Non-BPS D-branes in string theory

1 Motivation

In this lecture we present a new viewpoint on D-branes, arising from the
Study of configurations of D-branes and anti-D-branes in string theory. The
construction will imply some interesting insights into the meaning of tachy-
onic modes in string theory. Also, this viewpoint will lead to the construction
of new stable non-BPS D-branes in string theory, which will allow to carry
out a check of duality beyond supersymmetry. Some useful references for
this talk are [1, 2].

2 Brane-antibrane pairs and tachyon conden-

sation

2.1 Anti-D-branes

In analogy with particles and antiparticles in quantum field theory, every
object in string theory has the corresponding antiobject, with equal tension
but opposite charges. In particular, for every Dp-brane there exists a corre-
sponding anti-Dp-brane state, denoted Dp-brane, such that when they are
put together they can annihilate each other into the vacuum.

Dp-branes and Dp-branes have the same tension but opposite charges
under the RR (p + 1)-form. Note that this implies that Dp-branes are also
BPS states, which preserve half of the supersymmetry of the vacuum, but
they preserve the supersymmetries broken by the Dp-branes, and vice versa.

Namely, the supersymmetry generators e;,()r, + eg()g unbroken by the pres-



ence of these objects in type II theory, are of the form
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Dp-branes are described, just as Dp-branes, as (p + 1)-dimensional sub-
spaces on which open strings are allowed to end. It is thus natural to consider
what features distinguish Dp-branes and Dp-branes , from the viewpoint of
the 2d worldsheet. Equivalently, considering a configuration including both
kinds of objects, what distinguishes open strings with both ends on the same
kind of object, and open strings starting on branes and ending on antibranes

(or viceversa). This is addressed in the following section.

2.2 Dp-Dp-brane pair

Consider a configuration with a single Dp- and a single Dp-brane in type 1I
theory, with coincident worldvolumes along the directions 01...p. A promi-
nent feature of this configuration is that it is non-supersymmetric. Namely
there is no supercharge which is preserved by both the Dp- and the Dp-brane.
Another way to obtain the result is to notice that the state as a whole is not
BPS: denoting T}, (), the tension and charge of a Dp-brane, the state as
a whole has tension 27}, and charge 0. The tension of a BPS state in the
topological sector of zero charge should be zero, hence the brane-antibrane
pair is a non-BPS excited state. Notice that there is a clear BPS state in the
zero charge sector of the theory, namely the type II

vacuum. Therefore we expect the non-BPS state given by the brane-
antibrane pair to be unstable against decay to the vacuum, since both states
have the same charges, and the vacuum is energetically favoured.

Let us compute the spectrum of open strings in the presence of the brane-

antibrane pair. Clearly open strings with both ends on the Dp-brane (Dp-Dp
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Figure 1: The annulus diagram regarded in the open and in the closed string

channel.

strings) are not sensitive to the presence of the Dp-brane, hence are quantized
as usual. They lead to a (p + 1)-dimensional U(1) gauge boson and their
superpartners with respect to the 16 supersymmetries unbroken by the Dp-
brane. Similarly, Dp-Dp open strings lead to a (p + 1)-dimensional U(1)
gauge boson and its superpartners with respect to the 16 supersymmetries
unbroken by the Dp-branes (and which are the opposite of the above ones).
Finally, we need to consider Dp-Dp and Dp-Dp open strings. The boundary
conditions are exactly the same as for the above sectors, namely Neumann
for the directions 0, ..., p and Dirichlet for the directions p+1,...,9. Hence,
the Hilbert space of open string states, before any GSO projection, is the

usual one. The lightest modes are

Sector ~ State  aM? Field
NS 10) —1 Scalars
Y2100 0 Gauge bosons + Scalars
R 8¢ 0 Fermions
8g 0 Fermions

We now show that open-closed duality forces to choose the GSO projec-
tion in the Dp-Dp sector opposite to the usual one (namely, that in Dp-Dp or
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Dp-Dp sector). To see that, consider the annulus diagram, with two bound-
aries on Dp-branes, see figure la. Computing this amplitude in the open

string channel, as a loop of Dp-Dp strings, we get
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This quantity can be rewritten as an amplitude of a closed string propagating

for a time 7' = 1/(2T), by performing a modular transformation, leading to
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The amplitude in the closed channel describes the interaction between Dp-
branes, via exchange of NSNS and RR fields, see figure 1b).

The amplitude for a Dp-Dp-brane annulus, in the closed channel, differs

4
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from (3) in the sign of the terms corresponding to the exchange of RR fields.
This is because of the opposite sign of the RR charge of the Dp-brane with
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Going back to the open string channel, the annulus amplitude for Dp-Dp

respect to the Dp-brane charge. Hence we obtain
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open strings going in a loop corresponds to
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Hence we see that the signs imposing the GSO projection are flipped. There-
fore, for Dp-Dp and Dp-Dp open strings, the lightest modes are



Sector State «aM? Field
NS |0) —1  Scalars

R 8s 0 Fermions

These fields carry charges +(+1, —1) under the U(1) x U(1) on the D- and
anti-D-branes. The spectrum in these sectors is very different from the Dp-
Dp and Dp-Dp sectors. In particular, there is no enhanced gauge symmetry
when branes and antibranes coincide. Note also that these sectors lead to a
complex tachyon of the world-volume. We will discuss it in detail later on.
Before that, let us simply mention that for branes and antibranes separated
by a distance L in transverse space, the lightest mode in the NS sector has

mass

a  (2ra)? )

The tachyonic mode develops for distances smaller than a critical distance of

/2 However, branes and antibranes

the order of the string scale, L, < 47«
initially at a distance larger than L. feel a mutual attraction (since they have
equal tension and opposite charge, hence attract both gravitationally and by
RR Coulomb interactions), and tend dynamically to approach and decrease

this distance until they reach the tachyonic regime.

2.3 Tachyon condensation

The meaning of this tachyon is that the configuration is unstable against
annihilation of the brane-antibrane pair to the vacuum of type II theory.
That is, the brane-antibrane pair corresponds to a configuration of the system
which is sitting at the top of a potential. The negative mass square of the
tachyon field simply means that the second derivative of the potential as a

function of this field is negative at the top of the potential, see figure 2. One
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Figure 2: Two pictures of the tachyon potential for the brane-antibrane system.

should therefore let the tachyon roll down to the minimum of the potential, if
it exists, to obtain a stable configuration. This process, by which the tachyon
field acquires a vacuum expectation value 7, minimizing the potential, is
known as tachyon condensation.

A remarkable feature of this process is that there is a clear spacetime
picture of its endpoint. The tachyon simply represents the instability of the
brane-antibrane system against annihilation to the vacuum. This spacetime
picture of the process of tachyon condensation implies that we know exactly
the final state of this process: it is the vacuum of type II theory. So, although
the initial state is non-supersymmetric, we can make exact statement about
its fate after tachyon condensation..

Note that from the viewpoint of the world-volume theory, this process is
similar in some respects to a Higgs mechanism. This is not completely precise,
though. It is true that in the process a charged field (the tachyon) gets a
vev, and breaks a gauge symmetry (the antisymmetric linear combination of
the U(1)s on the D- and the anti-D-branes). However, the final state is the
vacuum, where no open string states, and hence also the diagonal U(1) linear
combination, under which the tachyon is uncharged should also disappear.

More strikingly, in the final state all open string modes of the initial state



must be absent. Hence in the process of tachyon condensation an infinite
number of fields disappear from the theory. This kind of processes have been
successfully described only within the approach of string field theory.

Let us emphasize how remarkable it is the fact that we exactly know the
final state of tachyon condensation. It leads to a number of exact statements
about the properties of a non-supersymmetric brane-antibrane pair when the
world-volume tachyon has a constant vev Ty. All of them are encoded in the
statement that a brane-antibrane pair with a tachyon vev Tj is indistinguish-
able from the vacuum. This is very surprising, for instance, the final state has
an enhanced supersymmetry, it has zero energy, etc. The set of predictions
(as well as several others to be studied later) following from this spacetime
picture of tachyon condensation are known as Sens conjectures.

Also, very remarkably, we have succeeded in understanding the meaning
of open string tachyons. In fact, we can extend this understanding to othe
open string tachyons in string theory. For instance, tachyons in the open
string sector of open bosonic string theory are now understood as an insta-
bility of bosonic D-branes to decay into the vacuum. This is consistent, since
bosonic D-branes do not carry any conserved charge. Hence, we are recov-
ering the result, briefly mentioned in the lecture on open strings, that open
bosonic string theory is unstable into decay to purely closed bosonic string

theory, with no open string sector at all.

3 D-branes from brane-antibrane pairs

In this section we discuss other processes of tachyon condensation in brane-
antibrane systems, where the final state is not the vacuum, but a lower-

dimensional D-brane.



3.1 Branes within branes

For this section, see [3]. Recall that a Dp-brane in charged not only under the
RR (p + 1)-form, but also Under other lower-degree RR forms, if the world-
volume gauge bundle is non-trivial. For instance, consider the Wess-Zumino

couplings for a D3-brane
SWZ:/ C4+/ CQ/\trF-i— CV()/\JEI'F"2 (5)
D3 D3 D3

Consider a world-volume gauge bundle with non-zero first Chern class, i.e.
tr F' is non-trivial on the D3-brane world-volume. This intuitively corre-
sponds to turning on a magnetic field along two of the directions, say 23, in
the D3-brane volume, with total integral e.g. [,3 F' = 1. The above couplings
imply that the D3-brane is charged under the RR 2-form Cj, or that we are
dealing with a bound state of a D3-brane and a D1-brane (with volume along
01). In a sense, the system can be thought of as a D3-brane with a D1-brane
diluted in its volume .

Similarly, a non-trivial tr ' on a general Dp-brane induces D(p — 2)-brane
charge, a non-trivial second Chern class (or instanton number) tr F? induces

non-trivial D(p — 4)-brane charge, etc.

3.2 D-branes from brane-antibrane pairs

Consider a D3-brane with trivial world-volume gauge bundle, and a D3-brane
with one unit of induced D1-brane charge, see figure 3. The complete system
has zero D3-brane charge, one unit of D1-brane charge, and non-zero 3-brane

tension (slightly larger than but around 273).

'Indeed this is quite precise. Starting with a configuration of coincident D3- and D1-
branes there is a dynamical process diluting the D1-brane as world-volume gauge field

strength on the D3-brane.



Figure 3: Brane-antibrane system with induced lower-dimensional brane charges.

Clearly the state is non-supersymmetric. One way to understand this is
to note that there exists a state with the same charges and much less energy,
namely a BPS D1-brane. Hence we expect, from the spacetime viewpoint,
that the initial system is unstable to decay into a D1-brane state. Notice
that decay to the vacuum is not consistent with charge conservation. Heuris-
tically, the decay to the D1-brane state can be understood by considering the
magnetic field to be localized in a more or less compact core in the directions
23, and translationally invariant along 01. Asymptotically away from the
core, we just have a D3-D3-brane pair, with no magnetic field density, so the
system will suffer tachyon condensation annihilating them in the asymptotic
region. Near the core, the magnetic field changes things, and annihilation
leads an object compactly supported in 23, namely the D1-brane.

From the viewpoint of the 4d world-volume, the above system is described
as follows. In a D3-D3-system, we have a gauge group U(1)?, and a com-
plex scalar T with charge (+1,—1), with a Mexican hat potential shown in
figure 2b. Note that gauge invariance implies that the potential is function
of the modulus of T, V(|T'|). The diagonal U(1) subgroup decouples and
will be irrelevant for the following discussion. This field theory has soliton

solutions, which correspond to topologically non-trivial world-volume field



configurations. Finite energy solitons must have a tachyon field asymptoting
to the value |T'| = Ty. Considering configurations which are translationally
invariant in 01, T = T'(x2, z®), the tachyon field taken at the S! at infinity
in 23 defines a map from the spacetime S! to the set of minima of the po-
tential, which is also an S!. Topologically inequivalent solitons correspond
to topologically inequivalent tachyon field configurations, which correspond
to topologically inequivalent maps S' — S!. The latter are classified by the
homotopy group I1;(S') = Z, i.e. there are an infinite number of inequiva-
lent solitons, characterized by an integer, known as winding number of the
above map. A simple example is provided by the winding one configuration.

Defining z = x? + 423, the tachyon profile for the corresponding soliton is

T(z) = Ty (6)
2|

Representing the complex value of the tachyon by an arrow, the field config-
uration is of the hedgehodge form shown in figure 4. In order to have a finite
energy configuration, we also need to turn on a non-trivial gauge field, so that
the covariant derivatives approach zero fast enough as |z| — oco. This gauge
field is such that there is a non-trivial first Chern class over 23, [, F' = 1.
The whole field configuration is known as vortex, and is the world-volume de-
scription of the tachyon condensed configuration. Indeed, asymptotically the
system approaches the configuration of a D3-D3-brane with a tachyon vev
of Ty, hence describing asymptotic annihilation. Near the core, the tachyon
value is approximately zero, and no annihilation is implied. In fact, near
the core we have a D3-D3 system with non-condensed tachyon; hence, open
strings are allowed to end in the near core region of the above system. The
system described an object localized in 23, charged under C; and on which
open strings can end. This is clearly a D1-brane, which we have construced

as a bound state of a higher-dimensional brane-antibrane pair.
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Figure 4: Picture of the hedgehodge configuration for the tachyon field in the

vortex solution.

The above construction suggests the construction of D-branes as bound
states, upon tachyon condenstation, of higher dimensional brane-antibrane
pairs. This is a surprising new viewpoint, where D-branes are regarded as

solitons on the world-volume of brane-antibrane pairs.

We can use a similar strategy to construct other D-brane states, in par-
ticular unstable Non-BPS Dp-branes in type II theory (with p even for IIB
and odd for ITA). For instance, consider a D3-D3 pair, with a tachyon pro-
file corresponding to a kink in one dimension, say 3, see figure 5. The field
configuration is localized in a compact region in z3, and has trivial field
strengths.

This world-volume configuration is not topologically stable, the kind can
be continuously unwound into a trivial configuration. This implies that the
resulting D2-brane, denoted l/)\2—brane, is unstable (against decay to the vac-
uum), which is consistent since it carries no conserved charges. We would
like to mention two further facts on these non-BPS branes: First, they admit
a microscopic description, as subspaces on which open strings end. In this
situation, the fact that these D-branes do not carry RR charges implies, by

open-closed duality, that open strings stretching between non-BPS D-branes
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Figure 5: Picture of the tachyon profile in the kink configuration..

of this kind have a world-volume spectrum with no GSO projection. This
spectrum is easily obtained, and in particular contains a real tachyon. Sec-
ond, a further kink configuration on this world-volume tachyon corresponds
to the condensation of an unstable non-BPS Dp-brane to a BPS D(p — 1)-

brane, of the usual kind (these relations are known as descent relations).

4 D-branes and K-theory

Let us generalize the idea that D-branes are constructed as bound states of
higher-dimensional brane-antibrane pairs, upon tachyon condensation. The
latter statement means that, at the topological level, states which differ by
processes of creation/annihilation of brane-antibrane pairs must be consid-
ered equivalent.

Let us apply these ideas to type IIB theory on a spacetime X, and try to
classify all D-brane charges. Namely, consider a type IIB configuration with
n D9-D9-brane pairs. Note that this is consistent, since the tadpole for the
RR 10-form Cjy generated by the D9- and the D9-branes cancel each other

2. In general, the D9-branes carry a world-volume U(n) gauge bundle F, and

2Recall that the only inconsistency in coupling 10d Poincare invariant open string
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Figure 6: Brane-antibrane pairs with general world-volume gauge bundles.

the D9-branes carry another U(n) gauge bundle E. Hence, different D-brane
states or D-brane charges are classified by pairs of bundles (E, E). However,
configurations that differ by the nucleation of D9- and D9-branes, both with
world-volume gauge bundle H, must be considered topologically equivalent.
Therefore the set of topologically inequivalent D-brane states is given by the

set, of pairs of bundles (E, E), modulo the equivalence relation
(E,E) ~ (F®H,E®H) (7)

The set of pairs of topological bundles up to this equivalence relation is a
finitely generated group, known as (complex) K-theory group of the space-
time X, denoted K (X).

Let us describe the classification of type IIB charged D-branes in flat 10d
space from this viewpoint. If we are interested in p-brane states (i.e. states
with Poincare invariance in (p + 1) dimensions)the bundles are non-trivial

only over the (9 — p)-dimensional transverse space. Also, we are interested

sector to oriented type IIB theory arose from RR tadpole cancellation. Note also that
the configuration with equal number of D9 and D9-branes is regarded not as a new string
theory, but as an excited state of type IIB theory (connected to the vacuum via tachyon

condensation).
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in bundles with compact support, so that the resulting states are localized
in R?P. See figure 6. Bundles with compact support on R9 — p can be
described as general bundles over S?~P. The corresponding K-theory groups

have been computed by mathematicians and read

K(S*P) = Z podd
= 1 peven (8)

Hence type IIB theory contains stable Dp-branes for p odd. These branes are
stable since their charge, classified by the K-theory class, which is topological,
forbids their decay to the vacuum. The fact that the K-theory classes are Z
valued implies that their charge is additive. In fact, these are the familiar
BPS we already know about, and their charge is the charge under the RR (p+
1)-form field. Hence the classification of D-brane states using K-theory agrees
with the classification using cohomology (namely computing the charge of a
D-brane state as the flux of a certain form field over a cycle surrounding the
D-brane) 3 . This is not so surprising, since there is a natural map from
K-theory to cohomology, which to each K-theory class represented by a pair
of bundles (F, F) it assigns the cohomology class

(E,E) — ch(E) — ch(E) 9)
where ch(E) is the Chern character, defined by

1 1
h(E)=tr " =14+ —trF+ — tr F? + ... 10
ch(FE) re +27Tr +87r2r + (10)
The Chern character is additive, ch(E®) = ch(E) — ch(H), hence the above

map is independenent of the representative of the K-theory class. Finally,

3Notice that we are classifying topological D-brane states. In particular, the unstable
D-branes of type IIB theory do not appear in this classification since they can decay to

the vacuum, namely are topologically equivalent to it.
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notice that the Chern character enters in the Wess-Zumino couplings on the
world-volume of a D-brane, hence it carries the information on the induced

D-brane charges under the RR p-form fields.

There are situations, however, where the above mapping is not injec-
tive. Namely there may are situations where there exist non-trivial K-theory
classes whose Chern character vanishes. Namely, there exist bundles which
are topologically non-trivial but whose characteristic classes all vanish. This
implies the existence of D-branes which are stable (since they carry a non-
trivial topological quantum number) but are uncharged under the RR fields.

The simplest example of this kind is provided by type I theory. The
classification of D-branes can be carried out as above. Namely, introduce n
additional D9-D9 over the vacuum of type I theory (note that this is consis-
tent, since the total system contains (n + 32) D9-branes and n D9-branes,
leading to a total RR 10-form tadpole cancelling that of the O9-planes). The
D9- and D9-branes carry SO(n) bundles E, E. D-brane configurations are
topologically classified by pairs of bundles (E, E) modulo the equivalence
relation (7). The resulting set is a group known as the real K-theory group
of the spacetime X KO(X).

Let us classify type I D-brane charges in flat space. As before, we need
to compute the groups KO(S?~P, which have been computed by mathemati-

cians. We obtain the following sets of D-branes

KO(S') =2, — D8
KO(S?* =2, — D1
KO(SY) =12 — D5
KO(S®) =7 — D1
KO(S®) =Z, — DO
KOS =2z, — D(-1) (11)
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Beyond the familiar BPS D1- and D5-branes, the K-theory classification
implies the existence of non-BPS D8-, D7-, DO- and D(-1)-brane charges.
They are completely uncharged under the RR fields, however they carry a
non-trivial Z, charge and cannot decay into the vacuum.

We would like to conclude with some comments

e For type ITA theory, there also exists a K-theory classification of D-brane
charges. It is based on classifying bundles over spacetime filling unstable
D9-branes. The relevant K-theory groups are known as (complex) reduced
K-theory groups K '(X). There is a relation between these and the type
IIB groups, which is consistent with T-duality. For instance in 10d space,
we have K~1(S™) = K(S™1). This leads to the familiar set of BPS states of
type ITA theory.

e The above construction is valid for D-branes, since they naturally carry
world-volume gauge bundles. It is still an open issue to extend this kind
of classification scheme to other theories without D-branes, like heterotic

theories or M-theory, and to other objects, like NS5-branes.

5 Type I non-BPS D-branes

We have seen that type I contains different non-BPS D-branes with non-
trivial topological charge. Since these charges are topological, states with
these charges must exist in the spectrum for all values of the moduli (although
their microscopic description may change in between). This allows to test
string duality for this particular class of non-BPS states, i.e. test string

duality beyond supersymmetry 4

4Note that the lack of the BPS property however implies that we do not have much
control over properties like the tension of the object, as the moduli change. Hence the

tests are much less exhaustive than for supersymmetric states.
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5.1 Description

The D0-brane

Altough we have described it starting with D9-D9-brane pairs, the sim-
plest construction starts from a D1-D1-brane pair in type I theory. The
world-volume gauge group is Za X Za. The fact that this gauge group is
discrete ensures that a kink configuration for the world-volume tachyon can-
not be unwound, and hence describes tachyon condensation to a stable state.
This is the stable DO-brane of type I theory 5. The fact that it carries a Z»
charge means that two of these states can annihilate to the vacuum. This
is understood in the D1-D1-brane pair because two kinks can unwind to the
trivial configuration for the world-volume tachyon, describing decay to the
vacuum.

There is a microscopic description for the type I ﬁ)—brane, as a 1d sub-
space on which open strings can end. Such open strings have no GSO pro-
jection, in agreement (via open-closed duality) with the fact that they carry
no RR charges. The light spectrum on the world-volume of a stack of n
DO-branes is as follows. In the 00 sector, there is no GSO projection. The
states are computed as usual (with some subtlety due to the fact that

there are not enough NN directions to use the light-cone gauge), and
projected into 2-invariant states. In the NS sector, there are massless SO(n)
gauge bosons, and 9 scalars in the representation [17; there are also a world-
volume real tachyon, transforming in the representation H, so it is absent for
n =1 (in which case the system is stable). In the R sector, the groundstates
give rise to fermions in the [T+ H representation. In the 09 4 90 sector, the

NS states are massive, while in the R sector the groundstate gives rise to

5Equivalently, one can describe the type I DO-brane as the type IIB B\O—brane, modded

out by €2, which projects out the world-volume tachyon of the latter.
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massless 1d fermions in the 32 of the D9-brane SO(32) group.

For n = 1 we have a stable particle, with worldline described by the
above fields. It has nine worldline bosons, so the particle propatates in 10d.
On the other hand, there are worldline zero modes, which imply that in the
quantum theory the particle belongs to a multiplet. Quantization of fermion
zero modes in the 00 sector gives a 256-fold multiplicity, implying the particle
state belongs to a non-BPS multiplet. Quantization of fermion zero modes in
the 09 sector imply that the particle transforms in a non-trivial representation
of SO(32), in particular a 2'-fold dimensional chiral spinor representation
(there also appears the spinor representation of opposite chirality, but it is
eliminated by the world-volume Z, gauge group).

The fact that type I contains states in the spinor representation of a given
chirality implies that its spacetime gauge group is globally not SO(32). All
perturbative and non-perturbative states are consistent with a gauge group
Spin(32)/Zy (where Spin allows the existence of spinor representations, and
Z- forbids the existence of spinors of one chirality and of states in vector

representation).

The D8-brane

There exists a type I D8-brane described microscopically as a 9d subspace
on which open strings end, and which carries the correct K-theory charge.
However, the brane contains a world-volume tachyon arising in the sector of
open strings stretching from the brane to the background D9-branes. This
tachyon implies the non-BPS brane is unstable to decay, but not to the
vacuum (which is forbidden by charge conservation) but to a different con-
figuration carrying the same charge. The latter configuration is a non-trivial
bundle on the D9-branes where there is a Z, Wilson line on one of the D9-

branes ©

6This Wilson line is topological in the sense that it is an element in Spin(32)/Z2 but
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The D(/:l)-brane

The D(/:l)—brane can be constructed starting from a type I D1-D1-brane
pair with a vortex configuration for the world-volume tachyon. Equivalently
it can be described as a D(—l)—m—brane pair of type IIB theory, modded
out by 2, which exchanges the D(—1) and the D(—1)-brane, and eliminates

the world-volume tachyon. The latter description provides a simple micro-
scopic description for the type I D-instanton, but we will skip its detailed

discussion.

The D7-brane

This can be described as a type IIB D7-D7-brane pair, modded out by
2, which exchanges the objects in the pair, and eliminates the world-volume
tachyon in the 77 sector. The tachyon in the 79 and 79 sectors however sur-
vive, implying that the system is unstable against decay, not to the vacuum
but to a non-trivial bundle on the background D9-branes. The bundle is
described by two Zs Wilson lines which commute up to a sign in SO(32),
namely which commute in Spin(32)/Z2 but not in SO(32).

5.2 Heterotic/type I duality beyond supersymmetry

Non-BPS states in type I theory, which are nevertheless stable due to charge
conservation, must exist not only at weak coupling (where we have provided
a microscopic description), but at all values of the coupling. This implies
that they lead to results which can be extrapolated to strong coupling, and
be compared with properties of the heterotic theory.

The perturbative group of type I theory is O(32). However we have
seen that the global structure of the group is Spin(32)/Zs, since the theory

contains states that transform in a chiral spinor representation, and states

not of SO(32).
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described by gauge configurations which do not exist in SO(32). Finally,
the non-BPS D-instanton plays a crucial role in describing the change in
gauge group. Namely, it is not invariant under large gauge transformations
in SO(32). The true gauge group consistent with all non-BPS states of the
theory is in fact the appropriate one to agree with the heterotic theory upon
type I / heterotic duality. This is a first non-trivial result of non-BPS type
I theory.

An even more remarkable check is that the particles described as type
I DO-branes provide states that transform in a chiral spinor representation
of the spacetime gauge group. By duality, heterotic theory should contain
some states with the same basic properties, namely same gauge representa-
tion, and same non-BPS supermultiplet. Indeed, the Spin(32)/Z, heterotic
theory does contain states with these properties, they are given by massive

perturbative heterotic states, with left-handed internal 16d momentum

P:%(:l:,...,:l:) . # — —even (12)

This is Sens great idea on using these states to test string duality beyond

supersymmetry.

6 Final comments

In this lecture we have studied a beautiful set of ideas, concerning a new
viewpoint on D-branes. They have been widely generalized to more involved
configurations, like orbifolds and orientifolds.

The construction of D-branes as bound states of higher-dimensional brane-
antibrane pairs has allowed us to make precise exact statements on tachyon
condensation processes in non-supersymmetric systems. Finally, these re-
sults have provided a new tool to test and partially confirm string duality

beyond supersymmetry.
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There are many other applications of these ideas to other related con-
texts. For instance the study of condensation of tachyons of other kinds
(most interestingly the study of closed string tacyons is an open issue), or
the application of antibranes and non-BPS D-branes as a source of supersym-
metry breaking in model building. We leave these questions for the interested

reader.

References

[1] E. Witten, ‘D-branes and K theory’, JHEP 9812 (1998) 019, hep-
th/9810188.

[2] A. Sen, ‘NonBPS states and Branes in string theory’, hep-th/9904207.

[3] M. R. Douglas, ‘Branes within branes’, hep-th/9512077

21



