation is however done in the light-cone gauge.

In this lecture we discuss the simplest case where we can witness the
remarkable finiteness properties of string theory. The example is provided
by the 1-loop vacuum amplitude. It corresponds to a worldsheet diagram
for a closed string moving in a circle and closing onto itself, so it has the
topology of a two-torus with no insertions of external lines. It represents the
1-loop amplitude of the vacuum going to vacuum process (in spacetime). See
figure 1

We know from the overview lectures that the amplitude is obtained by
summing over all possible inequivalent worldsheet geometries with two-torus
topology.

It is crucial to incorporate all possible geometries, and not to double-
count, equivalent geometries. Concerning this, it is extremely important to
realize that a given geometry can receive two different interpretations. A
diagram corresponding to a two-torus with circle lengths ¢; and ¢, can be
regarded as

1) A closed string of length ¢; propagating over a distance /o

2) A closed string of length ¢, propagating over a distance ¢;

The two processes, although look different, correspond to the same ge-

ometry, so should be counted only once. This will be crucial later on.



Figure 1: One-loop diagram for the vacuum going to vacuum process.

2 Worldsheet coordinatization in light-cone
gauge

Recall our recipe to compute amplitudes. First we sum over geometries of
an abstract worldsheet ¥ with two-torus topology. Second, for each such
geometry we sum over possible configurations of the 2d dynamical fields in
¥ (in the light cone gauge, the transverse fluctuations X*(o,t)).

Recall that in the light cone gauge we have 1) a coordinate o which
parametrizes a direction of fixed length ¢; 2) a coordinate ¢ which is locally
orthogonal to o at every point; 3) a Hamiltonian for the physical degrees of
freedom, generating evolution in ¢ for the 2d system. In terms of oscillator

and center of mass momentum
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and similarly for L.



Figure 2: A two-torus can be constructed by modding out the two-dimensional
plane by translations in a two-dimensional lattice. The unit cell is a parallelogram
with sides identified. Each vector corresponds to a non-contractible cycle in the

two-torus

A two-torus can be described as the two-dimensional real plane, modded
out by translations by vectors in a two-dimensional lattice, see figure 2

There is a more or less obvious set of worldsheet geometries which we
should consider. It is shown in figure 3a), and corresponds to a closed string
(of o-length ¢) evolving for ¢t = 19¢ (for 75 > 00 and closing back onto itself.

Denoting z = o + i t, the two-torus is defined by the identifications z =
244, 2= z+ k.

However, there are more general possibilities, as shown in figure 3b), cor-
responding to a closed string of length £ evolving for t = 75/, and gluing back
to the original state up to a change in the reference line ¢ = 0 (given by
a translation by 7¢¢ in the o-direction). Since there is no preferred choice
of the reference line, as discussed in the previous lecture, this is an allowed
possibility. The geometry corresponds to a two-torus defined by the identi-
fications z = 2z + £ and z = z + 7¢, with 7 = 71 + i7,. The parameter 7 is
called the complex structure of the two-torus, for reasons not very relevant

here.



Figure 3: Figure a) shows an obvious class of worldsheet geometries with two-
torus geometries, a closed string of length £ evolves for some time t = ¢ and
closes back to the initial state. Figure b) shows the more general class, where the
closed string is glued back to the original state modulo a change in the reference

line in o.

3 The computation

3.1 Structure of the amplitude in operator formalism

We have to sum over all possible configurations of 2d physical fields X*(o,t)
for a given 2d geometry. In operator formalism, this amounts to considering
the complete set of quantum 2d states at a given time (i.e. the Hilbert space
of the 2d theory), apply evolution in t for a total time of ¢ = 75¢ and glue
the resulting state to the initial one (modulo a o-translation by 71¢). The
amplitude for two-torus geometry corresponding to 7 is therefore

Z(r) = > (st.| e T2H TP |5t ) (3)
states
where P is the generator of translations along o
0 . 21 ~
P = / doTL0,X" = (Lo - Lo) (4)
0

(namely 0, X* gives the amoung of X shift induced by the o-translation, and
IT; implements the effect of the X shift on the Hilbert space).
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The amplitude hence corresponds to taking a trace over the Hilbert space
H.1. of the closed string 2d theory

Z(r) = tr gy, (e—TQZHeinZP) _

> p?

2p+ a/p+

= try, (exp[—7'227ra'p+[

+ (Lo + Lo) ] exp|2min (Lo — LO)]> _

= tra, (exp[—7'27ro/ > p7] exp[2mi(T1 + i79) Lo] exp[2mi(ri — iTQ)iO]) =

2miT

Defining ¢ = e*™", we have

Z(t) = tru, (exp[—TﬂO/ > pil g™ qio) (6)

Then we should sum over geometries, i.e. integrate over 7. Notice that
when we integrate over 7; the level-matching constraint Ly = I~/0 is automat-

ically implemented
[ dmemnteio =5, ;. (7)

Hence, we can take the trace over the unconstrained set states constructed
by applying arbitrary numbers of all possible left and right oscillators to the
vacuum. Subsequently the sum over geometries will implement that only
physical states, satisfying the level matching constraint, propagate.

Hence the general structure of the states we are tracing over is

I (@)% T (& ) p—, i) 8)

n,i m,j

That is, the Hilbert space is given by a set of momentum states, on which we
apply an arbitrary number of times K, K oscillator creation operators out

of an infinite set labeled by n,i, m, j.

()



3.2 The momentum piece

The trace over center of mass degrees of freedom give an overall factor in-
dependent of the oscillator ocuppation numbers K, ;, K, ;. Moreover, the

center of mass trace factorizes as product of traces over different directions
trom. € " 2P = (tromaqe ") 9)

For each direction, we can take the trace by summing over (center of mass)

position eigenstates
tremiae ™7 = [d(z|e ™m0 |g) =
Jdz [ $(x|p) (p| e |p) (plz) = (f dz) (4n*a/'r)""/>  (10)
Hence
trem € ™7 LiPl = Vi (4na/my) 12 (11)

where V5, is a regularized volume of the 24d transverse space.

3.3 The oscillator piece

The oscillator creation operators can be applied independently, so the trace
factorizes in traces over the Hilbert space of each independent oscillator.

For a single oscillator, the trace over states (o’ ,)*|0) goes like
trgV B = gPo 5o o (0] (ah)X ¢ (al,)K |0) =
=B TR 0 = (12)
For two oscillators, the trace over states (a_,, )% (a_n,)%2|0) is

~ S g >
g = g S (0] () (@) g (0m) (0m) 2 0) =
Ki,K2=0

= q72/24 Z (0] (am)Kl qu (a—n1)K1 (O‘nz)K2 QN2 (a—nz)K2 0) =
K1,K2=0

g (1—¢™)"" (1 =q¢™)" (13)
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So for the infinite set of left and right oscillators

~ _ 26 o0 26 oo e 4
Tr ¢"g" = ¢™ g™ [[ [ 1—q")" H [I (1=am = I (19
i=2 n=1 j=2 m=1 n=1

Using the definition of the Dedekind eta function (30)

n(r) = ¢/ [ (1-¢") (15)
n=1
the complete partition function, for fixed 7, is

Z(1) = Vo (47°a/ )™ ()|~ (16)

4 Modular invariance

4.1 Modular group of T2

To obtain the complete partition function we should sum over all inequivalent
geometries. As we have discussed, it is crucial not to overcount geometries.
Since we have characterized the worldsheet geometry in terms of 7, it is
crucial to realize that there exist different values of 7 which nevertheless
correspond to the same geometry.

i) For instance, as shown in figure 4, two two-tori corresponding to 7 and
741 are defined by the same lattice on the 2-plane, hence correspond to the
same two-torus geometry.

ii) A slightly trickier equivalence is that of two two-tori with complex
structure parameters 7 and —1/7. Let us verify this in the simpler case of
71 = 0; in this case we have the equivalence of 7 and 1/75. This is shown
in figure 5: the two-torus with parameter i/7y is equivalent to that with
parameter 775, up to an exchange of the roles of o and ¢, and a rescaling to

ensure that the total length of the new o coordinate is /.
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Figure 4: The two-tori corresponding to 7 and 7 + 1 correspond to the same

two-dimensional lattice of translation, hence are the same two-torus.
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Figure 5: The geometry of two two-tori with parameters im and i/79 is the same,
as can be seen by exchanging the roles of ¢ and ¢ and performing a rescaling of

coordinates.



Two two-tori with parameters 7 and —1/7 are simply related by the
exchange of the roles of the two basis vectors generating the two-dimensional

lattice.

In other words, there exist different choices of 7 which lead to the same
geometry, namely two two-tori which can be related by coordinate changes
on the worldsheet

Denoting z = 0 + i t, the two torus geometrical parameter 7 is specified
by the periodic identifications

a) 0 — o+ ¢, t — t which gives z —» z 4+ ¢

b) 0 = 0+ 1l t — t + ¢ which gives z — z + 7/

Performing a change of variables
o=0c+t/r ; t'=t (17)

The two-torus is defined in terms of the identifications
a) o = o+, t —t, which gives ' — o' + ¢, t' > ', namely 2/ — 2’ + ¢
b) 0 = o+l t — t+ 7of, which gives o' — o' + (71 + 1){, t' — t' + 1ol
namely 2’ — 2/ + (74 1)
So in these coordinates the two-torus has parameter 7 + 1.
Performing instead a change of variables

y _ Tl+mo  , Til—T0o
= = =
7'12 + 7_22 7_12 + T22

(18)

the two-torus is defined in terms of the identifications

a) o - o — {, t - t, which gives ¢’ — o' + ¢, t' — t' + 75¢, namely
2 =2+ 7 with 7' = -1/7

b) 0 = 0+ ml, t — t + 1o, which gives o' — o' + £, ' — t', namely
2=+ 0

So in these coordinates the two-torus has parameter —1/7.



This shows that the geometries corresponding to values of 7 related by
the transformations 7 — 7+ 1, 7 — —1/7 are equivalent up to coordinate
changes, diffeomorphisms. It is important to notice that the diffeormor-
phisms involved are ‘large’, that is they are not continuously connected to
the identity (they involve drastic things like exchanging the roles of o, t;
however, they are simply coordinate changes).

The set of transformations of 7 which leaves the geometry invariant has
the structure of a group, called the modular group of the two-torus. By
composing the transformations 7 — 7+ 1 and 7 — —1/7, the most general
tranformation is of the form

ar +b
ct+d

T — with a,b,c,d € Z and ad —bc=1 (19)

a b
The parameters a, b, ¢, d can be written as a 2 X 2 matrix ( d> of integer
c

entries and unit determinant. The group is therefore SL(2,Z).

The set of inequivalent geometries is therefore characterized by the pa-
rameter 7 in the upper half complex plane (recall we had 7 > 0, modulo
SL(2,Z) transformations. A choice of fundamental domain of 7 is shown in

figure 6
—-1/2<m<1/2 , |7 <1 (20)

The set of points in Fj correspond to the set of all possible two-torus geome-
tries. Integrating 7 over F{ corresponds to summing over two-torus geome-

tries with no overcounting.

4.2 Modular invariance of the partition function

The closed bosonic string partition function Z(7) should be the same for

equivalent tori, since it should be invariant under reparametrizations of the
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Figure 6: Fundamental domain of 7. Any point in the upper half plane can be
mapped to some point in Fy using the basic modular transformations 7 — 7 + 1,

T— —1/T.

worldsheet. So Z(7) should be modular invariant, i.e. SL(2,Z) invari-
ant. This is not completely obviour, since the diffeomorphisms involved in
reparametrizations changing 7 by modular transformations are not small,
so in principle our gauge fixing procedure (good for ‘small’ diffeomorphism,
continuously connected to the identity) is not good enough to take care of
them 1.

Happily, using the modular tranformation properties of Dedekind’s eta
function (31), we find that

2(r) = 2 T 2 ()| (21)
2 2\12

_ _ T—1/1 T+ T 1 _ _

2(r) = 2ol 2y ) o = ()

ARG
It is modular invariant! From the viewpoint of the way we computed Z(7),

invariance under e.g. 7 — —1/7 is remarkable: The sum over all states of a

'We may say that, since even within our gauge fixing we still encounter the same
geometry for different values of 7, our gauge fixing slices are passing through each gauge
orbit more than once. If the value of Z is the same in each such point, we may by hand
just keep one of them. If not, then the theory is not invariant under large diffeomorphisms,

it does not have a consistent worldsheet geometry.
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string along o propagating in ¢ is the same as the sum over all states of the
string in the dual channel, a string along ¢ and propagating in o. Strinking
conspiracy of the sum over the string tower... From another viewpoint, it is
just a simple consequence of the geometry of the worldsheet. The amplitude
is a function of the worldsheet geometry, and gives the same number for

different values of 7 that correspond to the same intrinsic geometry.

The complete vacuum amplitude is obtained by summing over inequiva-

lent geometries, that is restricting to integrating 7 over Fj

d*t 2 1 _\—12 —48
Z = [ — (4r°d'n)” " |n(7))| (22)
Fy 47‘2

where d7/(47,) is an SL(2,Z) invariant measure in the space of two-tori ge-
ometries (the so-called Teichmuller space). It is easy to check this invariance
by hand.

4.3 UV behaviour of the string amplitude

It is now time to study the UV behaviour of this amplitude. To understand
better the nice UV properties of string theory, it is useful to obtain the
vacuum to vacuum amplitude in a theory of point particles. In a theory of
one point particle of mass m in D dimensions, the amplitude of a diagram

given by a circular worldline of length [ is

D 00
=V [ A7k peodl wimyye

2m)P Jo 21 (23)

with (k? 4+ m?)/2 the worldline hamiltonian, and dl/(2l) the measure in the
space of circle geometries, with the denominator 2/ removing the freedom of

translation plus inversions of the circle. We have

T = iVy /0 ” g—ﬁ(%l)D/? e 2 (24)
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For any D > 0 this amplitude is divergent in the UV, as [ — 0. On the

other hand, it is IR convergent if m? > 0.

One could imagine that string theory is just a theory with an infinite
number of particles in spacetime. That is not really true, in a very subtle
way which we will see below. If that were true, then the vacuum to vacuum
amplitude in string theory would be just the sum of contributions like (24)
for all particles in the string tower. Using that the mass of a string state is

given by m? = 2/o/ (Lo + Lo) we have

7' =iV /0 Z—g(w)w tr 4 e 1/ (LotLo) (25)

We prefer to sum over the extended Hilbert space of the theory by not re-
quiring directly Lo = Lo, and rather imposing this constraint by hand via a
delta function
T2 df o
Sraia = [, 5o €070 26
Lo,Lo —n)2 o’ ( )
to get

o dl /2 df , - . -
ZI —_ / / 27l —-D/2 t —l/a/(Lo+Lo) ,i(Lo—Lo)8 9
tVa o 20 J-rj2 2m (2i) e ¢ (27)

and introducing 7 = or T 10

7' =iV, / d2—T (472 15) "P/2 tr 4 gl g (28)
R 479
with R the region 7, >0, —1/2 <71 < 1/2.

This is the same as the true string amplitude, except for the crucial
difference of the intergration region, R # Fy. Indeed if (28) were the true
string amplitude we would obtain the same UV divergences at 7, — 0 as for
a theory of point particles. On the other hand, in the true string amplitude

(22), the UV divergent region 75 — 0 is simply absent!
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Figure 7: As the energy in the internal loop increases, longer strings run through
it. The UV limit is geometrically equivalent to some infrared contribution, which

has been already counted.

To understand a bit better where the UV region has gone, let us consider
summing over two-torus worldsheets as the energy of the intermediate states
increases, see figure 7. As the energy increases, longer and longer strings are
exchanged for a shorter and shorter time. For E' > M, the diagram of very
long strings propagating over a very short time has the same geometry as
and IR contribution (by exchange of the roles of o, t), so it has been already
counted. Notice that very remarkably the sum of the UV behaviours of all
the states in the string tower resums into an infrared behaviour, which is
typically convergent 2

Notice that to get this result it was crucial not to overcount the worldsheet
geometries. Worldsheet geometry provides an extremely clever cutoff, which
makes string theory quite different from just a field theory with an infinite

number of fields.

Let us comment that this feature that any UV divergent region is absent

in string theory is completely general, and valid for other diagrams, with

2In the closed bosonic string theory, the IR is divergent due to the existence of a
tachyonic state. The IR is well-behaved in other theories with no spacetime tachyons, like

the superstrings.
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Figure 8: The contribution to a 1-loop four-string scattering amplitudes. The
first line shows some low-energy contributions; the second line shows the first
contributions for higher energy, with longer strings being exchanged in one internal
leg. The third line shows the same diagram for energies much larger than Mg; this
seemingly UV regime in geometrically the same as one of the IR contributions, so

it has been already counted and should not be included again.

more handles and with external insertions. For instance see figure 8. Just as
above, the UV behaviour of the complete tower of string states resums into

and IR contribution in a dual channel, which is a non-divergent contribution.

Let us conclude by pointing out that the low energy contribution to
the partition function, the vacuum to vacuum amplitude is divergent in the
bosonic string theory. This is because the IR contribution is dominated by
the lightest mode, which is a tachyon with m? = —4/c/. In the IR 7, — 700
the string partition function reduces to the point particle one with m given
by the lightest state mass; one clearly gets an exponential et™ which di-
verges. In theories with no spacetime tachyon, the IR limits are however

well-behaved, so the finiteness of string theory works as discussed above.

Concerning the IR divergence found above, one may wonder whether it is
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a physical infinity. It is easy to show that the vacuum to vacuum amplitude
is related to the vacuum energy density, namely to the cosmological constant
in spacetime. Since the spacetime theory is coupled to gravity, it is indeed
a physical observable, and the infinity is physical. So the theory is to some
extent sick.

There is a lot of speculation about the meaning of the tachyon in bosonic
string theory. Our present idea is that it signals an instability of the vacuum
of the theory, rather than an essential inconsistency of the theory; the prob-
lem is that we have no idea which is the correct vacuum, around which there

would be not spacetime tachyons.

A Modular functions

There is a lot of mathematical literature on modular functions, namely func-
tions of the parameter 7 which have nice transformation properties under
the SL(2,Z) modular group. A useful reference for them is [2].

Recall that the modular group is the set of transformations

ar +b
ct+d

T — with a,b,c,d € Z and ad —bc=1 (29)

and is generated by 7 > 7+ 1, 7 = —1/7

The Dedekind eta function
Introduce ¢ = €2™7.The Dedekind eta function is defined by

n) = ¢/ T[ (1= ¢ (30)

n=1

Under modular transformations

n(r+1) = e"?n(r)
n(=1/1) = (=ir)"?n(7) (31)
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(The first is trivial to show, while the second is tricky and one should consult

the literature).

The theta functions
For future use it is useful to introduce the theta function with character-

istics 0, ¢

0 ; lp2_ 1 b n+0— Tl n—0— —271
19[ ] (7_) — 77(7_)€2ma¢q292 o H (1+q +0 1/262 ¢) (1+q 0-1/2 ,—2 ¢)(32)

n=1

These functions also have an expression as infinite sums

9 l 0 } () = Z q(n+e)2/2 o2 (n+0)¢ (33)
¢ neZ

The fact that (32) and (33) are equal is related to bosonization, namely the
fact that in two dimensions a theory of free fermions can be rewritten as a
theory of free bosons (with a compact target space). The two expressions for
the theta functions correspond to the partition functions of the same theory
in terms of different field variables. This will be understood better when we

study 2d theories with fermions in the superstring.

Some useful and often appearing values of the characteristics are 0, 1/2.
For future convenience, we list the product form of the corresponding theta

functions

(1—q") (L+¢" 1?7

<
=

I
o

0| b
o] "l = Ta-a)a—gep
| 1/2 | i
L

() = ¢@* I[A-a)+a) 1 +q) =
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= 248 ﬁ (1—¢")(1+4q")

ﬁ[iﬁ]m RO CEVR T I
(34

Finally, we list some useful properties of theta functions. Under integer
shifts of the characteristics
0+m
p+n

9

. 0
7) = 627ru9n 9 P
(1) [¢]() (35)

This can be shown very easily using the infinite sum form (33).

Under modular transformations

e — e—7ri(92—0) 0 e
ﬁ_qs_( Y y 0+¢—1/2]()
0] upy| @
79_¢_( 1/7) = (—ir) 19!_0 (1) (36)

The first is very easy to show, using the infinite sum form (33) and using the
trick that e = ™ (since n? = n mod 2). The second is also easy in the
infinite sum form using the Poisson resummation formula
S exp[—mA(n+0)2 +2mi (n+0)¢] = AVEN exp[—mA T (k + ¢)? — 2mik0](37)
nez kEZ
This is a particular case of a more general Poisson resummation formula,
which we will need in later lectures. Let A, A* be two dual lattices 3, and let
|A*/A| be their index. We have

Soer exp[—m(v+6)-A-(v+0)+271i(v+0)-9] =

3Recall that given an n-dimensinoal lattice A in R®, the dual lattice A* is defined as

the set of vectors k£ in R™ such that k- v € Z for any vector v € A.
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This general formula can be shown by repeatedly using the one-dimensional
one (37).
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