V. Quantization of the closed bosonic
string

In this lecture we obtain the spectrum of oscillations of the closed bosonic

string.

1 Worldsheet action

For this discussion I closely follow section 1.2 of [1]

As a string evolves in time, it sweeps out a two-dimensional surface in
spacetime Y, known as the worldsheet, and which is the analog of the world-
line of a point particle in spacetime. Closed string correspond to worldsheets
with no boundary, while open string sweep out worldsheets with boundaries.
Any point in the worldsheet is labeled by two coordinates, ¢ the ‘time’ coor-
dinate just as for the pointparticle worldline, and o, which parametrizes the
extended spatial dimension of the string at fixed . We denote o, ¢ collectively
as &% a=1,2.

Our pupose is to write down the action for a string configuration in flat
D-dimensional Minkowski space. For the bosonic string, such configurations
are in principle described by D embedding functions X*(o,t), with p =
0,...,D — 1, which can be regarded as 2d fields on the worldsheet.

1.1 The Nambu-Goto action

The natural action for a string configuration is the integral of the area element
on the worldsheet, in principle measured with the metric inherited from the

ambient metric in Mp. The ambient metric is computed as follows

ds® = hgp dE* dE°
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The Nambu-Goto action is
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where h = det(hgy) and o is related to the string tension 7' =

27ra’

1.2 The Polyakov action

The Nambu-Goto action is not very convenient for quantizing the worldsheet
theory. So we are going to replace it by another action, which is classically
equivalent, but which is much more convenient for quantization, the Polyakov
action.

To do that we introduce another degree of freedom on the worldsheet,
a worldsheet metric g,;(£) which is in principle independent of the induced
metric h.y. The natural action on the worldsheet is then

1
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with g = det(gap)
Classical equivalence with the Nambu-Goto action follows from solving

the equations of motion for g,;, namely 6S5/6gq, = 0. Using

69 = —9 gap 09" (5)
one gets
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The equations of motion read

hab = Egab QCd hcd (7)
Taking determinant
1
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and replacing into (4) we get
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1.3 Symmetries of Polyakov action

The action (4) has some important symmetries which we now discuss

1. D-dimensional Poincaré invariance.

X™(E) = ALX“(E) +a
g;b(g) = gab(f) (10)

It is a global symmetry from the worldsheet viewpoint.

2. Two-dimensional diffeomorphism invariance, namele coordinate reparametriza-

tion of the worldsheet.
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It is a local (i.e. £ dependent) symmetry. The 2d fields X*(£) behave

as scalars while g4(€) is a 2-index tensor (metric).



3. Two-dimensional Weyl invariance

X" = X"
g;b(g) = Q&) gar(§) (12)

It is a local symmetry.

Weyl-related string configurations correspond to the same embedding of the
world-sheet in spacetime. So this is an extra redundancy in the Polyakov

description, not present in the Nambu-Goto description.

It is convenient to emphasize at this point that a commonly mentioned
symmetry, conformal invariance, is a subset of these symmetries. In particu-
lar, in covariant quantization one fixes the so-called conformal gauge, which
amounts to using diff and Weyl invariances to set g, = 74. There is then
a left-over local symmetry which is the set of coordinate transformations,
whose effect on the metric can be undone with a Weyl transformation (so
that the gauge fixed flat metric is preserved). This set of transformations
is the 2d conformal group, which is extremely important in string theory.
However, we will quantize the string in a different gauge, and conformal

symmetry will not be manifest.

2 Light-cone quantization

For this section, we follow the computations in sections 1.3 and 1.4 of [1]. A
more detailed treatment, using the formalism of quantization of constrained
systems can be found in [2].

In quantizing the 2d field theory, we need to fix the gauge freedom. The
light-cone gauge is the simplest one, and the most convenient to obtain the

spectrum. This is because the final states will be the physical states of the



theory, and in particular spacetime gauge particles will arise in the unitary
gauge (namely, we will obtain only the two physical polarization modes of
massless gravitons or gauge particles, and no spacetime spurious gauge de-

grees of freedom).

2.1 Light-cone gauge fixing
Define the light-cone coordinates
X+ = —(X"+ X1
X i=2,....,D—1 (13)
The metric (scalar product) in Mp then reads
A“B, = —A*B~ — A Bt + A'B’ (14)
SO

A=At | A, =-A" | A=A (15)

The gauge fixing proceeds through several steps

1. Reparametrization of ¢
Fix the ¢ reparametrization freedom by setting the so-called light-cone

condition
Xt(o,t) =t (16)

see figure 1. So Xt will play the role of worldsheet time, and its conjugate

variable P, = —P~ will play the role of worlsheet energy (2d hamiltonian).

2. Reference line in o



Figure 1: The light cone condition defines equat ¢ slices on the worldsheet in

terms of equal X slices on spacetime.

Choose a line on the worldsheet o¢(t) intersecting all constant ¢ slices

orthogonally (w.r.t. the 2d metric ¢g). Namely
gio(0,t) = 0 at 0 = oy(t) (17)

Notice that this still leaves the freedom of an overall motion of the reference
line. This will be important as an additional constraint on the final spectrum
(see (43)).

3. Reparametrization of o

For slices of constant ¢, define a new spatial coordinate ¢’ for each point
of the slice. ¢’ is defined as the (diffeomorphism and Weyl) invariant distance

to the reference line along the slice

o' = c(t) / f(o,1) do (18)

where

f(0) = (=97 goo(0, 1) (19)
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Figure 2: The coordinate ¢ on the worldsheet corresponds to the coordinate X+
of the spacetime point where it is embedded. The coordinate ¢ is defined as the
invariant distance, to a reference line ¢ = 0, along fixed ¢ slices. The total string
length is fixed to be £.

and ¢(t) is a o independent coefficient used to impose that the total length
of the string is fixed, a constant in ¢ which we call £. The situation is shown
in figure 2.

In the new coordinates, f(o') is o’ independent. In the following we will

only use this coordinatization, and we drop the prime. So we write
0y f(0,t) = 0 (20)
4. Weyl invariance
Now we use Weyl invariance to impose that
g=-1 Vo,t (21)
Since f(o) is Weyl-invariant, it still satisfies 0, f(o,t) = 0. Using the defini-
tion of f, we get

aogaa =0 (22)

This concludes the gauge fixing. The metric and inverse metric read
9oo (t)_l [_1 + Gto (Ua t)z] Gio (O’, t) ab —Y9o0 (t) Gto (O’, t)
(9a) = ; (%) =

910 (0, 1) Yoo (1) 910 (0, 1) goa(t)il[l — 910 (0, t)2]
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2.2 Gauge-fixed Polyakov action, Hamiltonian

The Polyakov lagrangian in light-cone coordinates reads

L =—/L [§do [-2¢"0,XT0,X~ +¢"0,X'0,X" — 2¢”"0,XT 0, X~ +
+2¢7 9, X' 0, X" 4+ ¢7 0, X' 0,X"] =
— i i do (950 (20X — 04X 0,XY) — 20,4 (0, X — 8, X' 9, X7) +
9oo (1= 95,) 0 X" 0, X" ] (23)
Defining the center of mass and relative coordinates 2~ (t), Y~ (o, t)
= (t) = / do X~
X~(0,t) = o (1) + V" ( ) (24)
we obtain
14 _ ¢ i i
L = —% Yoo 5t:c (t) - Aol /0 dO’[—gUU atX atX +

—2¢7(0,Y™ — 0, X" 0, X") + g5} (1 —g2)0,X"0,X"] (25)

The Y~ (o,t) does not have time derivatives in this lagrangian, so it acts as

a Lagrange multiplier imposing
0s9ot(o,t) = 0 Vo,t (26)

Since we have g,.(0 = 0,t) = 0 due to (17), we get

9ot(0,t) =0 Vo,t (27)
The lagrangian becomes
¢ - 1 ¢ i i 1 % %
L = —%gw&gz (t) + 47roz’/o do [ 9oe Ot X" 0, X" — g7} 0, X" 0, X" ]

The momentum conjugate to z~ (t) is




SO g,, is not really an independent coordinate variable, but a momentum
variable.

The momenta conjugate to X*(o,t) are

oL 1 . ot i
00, X% 27! Joo 0:X*(0,1) = 0, X" (o,t) (29)

II'(o,t) = 7

We can construct the Hamiltonian
H = p.dz ( +/ do 1, at)atX’(at) L=

¢ |
= ~ 9o0 O ( +/ 40 5 90s X' (0,6) X' (0,0) +

2
f 7 1 1 11
+ 5 oo 3™ () — 4m,/0 da[gwatX B,X" — g1, X19,X'] =
1
- / do [ goo BX1O,XT + g1 0, X1 0,X] = (30)
Ao

In terms of momenta
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The equations of motion for =, p_ = p™ are

G (n - OH _ _oH _H
“O e T T T
0H
o) = —5= =0 (32)

so pT is conserved, and z~ is linear in ¢ and has trivial dynamics.
The equations of motion for X*, II; are
0H

X' = = c2nd'I1;
0, X" (0,t) oI, c2na
0H c -
M(o,t) = ——— = — 9, X°
lli(, 1) X~ a0 (33)
with ¢ = £/(2wa’p™) So we get
02X' =c?02X" (34)



the wave equation for two-dimensional fields X*(o,t). Indeed, for fixed (be-
cause it is conserved) p', we see that H is the hamiltonian for D — 2 free
bosons in 2d !.

It is useful to set £ = 27a/p™, and so ¢ = 1.

2.3 Oscillator expansions

The general solution to the equations of motion is a superposition of left-

and right-moving waves
X'o,t) = Xi(o+1t) + Xg(o—1) (35)

For closed strings, we need to impose boundary conditions, periodicity in

X' (o +4,t) = X'(o,1) (36)

The general form of X, X with those boundary conditions is

) g ) ’ i _
Xi(o+t) = T+ or(t+o) +igf5 3 mermnl/
nez—{0}

; T i e 65; min (o—
Xplo—1) = S+ 4o (t—0)+ifs > “Eemnehit (37)

nez—{o} "

The coefficients z¢, p; denote the center of mass coordinate and momentum,
while the two infinite sets of coeffients o, & denote the amplitudes of the
momentum n mode for left and right movers.

Promoting the worldsheet degrees of freedom x~(t), p™, X*?, II* to oper-

ators, with canonical commutators, we obtain the commutation relations

[m’,p“L] = —

!Recalling our discussion about the o expansion, this means that we can quantize the

theory exactly in o'.
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[xi,pj] = 251
[ain,af;] = [dﬁn,&ﬁ;] = M0ijOm, n
loh,,al] = 0 (38)

We can obtain the hamiltonian in terms of these

1 o o
H = —/ do[2ra/ THIT + —— 9,X°9,X'] =
2 Jo 2wa!

- ;’;‘fﬁ + 2;p+ lgo[o/ WO+ &G+ B+ By (39)
We get the quantum mechanics of the center of mass motion and two infinite
sets of decoupled harmonic oscillators. Here we have normal-ordered the
creation and annihilation modes and Ej,, Ey are the corresponding zero point
energies, to be discussed below.

The Hilbert space of string states is obtained by defining a vacuum |k) =
|k, ki) by

ptlk) =k_|k) , pilk)=klk) , oilk)=a.k)=0 Vn>0 (40)

and acting on it with the creation ladder operators o® ,,, @ ,, with n > 0, in

an arbitrary way (almost, see later for an additional constraint).

As discussed in the overview lectures, each oscillation state of the string

is observed as a particle from the spacetime viewpoint, with spacetime mass
M?* = —p* = 2p*p" — pipi (41)

Notice that p~ corresponds to 0.+, which in light cone gauge is 0;, which
corresponds to the 2d hamiltonian H, so p~ = H, and M? = 2ptH — p;p;.
We have

o M* = N + N + E, + E (42)
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with N = ¥,.0a’ o the total left oscillator number (analogously for N).
It is important to recall from the commutation relations, that a single mode
ol or @&, contributes n to the oscillator number.

Hence the masses of spacetime particles increase with the number of os-

cillators in the corresponding string state.

There is one further constraint we must impose on the spectrum. Recall
that after gauge fixing we still had the freedom to perform an overall trans-
lation of the reference line 0 = 0 by a t independent amount. This forces
to restrict the spectrum to the subsector invariant under translations in o.
This amounts to requiring the net 2d momentum along ¢ to vanish, namely
the left- and right-moving operators in a state should carry the same total

momentum. Recalling that a mode n carries momentum n, the constraint is
N=N (43)

the so-called level matching constraint. It is an important fact that the quan-
tization procedure can be performed independently for left- and right- movers
(e.g. defining left- and right-moving hamiltonians, and mass operators, etc)
and they only talk to each other at the level of building the physical spectrum

via the constraint (43).

Finally, we need to compute the zero point energies Ey = E,. Formally,

for each 3
Ey = 2 E n (44)

This is infinite so we compute it with a regularization prescription, i.e. as

the limit ¢ — 0 of the non-singular part of
1 & _
Z(e) = 5 > ne™ (45)
n=1
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After some massage

1 & 1 > 1
Z0e) = 3 = = - 46
(€) 27;716 2denZ:1€ 2del—e€ (46)
Since
1 1 1 1
= = =-[1 2—€2/6+ /44 0()] =
1—e€ e 1—¢/2+€2/6+ O(ed) 6[ te/2-€/6+€/4+0(€)]
11 1 \
_ 1 r 1 4
6+2+126+0(6) (47)
we get
1 1 1

Dropping the infinite part and letting ¢ — 0, the zero point energy for a

single 2d free boson is

1

Ei=E =—— 49
0 0 24 ( )
So for D — 2 we have Ey = Ey = —(D — 2)/24
- D -2
o/M?=N+N—2T (50)

Dropping the infinity amounts to redefining the vacuum energy. One
might think that this is not possible because the Polyakov action includes a
worldsheet metric (i.e. gravity). However, this is not present in our gauge
fixing and the problem is avoided. It is important to emphasize that this
infinity is not present in other gauge fixings (like the conformal gauge), so
the infinity is an artifact of our gauge fixing. However, the zero point energy
we have computed has physical consequences, like fixing the dimension of
spacetime to be 26. In the light-cone gauge, which is not manifestly Lorentz

invariant, it appears when we require the spectrum to be Lorentz invariant, as

13



we motivate below. In other gauges, the condition appears in other ways. For
instance, in the conformal gauge fixing, as the cancellation of the conformal
anomaly.

For D = 26 we have

o M> =N+ N -2 (51)

2.4 Light spectrum

It is now time to obtain the lightest particles in the spectrum of the string.
The states with smallest number of oscillators that we can construct satisfy-

ing (43) are

N=N=0 k) o/ M? = —2
N=N=1 oo,k oM =0

(52)

The closed string groundstate is a spacetime tachyon. This field is trouble-
some, and it is thought to signal an instability of the theory. The result of
this instability is not known.

The second states transform as a two-index tensor with respect to the
SO(D — 2) subgroup of the Lorentz group manifest in the light-cone gauge.

One should recall that in a Lorentz invariant theory in D dimensions,
physical states of fields belong to representations of the so-called little group
(subgroup of Lorentz group which leaves invariant the D-momentum of the
particle). For massive particles, the D-momentum can be brought to the
form P = (M,0,...,0) in the particle’s rest frame, so the little group is
SO(D —1). For massless particles, the D-momentum can be brought to the
form (M, M,0,...), so the little group is SO(D — 2).

14



Our particles in the first excited sector are clearly not enough to fill out
a representation of SO(D — 1), so to have Lorentz invariance it is crucial
that they are massless. Notice that this is so only because we have imposed
D = 26, so this is a derivation of the dimension of spacetime in which string
theory can propagate consistently. Indeed, it is possible to construct the
Lorentz generators in terms of the oscillator numbers etc and check that the
Lorentz algebra is recovered only if D = 26. We skip this computation which
can however be found in standard textbooks, like [2]

Let us also point out that massive states in the theory do fill out repre-
sentations of SO(D — 1) = SO(25), altough only SO(24) is manifest.

The massless two-index tensor can be split in irreducible representations
of SO(24), by taking its trace (which is a 26d scalar particle, the dilaton ¢),
its antisymmetric part (which is a 26d 2-form field B, ) and its symmetric

traceless part (which is a 26d symmetric tensor field G ).

2.5 Lessons

The result of light cone quantization for the bosonic string can be phrased
in terms of the following recipe, which will be valid for other string theories

as well

e The only relevant degrees of freedom left are the center of mass and

D — 2 transverse coordinates X*(0,t),i=2...,D —1

e For closed string theories the 2d theory splits into two sectors, left-
and right-movers, which can be quantized independently. The only
relation between them appears at the final stage, when imposing the

level matching condition on the physical spectrum.

e The spacetime (mass)? operator (on each sector) is given by the oscil-

lator numbers plus the zero point energy, which should be computed

15
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using the e " regularization.

2.6 Final comments

Upon studying interactions of these 26d fields one concludes that G, is a
26d graviton and B,, is a gauge potential. So 26d interactions between
these fields are invariant under 26d coordinate reparametrization and gauge

transformations for B
BNV — B;w =+ a['uA,,] (X) (53)

The 26d low energy effective action for these modes was described in the

overview lessons. In the string frame

S = 2%2 [ X (-G R+ %ew H,, H™ — %au&auq?} + O()(54)
We emphasize again that the dilaton vev fixes the string interaction cou-

pling constant in the 26d theory. So the string interaction coupling constant

is not an arbitrary external parameter, but the vacuum expectation value

of a spacetime dynamical scalar field in the theory. Instead of a continuum

of different string theories, labeled by the value of the coupling constant,

we have a unique string theory with a continuous set of vacua parametrized

by the vev for a scalar field with flat potential V' (¢) = 0. Fields with flat

potential are called moduli, and the set of vacua is called the moduli space

of the theory.
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