Superstrings and Heterotic string
phenomenology

1 Superstrings

1.1 Spacetime fermions vs worldsheet fermions

See discussion in sect 10 in [1].

In trying to connect string theory with the kind of physics observed in
Nature, we have seen that compactification is able to solve the dimension
problem of the bosonic string theory: how to get four-dimensional physics
(at least at low energies) out of a theory which must propagate on a 26d
spacetime.

A more difficult problem is that bosonic string theory does not contain
spacetime fermions in its spectrum, and fermion fields are essential in our
understanding of the real world. This (and also the closed string tachyon,
etc) is enough to discard bosonic string theory as realized in Nature !

Happily there exist other string theories which are not the bosonic string
theory. We are now advanced enough to understand that a string theory is
basically defined by a 2d conformal field theory which provides the worldsheet
action. What we are about to do is to construct a new kind of worldsheet
theories, with Poincare invariance in d-dimensional spacetime, and which
contain more fields than just the worldsheet scalars X*(o,t). The resulting
string theories have a spectrum of spacetime particles different from that in
the bosonic string theory, and in particular they will turn out to contain

spacetime fermions.

Leaving aside the speculative possibility that bosonic string theory may contain

fermions in its non-perturbative spectrum.



The basic idea is to supersymmetrize the 2d worldsheet theory. That
is, we consider a 2d field theory with d worldsheet scalar fields X*(o,1),
and d worldsheet fermion fields ¢*(o,t), which are their superpartners. In
Polyakovs formulation one also has the worldsheet metric g,5(0,t) and now
we also introduce its superpartner (which is a worldsheet gravitino). After
gauge fixing these will disappear so we will not be very explicit about them.

String theories with worldsheet supersymmetry are called superstrings.
They are just string theories with a different structure for the worldsheet
action.

It is very important to notice that the 2d fields i*(o,t) are fermions on
the worldsheet (and so have anticommutation relations, etc in the 2d quan-
tum field theory) but they transform as a vector under the d-dimensional
spacetime Lorentz group, and so they behave as spacetime bosons. This
makes sense because the Lorentz group is a global symmetry from the world-
sheet viewpoint, and it commutes with the worldsheet supersymmetry, so 2d
fields in the same supermultiplet must transform in the same way under the
global symmetry.

So, the reason why superstrings contain spacetime fermions is not au-
tomatically because they contain fermions on the worldsheet. Indeed the
connection is much more subtle and we will not study it until the detailed
lectures.

Something similar happens with spacetime supersymmetry. The fact that
superstrings have worldsheet supersymmetry does not imply that the space-
time spectrum of particles is supersymmetric. Several superstring theories
DO have a spectrum of particles which is spacetime supersymmetric, but
the way this arises is very subtle and follows from the so-called GSO pro-
jection. These are the most studied superstring theories, because they are

well-behaved, for instance do not contain tachyons in their spectrum, so are



stable. There also exist some superstrings which have a supersymmetric
worldsheet theory, but are not supersymmetric in spacetime; very often they

contain tachyons in their spectrum, so are not so much in control.

A common feature of all superstrings (and one which distinguishes them
from the bosonic theory) is that, since we have modified the content of fields
of the 2d worldsheet theory, the conformal anomaly changes, and the con-
straint on the number of dimension changes. The number of dimensions on
which superstrings consistently propagate is 10. As usual, one uses compact-

ification to construct theories with four-dimensional physics at low energies.

1.2 The different ten-dimensional superstring theories

Skipping many important details to be studied in coming lectures, here we
would like to briefly describe the structure of the five superstring theories,
which are also supersymmetric in spacetime (have a supersymmetric spec-
trum of spacetime particles).

For references on the structure of susy and sugra multiplets, see [2].

e Type ITA superstring

This is a theory of closed oriented strings.

Type IIA string theory has N = 2 (local) supersymmetry in ten dimen-
sions, i.e. it is invariant under two Majorana-Weyl supercharges (of different
chirality).

Its massless sector contains the following 10d bosonic fields: The graviton
Gun, a 2-form By, the dilaton scalar ¢; A 1-form A, and a 3-form Cyyyp.
Their supersymmetric partners are basically some N =2 D = 10 gravitinos
of opposite chirality (and spin 3/2) and two spin-1/2 fermions of opposite
chiralities.

We would like to remark that the p-form fields C, are gauge potentials,



namely all their interactions and couplings are invariant under the gauge

transformations with gauge parameter given by a (p — 1)-form A,_;
Cp = Cp+dAy,_q (1)
The gauge invariant field strengths are given by
H,., = dC, (2)

The above matter content is the gravity supermultiplet of non-chiral N =
2 D = 10 supergravity. Indeed the low energy effective action of type ITA
string theory is that of non-chiral N = 2 D = 10 supergravity, and its form is
uniquely fixed by supersymmetry. It contains the Einstein term, the kinetic
term for the p-forms and the dilaton, and their supersymmetric completion
involving the fermions.

It is also useful to know that the degrees of freedom in a p-form gauge
potential C), can be encoded in a dual (8 — p)-form C’g_p by Hodge-duality
of their field strengths

Hp—|—1 = *IOdFIpr (3)
So the 1-form has a 7-form dual, and the 3-form has a 5-form dual.

e Type 1IB superstring

This is a theory of closed oriented strings.

Type IIB string theory has N = 2 (local) supersymmetry in ten dimen-
sions, i.e. it is invariant under two Majorana-Weyl supercharges (of SAME
chirality).

Its massless sector contains the following 10d bosonic fields: The gravi-
ton Gy, a 2-form By, the dilaton scalar ¢; A 2-form By and a 4-form
Anmnpg of self-dual field strength. Their supersymmetric partners are basi-
cally some N = 2 D = 10 gravitinos of SAME chirality (and spin 3/2) and
two spin-1/2 fermions of SAME chiralities. The p-forms are gauge potentials.
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The above matter content is the gravity supermultiplet of CHIRAL N = 2
D = 10 supergravity. Indeed the low energy effective action of type IIB
string theory is that of CHIRAL N = 2 D = 10 supergravity, and its form is
uniquely fixed by supersymmetry. It contains the Einstein term, the kinetic
term for the p-forms and the dilaton, and their supersymmetric completion
involving the fermions.

An important observation is that the theory is chiral, so in principle
it may be ill-defined at the quantum level due to gravitational anomalies
(i.e. diffeomorphism invariance of the classical theory may be violated at
the quantum level, leading to violations of unitarity, etc and rendering the
theory inconsistent). Happily a detailed computation of the anomaly shows

that it vanishes (in a very nontrivial way) [3].

e The two versions of Heterotic string theory

This is a theory of closed oriented strings.

Heterotic string theory has N =1 (local) supersymmetry in ten dimen-
sions, i.e. it is invariant under one Majorana-Weyl supercharge.

Its massless sector contains the following 10d fields: The graviton Gy,
a 2-form By, the dilaton scalar ¢, plus fermion superpartners. They fill out
a graviton supermultiplet of N =1 D = 10 supergravity. In addition there
are 496 gauge bosons A$, associated to generators of a gauge group, which
is either Eg x Eg or SO(32) (so there are two different versions of heterotic
string theory). These gauge bosons have fermionic partners (in the adjoint
representation of the gauge group, gauginos), filling out vector multiplets of
D =10 N =1 supersymmetry.

The low energy effective action is that of N = 1 D = 10 supergravity,
coupled to Eg x Eg or SO(32) gauge vector multiplets. The supersymmetry
and gauge symmetry uniquely fixed the form of the effective action. It con-

tains the Einstein term, the kinetic term for the 2-form and the dilaton, and



Yang-Mills action for gauge bosons, and their supersymmetric completion
involving the fermions.

An important observation is that the theory is chiral, so in principle it may
be ill-defined at the quantum level due to gravitational and gauge anomalies.
Happily a detailed computation of the anomaly shows that it vanishes (in a
very nontrivial way), involving a novel mechanism (previously unknown in
field theory), the so-called Green-Schwarz mechanism [4]. For the mechanism

to work it is essential that the gauge group is one of the above mentioned.

e Type I string theory

This is a theory of closed and open unoriented strings. Unoriented means
that the genus expansion includes non-orientable surfaces, like the Klein bot-
tle or the Moebius strip, etc.

Type I string theory has N = 1 (local) supersymmetry in ten dimensions,
i.e. it is invariant under one Majorana-Weyl supercharge.

Its massless sector contains the following 10d fields: The graviton Gy,
a 2-form By, the dilaton scalar ¢, plus fermion superpartners. They fill out
a graviton supermultiplet of N =1 D = 10 supergravity. In addition there
are 496 gauge bosons A$, associated to generators of a gauge group, which
SO(32) (but NOT Ejg x Eg). These gauge bosons have fermionic partners (in
the adjoint representation of the gauge group, gauginos), filling out vector
multiplets of D =10 N =1 supersymmetry.

The low energy effective action is that of N = 1 D = 10 supergravity,
coupled to SO(32) gauge vector multiplets. The supersymmetry and gauge
symmetry uniquely fixed the form of the effective action. It contains the
Einstein term, the kinetic term for the 2-form and the dilaton, and Yang-
Mills action for gauge bosons, and their supersymmetric completion involving
the fermions.

An important observation is that the theory is chiral, so in principle it may



be ill-defined at the quantum level due to gravitational and gauge anomalies.
Happily the anomaly cancels, also involving a version of the Green-Schwarz

mechanism [5, 5].

This clearly shows that extra dimensions and supersymmetry and super-
gravity are ideas easily accommodated in the string theory setup. That (and
the amazing self-consistency of the theory, namely the fact that it always
leads to anomaly-free low-energy field theories) is the reason why lots of

people got attracted into the study of these theories.

2 Heterotic string phenomenology

From the viewpoint of trying to reproduce the observed physics, many at-
tempts were taken in the framework of Kaluza-Klein compactification in type
IT string theories. However, as discussed previously, it is difficult to repro-
duce chiral 4d fermions with the non-trivial gauge quantum numbers unless
the original 10d theory contains elementary non-abelian gauge fields [6]. For
that reason, compactification of other theories like type I or the heterotics is
more promising.

In fact, most efforts centered in the study of heterotic theory. In a sense,
if we study compactifications on curved spaces, where we use the low energy
effective action, the type I theory looks very similar to the SO(32) heterotic.
Finally, there has been a traditional preference for the Fg x Eg heterotic since

it leads (in the simplest compactifications) to smaller gauge groups.



2.1 The picture of our world as a heterotic string com-

pactification

Enough of a speculation! We would like to address what these constructions
may have to do with the real world!

So, we conclude this brief review by describing the picture of our world
as a heterotic string compactifications. This follows [7].

In order to obtain four-dimensional physics we need to take spacetime to
be of the form M, x Xg. The original 10d theory has a lot of supersymmetry:
D = 10 N = 2 corresponds to 16 supercharges, the equivalent to D = 4
N = 4 supersymmetry. This amount of supersymmetry is too much to allow
for 4d chiral fermions.

If X¢ is too simple, like a T, the supersymmetries are unbroken and we
obtain a non-chiral theory. The reason why T does not break supersymmetry
is because it is flat, and has trivial holonomy group.

The holonomy group of a d-dimensional manifold (endowed with a metric)
is defined by taking a vector, parallel-transporting it along a closed path, and
finding the SO(d) rotation relating the original vector and the final one. The
set of all such roations for all possible closed paths is the holonomy group of
the manifold (with the corresponding metric). For a torus, any vector comes
back to itself (with no rotation at all) under parallel transport around any
closed path. see figure 1.

For manifolds with non-trivial holonomy groups, there are topological
obstructions to defining conserved supercharges globally 2, so the supersym-
metry observed at low energies correspons only to the supercharges which
can be defined globally.

A generic 6-dimensional manifold has holonomy SO(6) and breaks all

2Gimilar to the impossibility of defining a global vector field in a 2-sphere, i.e. it is

impossible to comb a 2-sphere without leaving hair whirlpools.



Figure 1: The holonomy group is given by the set of rotations R relating a vector

and its image under parallel transport along a closed path, for all possible paths.

supersymmetries. Manifolds with holonomy in a proper subgroup of the
generic holonomy group are known as special holonomy manifolds. They
break some supersymmetries, but preserve some.

For heterotic string theory, if Xs is chosen to have SU(3) holonomy,
(which is a subgroup of SO(6)), then the low energy theory in 4d has only
N = 1 supersymmetry. As discussed in the first lecture, this is a phenomeno-
logically desirable feature. Spaces of SU(3) holonomy are called Calabi-Yau
spaces, and compactification on them is often called Calabi-Yau compactifi-

cation.

On the other hand, the original gauge group in heterotic string theory is
very large, it has 496 generators. We should think about some way of break-
ing it. Happily there is a way of doing it in the process of compactification.

Consider that, in the same way as we consider a non-trivial background
for the internal metric (curved internal space), we consider turning on a non-
trivial background for the internal components of the gauge potentials. That
is, we turn on a nontrivial profile for the fiels A?, with ¢ polarized in the
internal directions in Xg, and a associated to generators in a subgroup H of

the original group, say in Fg x Fg. In fancy language, we are considering a



non-trivial gauge bundle (with structure group H) over the manifold Xg.

This choice is consistent with Poincare invariance in four dimensions.
However, since it priviledges some direction in gauge space, the gauge group
observed at low energies is not the full Fg x Eg. In fact, the 4d gauge group
is given by those gauge transformations which leave the gauge background
invariant. This is the group generated by generators commuting with the
generators of H, and is called in group theory the commutant of H in Fg x Fj.

Moreover, it can be seen that the consistency of a Calabi-Yau compacti-
fication requires SOME internal gauge background to be turned on. This is
interesting, because it forces the gauge group to be broken, althouth consis-
tency does not force on us any specific choice of the subroup H.

A very popular choice is the so-called standard embedding, which amounts
to choosing H = SU(3). More specifically, it corresponds to setting the in-
ternal gauge connection to be equal to the Riemannian connection on Xj.
With this choice, the commutant of SU(3) in Eg x Eg is Eg x Eg. This is
a very exciting possibility, since Eg has been considered as a possible group
for grand unification. Taking slightly more involved choices for the gauge
background it is possible to obtain even smaller groups, like SU(5) of simply
the Standard Model group.

The last ingredient that we would need is how to obtain chiral fermions
charged under Eg (or whatever other group we get in 4d). Amazingly the
above ingredients (Calabi-Yau compactification and internal gauge bundle)
are enough to provide chiral 4d fermions in the Kaluza-Klein reduction of
the 10d gauginos. The resulting fermions transform naturally in the repre-
sentation 27 of Eg (or as 10+ 5 of SU(5), or standard fermion families of the
standard model group).

The number of fermion families is given in terms of topological invariants

of the internal manifold and the gauge bundle over it. For instance, for the
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standard embedding, it is given by the Euler number of Xg. The number
of families is roughly speaking fixed by the number of (chiral) zero modes
for a Dirac equation for the internal part of a 10d gaugino. So the different
families are associated to different resonant modes of the 10d gaugino field
in the internal X4 space. B. Green describes this in a very poethic way [8].
It is possible (although not easy, it requires strong techniques in differential
topology) to construct models where this number is 3.

The fact that the number of families is related to topological invariants
is natural. In general one expects that, given a string compactification,
the masses of light modes can vary if we make a small deformation of the
configuration, like deforming the metric or the gauge background. However,
the number of chiral families must be invariant under those deformations,
because chirality protects fermions against getting Dirac masses. Hence, the
number of chiral families is invariant under deformations of the metric or the
gauge background, i.e. it is a topological invariant, which can be related to

standard topological invariants of the manifold X4 and the gauge bundle.

2.2 Phenomenological features and comparison with

other proposals beyond the standard model

The lesson is that this picture, shown in figure 2, provides four-dimensional
theories which are extremely close to the Standard Model.
Moreover, the description includes some very interesting ingredients of

physics beyond the standard model

e Unification: All interaction arise from Eg x FEjg, so at high enough
energies £ ~ M., when we start to be able to resolve the internal
space, the original 10d gauge symmetry is restored and all interactions

are unified. Of course, there is also unification with gravity, as in all
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Figure 2: Schematic depiction of the compactification of heterotic string theory on
a Calabi-Yau manifold (metric background) with non-trivial internal gauge bundle

(gauge background).

string theories. Heterotic string theory also predicts gauge coupling

unification at a scale ~ M,

e Supersymmetry: Is a basic ingredient in this construction. The issue

of supersymmetry breaking remains an open question

e Hidden sector: One attractive possibility is to break supersymmetry by
strong coupling dynamics (gaugino condensation) in the untouched Ej.
This sector is decoupled from the Standard Model one, with which it
communicates only via gravitational interactions, it is a hidden sector.

So it implements the idea of supersymmetry breaking in a hidden sector.

e Extra dimensions. Also essential in the construction. Notice that
both gauge and gravitational interaction propagate in 10d, so this con-
structino cannot be used to realize the brane-world scenario (other

constructions, not based in heterotic, will be studied later on).

There also remain different open questions, whose answer is not clear for

the moment. These are the main problems in string phenomenology, to be
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solved perhaps by next-generation students like you!

e How to break supersymmetry? There exist proposals like gaugino con-

densation, etc.

e The moduli problem: Or how to get rid of the large number of mass-
less scalars which exist in many compactifications in string theory (and
whose vevs encode the parameters of the underlying geometry and

gauge bundle (like sizes of the internal manifold, etc)).

e The vaccum degeneracy problem: Or the enormous amount of consis-
tent vacua which can be constructed, out of which only one (if any
at all) is realized in the real world. Is this model preferred by some
energetic, cosmological, anthropic criterion? Or is it all just a matter

of chance?

e The cosmological constant problem, which in general is too large once
we break supersymmetry. Does string theory say anything new about
this old problem?
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