Brane-worlds

1 Introduction

We have seen that branes in string theory may lead to gauge sectors localized
on their world-volumes. This can be exploited, as we did in previous lecture,
to take a decoupling limit where dynamics reduces to gauge field theory, and
try to use string theory tools to gain new insights into gauge field theory
dynamics.

In this lecture we would like to center on a different application of branes
and their gauge sectors. There exist string theory or M-theory vacua with
gauge sectors localized on the volume of branes, or on lower-dimensional
subspaces of spacetime. For intance, in Horava-Witten compactifications,
or in type I’ theory (or its T-dual versions). These vacua can be regarded
as a new possible setup in which to construct four-dimensional models with
physics similar to that of the observed world, i.e. gravitational and gauge
interactions, which charged chiral fermions. In this lecture we discuss differ-
ent possible constructions containing gauge sectors that come close enough
to the features of the Standard Model. Their main novelty is that gravi-
taional interactions and gauge interactions propagate over different spaces.
See figure 1. This implies a different scaling of their interaction strength as

functions of the underlying parameters/moduli of the model.

Heterotic model building

To understand better this point, recall the setup of compactifications of
heterotic string theory on Calabi-Yau manifolds Xg. The 4d gauge group is
given by the commutant of H in G (namely the elements of G commuting
with H), where G is the 10d Eg x Eg or SO(32). Thus, 4d gauge interactions

are inherited from 10d ones, and so propagate all over 10d spacetime. Fig.



Figure 1: In compactifications with D-branes, the gauge sectors like the Standard
Model could propagate just on a lower-dimensional subpace of spacetime, e.g. the

volume of a suitable set of D-branes, like any of the shaded areas.

Figure 2: Picture of heterotic string compactification.

2 shows configurations of this kind.

A very important property in this setup is the value of the string scale,
which follows form analyzing the strength of gravitational and gauge inter-
actions, as we quickly review. The 10d gravitational and gauge interactions

have the structure

M8 MS
/dmx g; Rioa ; /dlom g; F1§d (1)

where M, g, are the string scale and coupling constant, and R4, Fioq are



the 10d Einstein and Yang-Mills terms. Powers of g; follow from the Euler
characteristic of the worldsheet which produces interactions for gravitons
and gauge bosons (the sphere). Upon Kaluza-Klein compactification on Xg,
these interactions reduce to 4d and pick up a factor of the volume Vg of Xg

M2V, MSV,
/d4$ ;26R10d ; /d4$ ;26F1%)d (2)
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From this we may express the experimental 4d Planck scale and gauge cou-

pling in terms of the microscopic parameters of the string theory configura-

tion
M8V, 1 M8V,
M = 5726 ~ 10 GeV ; —— = =% ¢ ~ 0(1) (3)
gs gYM gs
From these we obtain the relation
M, = gy Mp =~ 10" GeV (4)

which implies that the string scale is necessarily very large in this kind of
constructions. The key points in the derivation are that all interactions
propagate on the same volume, and their strengths have the same dilaton

dependence.

Brane-world constructions

Models where gravitational and gauge interactions propagate on differ-
ent spaces are knonw as brane-worlds, since fields in the Standard Model
(those that make up the observable world) are localized on some brane (or
in general, some subspace of spacetime. In these constructions 4d gauge and
gravitational interaction strength have a different dependence on the internal
volumes.

The prototypical case ! is provided by a compactification of type II theory

(or some orientifold quotient thereof) on a 6d space Xg, with a gauge sector

!The following analysis does not apply directly to Horava-Witten compactifications,

see [1] for the corresponding discussion.



localized on the volume of a stack of Dp-branes 2

wrapped on a (p — 3)-
cycle Il_3), with II,_3y C Xg. Namely, the (p + 1)-dimensional world-
volume of the Dp-brane is of the form M, x II(,_3). Before compactification,

gravitational and gauge interactions are described by an effective action

M? Mp-3
/ d"z vl Rigq +/ Pz 0 Fii1ya (5)

where the powers of g, follow from the Euler characteristic of the world-
sheet which produces interactions for gravitons (sphere) and for gauge bosons
(disk).

Upon compactification, the 4d action picks up volume factors and reads

/ d'z V6R4d / d'z JE@ (6)

S

This allows to read off the 4d Planck mass and gauge coupling, which are

experimentally measured.

M3V
ME o= =2~ 10YGeV
MP3V
gynm = g—“:o.l (7)

If the geometry is factorizable, we can split Vx, = ViV, with V, the trans-

verse volume, and obtain

Msll_pVJ_
Vighy = TN ®

This shows that it is possible to generate a large Planck mass in 4d with a
low string scale, by simply increasing the volume transverse to the brane,

or tuning the string coupling. In particular, it has been proposed to lower

2For the moment, the D-brane configuration is simplified for convenience. Later on we

will see detailed configurations leading to interesting world-volume spectra.



the string scale downto the TeV scale to avoid a hierarchy with the weak
scale [2, 3]. The hierarchy problem is recast in geometric terms, namely
the stabilization of the compactification size in very large volumes. These
are difficult to detect since they are only felt by gravitational interactions.
Present bounds on the size of ‘gravity-only’ extra dimensions come from
tabletop experiments (like the Cavendish experiment), and impose only that
their length scale in not larger than 0.1 millimeter. Notice however that a low
string scale is not compulsory in models with some solution to the hierarchy

problem, e.g. supersymmetric models.

2 Model building: Non-perturbative heterotic

vaCua

In this and the following section, we describe the basic rules for the construc-
tion of vacua of string theory or M-theory, with localized gauge sectors with
features similar to those of the Standard Model. Explicit models with spec-
trum extremely close to that of the Standard Model have been constructed.
However, in this lecture we will be happy by simply describing the apperance
of charged chiral fermions, and the underlying reason for family replication.

More detailed model building issues are left for the references.

We start by considering the setup provided by compactifications of Horava-
Witten theory. This can be considered as the strong coupling limit of com-
pactifications of the Fg x FEg heterotic string theory, and hence most of the
tools are already familiar. There are however some interesting new ingredi-
ents.

Consider M-theory compactified to 4d on Xg X S'/Z,. In general we

will be interested in supersymmetric models, hence we choose Xg to be a



Calabi-Yau threefold 3.
As in compactifications of the heterotic string theory, the
compactification is required to satisfy certain consistency conditions, aris-
ing from the equation of motion for some p-form fields. Namely, in heterotic
theory the interactions for the NSNS 6-form Bg

| BonsBs+ [ By (P -t R?) 9)
10d 10d
led to the equation of motion for the NSNS 2-form

dH3 = tr F? — tr R? (10)

In Horava-Witten theory, we need to consider two gauge bundles on the 10d
boundaries of the interval, each with structure group a subgroup of Eg. The
action for the 6-form Cg (which is just the lift of the heterotic Bg) reads

SCG = / *G7 N G7 +
11d

1 1
+ [ 8(z")(tr Fp, — étr R*) A Cs + §(z'" — wR)(tr Fég - Etr R*) A Cs =

11d 11d
= dGy A Cs +
11d
1 1
+ [ §(=)(tr FZ — —tr R} A Cg + §(z™ — 7R)(tr F2 — ~tr R*) A C
11d 82 11d & 2

where 0(z) is a bump 1-form localized in the interval. We have a similar

equation of motion for the M-theory 3-form, namely

dGy = 6(z'%)(tr Fp, — %tr R?) + 6(2"® — mR)(tr Fpgy — %tr R? (1)

3 A motivation for supersymmetry in this setup is that there is only one ‘gravity-only’
dimension. If we build a non-supersymmetric model, and try to lower the 11d Planck
scale to the TeV range to avoid a hierarchy problem, we should take this dimension very
large to generate a large 4d Planck scale. In fact, so large that it would conflict with
the experimental bounds. Hence, a large 11d Planck scale is convenient in this setup,
and supersymmetry is the most reasonable way to stabilize the weak scale against it. It

however may be somewhat lower than the 4d Planck scale.



Taking this relation in cohomology, we obtain
[tr F] + [tr F]%é] —[tr R*] =0 namely cy(E) = ca(R) (12)

We would like to point out that the class of models is in fact richer. We
can consider compactifications to 4d, where the background configuration
also includes sets of k, Mb-branes * sitting at a point z.’in the interval, and
with two of their world-volume dimensions wrapped on a 2-cycle 11, C Xg.
Since the Mb5-branes are magnetically charged under the M-theory 3-form,
the action for the 11d dual 6-form Cg is

Se, = /nd*G7/\G7+§ajka/M4 Cs +

x1lg

1
[ 8 Fg, ~ SR ACs+ [ 8(a% — wR)(tx Ff, - LR ACs =
11d 8 2 11d 8 2

_ 10 .10
—/HddG4/\C’6+;ka/Md5(x 216 (IT,) A Cs +

1
+ [ 6= (tr Fp, — §tr R*) A Cs +

1
10 _ 2 _ Liop?
» d(z TR)(tr Figy QtrR ) A Cs

11d

where §(I1,) is a bump 4-form with support on the 2-cycle II,. The equation
of motion for (s, taken in cohomology gives the consistency condition for

this kind of compactification, which reads
[tr F] + [tr iy ] + D kal6(IL)] — [tr R*] = 0 (13)

where [II,] is the 4-cohomology class dual to the 2-homology class of the
2-cycle [II,]. Namely, M5-branes contribute to the condition of cancellation

of 6-form charge, via the homology class of the 2-cycle they wrap.

“Notice that taking the limit of small interval size shows that this possibility is also
available in heterotic theory. Hence, there exist compactifications of heterotic on Calabi-
Yau threefolds, with NS5-branes. Due to the presence of the latter, these vacua are

non-perturbative, even if the string coupling is small.



Compactifications with Mb5-branes have been studied in [4]. Since the
Mb5-brane classes help in satisfying the consistency condition, it follows that
there is additional freedom in the gauge bundles, and hence in the low-energy
spectra of the theory. They lead to additional phenomena, for instance there
may be transitions where some M5-brane moves towards the boundary in the
interval and is diluted as an instanton class in the boundary gauge field. We

will not go into these discussions.

Once the topology of the gauge bundles over the boundaries, namely
their structure groups H, H', and characteristic classes, and the M5-brane
configuration, are specified, the computation of the 4d massless spectrum is
similar to that in heterotic theory.

e We obtain the 4d N/ = 1 supergravity multiplet, the dilaton chiral
multiplet, and (hy,1) + hg,1 chiral mulitplets arising from geometric moduli.

e We obtain vector multiplets for the gauge group given by the commutant
of H, H' in Eg. Notice that the choice H = SU(3), H' = 1 still leads to
Eg x Eg, but does not correspond to embedding the spin connection into the
gauge degrees of freedom, since the latter would involve both Eg factos in a
symmetric way.

e Charged chiral multiplets arise from the KK reduction of the 10d gaug-
ino, and their multiplicity is given by the index of the Dirac operator coupled
to the gauge bundle (in a representation corresponding to the their 4d gauge
representation).

e There may be additional multiplets arising from the KK reduction of
the M5-brane world-volume theory on the 2-cycle II,. These can be trickier
to discuss, so we skip their details.

Taken overall, many of the features of these models are similar to com-
pactifications of heterotic string theory. However, the existence of the ‘gravity

only’ dimension allows to lower the fundamental scale somewhat below the



4d Planck scale.

3 Model building: D-brane-worlds

Another class of models with localized gauge sectors can be obtained by
considering compactifications with D-branes. An additional advantage of
these setups is that, for simple enough D-brane configurations (i.e. in the
absence of curvatures) the quantization of open string sectors can be carried
out exactly (in the sense of the a expansion).

A first issue that we should address is how to obtain D-brane sectors
containing chiral fermions in the corresponding open string spectrum. In
fact, the simplest D-brane configurations, like D-branes in flat space (or
in toroidal compactifications), with trivial world-volume gauge bundle (zero
field strength for world-volume gauge fields, preserve too much supersymme-
try to allow for chirality (that is, they have at least 4d N' = 2 supersymmetry)
5.

In fact, we can heuristically argue that isolatedD-branes sitting at a
smooth point in transverse space lead to non-chiral open string spectra. Con-
sidering for instance the case of D3-branes, sitting at a smooth point P in
Transverse 6d space Xg, see figure 3. Since chiral matter is necessarily mass-
less, if present it should arise from open strings located at P and stretching
between the D3-branes. Hence, only the local behaviour of Xg around P
is important. If P is smooth this local behaviour is that of R®, hence the

massless open string sector if simply that on D3-branes in flat space, which

50One way to generate chiral fermions is in fact to consider introducing a non-trivial
bundle for the D-brane world-volume gauge field, with support on the internal cycle
II,_swrapped by the Dp-brane. This kind of model is, in some respects (like in the
computation of the spectrum, etc) similar to heterotic models, and we do not discuss it

here.



Figure 3: Isolated D-branes at a smooth point in transverse space feel a locally

trivial geometry and lead to non-chiral open string spectra.

is non-chiral.

There are two ways which have been used in the construction of D-brane
Configurations with chiral open string sectors; they arise from relaxing each
of the above conditions in italic writing:

e Relaxing the smoothness condition, we may consider D-branes sitting
at singular points in transverse space. The prototypical example is provided
by a stack of D3-branes located at an orbifold singularity, C®/Zy. See figure
4.

¢ Relaxing the condition of isolatedness, we may consider configurations of
D-branes intersecting over subspaces of their world-volume. The prototypical
case is provided by D6-branes intersecting over 4d subpaces of their world-
volumes. See figure 5

In the following we discuss the appearance of chiral fermions, and the

spectrum in these two kinds of D-brane configurations.
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Figure 4: Stack of D3-branes at an orbifold singularity

Figure 5: Two intersecting D6-branes in flat space.
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3.1 D-branes at singularities

For concreteness, let us center of a stack of n D3-branes sitting at the Origin
of a C3/Zx orbifold singularity. These models were first Considered in [5].

The Zy generator # acts on the three complex coordinates of C? as follows

2l a1 /N 2wias/N

(zla 22, Z3) - (e <1, € 22, 627Ti GS/NZ3) (14)

where the a; € Z in order to have and order N action %. We will center on
orbifolds that preserve some supersymmetry, hence their holonomy must be
in SU(3) and thus we require a; + ay + a3 = 0 mod N, for some choice of
signs.

The closed string spectrum in the configuration can be obtained using
the techniques explained in the corresponding lecture. Moreover, this sector
will be uncharged under the gauge group on the D-brane world-volume, so
it is not too interest for our discussion and we skip it.

Concerning the open string sector, the main observation is that there are
no twisted sectors. This follows because the definition of twisted sectors in
closed strings made use of the periodicity in the worldsheet direction o, and
this is not allowed in open strings. Hence, the spectrum of open strings on
a set of D3-branes at a C3/Zy orbifold singularity is simply obtained by
considering the open string spectrum on D3-branes in flat space C3, and
keeping the Zn-invariant ones. Each open string state on D3-branes in flat
space is given by a set of oscillators acting on the vacuum, and an n x n
Chan-Paton matrix A encoding the U(n) gauge degrees of freedom. The
action of # on one such open string state is determined by the action on the
corresponding set of oscillators and the action on the Chan-Paton matrix.

For concreteness,let us center on massless states. The eigenvalues of the

60ne also needs N > ;@i = even (so that the quotient is a spin manifold, i.e. allows

spinors to be defined).
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different sets of oscillators for these states are

Sector State 0 eigenvalue
NS (0,0,0,4+) 1
(LO’O’ 0) e27ri a; /N
(—,0,0,0) e—2miai/N
R £3(+,+,+ ) 1
%(—,-i—, +, +) e2miai/N
%(4_’ - -, _) e 2mia;/N

The eigenvalues can be described as 2™ where r is The SO(8) weight
and v = (a1, a9,a3,0)/N. The above action can easily be understood by
decomponsing the SO(8) representation with respect to the SU(3) subgroup
in which the Zy is embedded. In fact we have 8 =3 +3+1+1, and 8¢ =
3+ 3+1+1, and noticing that (14) defines the action on the representation
3. Notice that the fact that bosons and fermions have the same eigenvalues
reflects the fact that the orbifold preserves N' = 1 supersymmetry on the
D-brane world-volume theory. In fact we see that the different states group
into a vector multiplet V', with eigenvalue 1, and three chiral multiplets, ®;
with eigenvalue 7 %/N

On the other hand, the action of # on the Chan-Paton degrees of freedom
corresponds to a U(n) gauge transformation. This is defined by a unitary

order N matrix 7y 3, which without loss of generality we can diagonalize and

write in the general form
Yo = diag (1n,, €M1, ... 2 W -DNy =) (15)

with Y- 'n, = n. The action on the Chan-Paton wavefunction (which

transforms in the adjoint representation) is
A= ’)/913)\79’,3{ (16)
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We now have to keep states invariant under the combined action of § on the
oscillator and Chan-Paton piece. For states in the A/ = 1 vector multiplet,
the action on the oscillators is trivial, hence the surviving states correspond

to Chan-Paton matrices satisfying the condition

A= ”)’9,3)\’)/9_,§ (17)

The surviving states correspond to a block diagonal matrix. The gauge group

is easily seen to be

U(no) X ... X U(anl) (18)
For the it chiral multiplet ®;, the oscillator part picks up a factor of e2@a/N

So surviving states have Chan-Paton wavefunction must satisfy
A=e al/N’Ya 3)\% 3 (19)

The surviving multiplets correspond to matrices with entries in a diagonal
shifted by a; blocks. It is easy to see that the surviving multiplets transform

in the representation
N—

i > (Cor Tata;) (20)

i=1 a=0

,_.

We clearly see that in general the spectrum is chiral, so we have achieved
the construction of D-brane configurations with non-abelian gauge symme-
tries and charged chiral fermions. Moreover, we see that in general the
different fermions have different quantum numbers. The only way to ob-
tain a replication of the fermion spectrum (i.e. a structure of families, like
in the Standard Model), we need some of the a; to be equal (modulo N).
The most interesting example is obtained for the C3/Zs singularity, with

= (1,1,—2)/3. The spectrum on the D3-brane world-volume is given by

N =1 Vect.Mult. U(ng) x U(ny) x U(ng)
N =1 Ch.Mult. 3 [ (’I’Lo,ﬁl, 1) + (1, nl,ﬁg) + (ﬁo, 1, nz)] (21)

14



we see there is a triplication of the chiral fermion spectrum. Hence in this
setup the number of families is given by the number of complex planes with

equal eigenvalue.

We would like to point out that, as usual in models with open strings,
there exist some consistency conditions, known as cancellation of RR tad-
poles. Namely, there exist disk diagrams, see figure 6, which lead to the
coupling of D-branes at singularities to RR fields in the 6% twisted sector.
When the 0% twist has the origin as the only fixed point, the corresponding
RR fields do not propagate over any dimension transverse to the D-brane.
This implies that they have compact support, and Gauss law will impose the
corresponding charges must vanish, namely that the corresponding disk dia-
grams cancel. The coefficient of the disk diagram is easy to obtain: from the
figure, we see that any worldsheet degree of freedom must suffer the action of
0% as it goes around the closed string insertion. In particular it means that

the Chan-Paton degrees of freedom suffer the action of 75,673:( as they go

76,3
around the boundary. Hence the disk amplitude is proportional to trygs 3,

and the RR tadpole condition reads
Trygs =0 ,for ka; # 0 modN (22)

For instance, for the above Z3 model these constraint require ng = ny = no.
In general, the above constrains ensure that the 4d chiral gauge field theory

on the volume of the D3-branes is free of anomalies.

Clearly the above model is not realistic. However, more involved models
of this kind, with additional branes (like D7-branes, also passing through the
singularity), can lead to models much closer to the Standard Model, see [6].

Their study is however beyond the topic of this lecture.
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Figure 6: D3-branes at singularities are charged under RR forms in the % twisted
sector, via a disk diagram. Worldsheet degrees of freedom suffer the action of §*
as they go around the cut, shown as a dashed line. The amplitude is proportional

to trygyk.

3.2 Intersecting D-branes

In this section we consider a different class of D-brane configurations leading
to chiral 4d fermions. Consider two stacks of D6-branes (denoted D6;- and
D6,-branes) in flat 10 space, intersecting over a 4d subspace of their world-
volumes, see figure 7a. A slightly more explicit picture of the configuration
is shown in figure 7b. The local geometry is determined by the three an-
gles 70; that relate the two D6-branes in the 6d space transverse to the 4d
intersection. For the following analysis, see [7].

Two such sets of D6-branes, intersecting at general angles, break all the
supersymmetries of the theory. The supersymmetries preserved by one of the
stacks are broken by the other, and vice versa. Consider the D6;-branes to
span the direction 0123456. The supersymmetry transformations unbroken

by these D6-branes are of the form €,Q) + egQQr Wwith
EL:FO...PGGR (23)
where the subindices L, R denote the supersymmetries arising from the left

16
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Figure 7: Two picture of D6-branes intersecting over a 4d subspace of their vol-

umes.

or right movers. Denoting by R the SO(6) rotation rotating the D6;-branes

to the D6y-branes, the supersymmetries unbroken by the latter are
e, = RITY...T®Rep (24)

where here R denotes the action of the rotation in the spinor representation.

In general, there are no spinors surviving both conditions. However,
for Special choices of the angles 6;, i.e. of the rotation R, there may exist
solutions to the above two conditions. In fact, it is easy to realize that if
R is a rotation in an SU(3) subgroup of SO(6), there is one component of
the spinor which is invariant under R, and both condition become identical.

Therefore, intersections of D6-branes related by angles 6; satisfying
0, + 0, + 05 =0 (25)

for some choice of signs, preserve 4 supercharges (1/4 of the supersymmetries
preserved by the first stack of branes). This is the equivalent of 4d N =
1, hence we may expect these configurations to lead to chiral 4d fermions.
We will check below that this is indeed the case. Notice also that if the
rotation is in a subgroup of SU(2) (e.g. 6; £ 6, = 0, 63 = 0), the system
preserves more spinors, in fact 8 supersymmetries, the equivalent of 4d N' = 2

supersymmetry.
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Let us compute the spectrum of open strings in the above configuration
of two Intersecting stacks of D6-branes, at generic angles #;. Consider open
strings stretching among the N; D6;-branes. This sector does not notice the
presence of the second stack, so gives the same answers as for isolated D6-
branes. We obtain U(V;) gauge bosons and their superpartners with respect
to the 16 unbroken supersymmetries, propagating over the 7d volume of these
D6-branes. For the sector of open strings stretching among the N, DG6,-
branes, we similarly obtain U(N;) gauge bosons and their partners (under
the 16 susys unbroken by the second D6-branes; notice these are not the
same susy as above), propagating over the 7d volume of these D6-branes.

The novelty arises in the sector of open strings stretching between D6;-
and D6s-branes. This sector feels both branes, and hence notices the amount
of supersymmetry preserved by the two-stack system. We thus expect the
spectrum in this sector to be non-supersymmetric for generic angles ¢;, and
to gather into supermultiplets only for a constrained set of angles. Let us
carry out the quantization of the sector of 6,6, open strings. The only differ-
ence with respect to other open string sectors is in the boundary conditions.
Consider two coordinates X;, X5 in a two-plane in which the D6-branes
are rotated by an angle . The boundary conditions for the corresponding

worldsheet fields for an open string are

05 X1|s=0 =0
91 Xa|o=0 =0
cosmh 0, X1 + sinmh 0, X|y—¢ = 0
—sinwh ;X1 + cosmh 0;Xs|,—¢ = 0 (26)

In complex coordinates Z = X; + i.X5, we have

0y (ReZ)|s=0 =0

18



0;(ImZ)|y—0 =0
9y(Ree®Z)|,—y =0
0;(Ime®? Z)|,—¢ = 0 (27)

Imposing these boundary conditions on the open string oscillator expansion
leads to the constraints that: the center of mass position of the open string
is located at the intersection point; momentum and winding are necessarily
zero; oscillators have moddings shifted by +6. Applying this rule to the three
complex coordinates corresponding to intersecting D6-branes, we obtain os-
cillators o, 4., a;,_s. for the complexified 2d bosons, and W, 4, U} ., _,
for the 2d fermions, with n € Z and v = 1/2,0 for the NS and R sectors.
The computation of the spectrum is formally similar to the computation of
the spectrum on the left movers in an orbifold. In particular the fractional
modding of oscillators introduces a modified vacuum energy. The final re-

sult for the spectrum, centering on light states, is as follows (we assume

0; € (-1/2,1/2))

Sector State o' M? 4d Lorentz
NS L 040,10) (=01 + 6> + 65) Scalar
2, )216,10) (61 — 62 + 05) Scalar
‘1’?11/2+03 0) (01 + 6, — 65) Scalar
UL 6,921 /210, Y2 1 /010, [0)  212(01 + 02 + 05) Scalar
R [0)r Weyl spinor

All these fields propagate on the 4d intersection of the two D6-branes, and
transform in the bifundamental representation (N;, Ny) of the gauge group
U(Ny) x U(N,). The 656, open string sector is quantized analogously, and
in fact provides the antiparticles for the above fields. We see that generi-
cally bosons and fermions are unpaired, and only when the angles define a

rotation in SU(3) one of the bosons becomes massless and pairs up with the
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4d fermion in the R sector, to give a 4d chiral multiplet. Notice that in the
non-supersymmetric case, the scalars in the NS sector may have positive or
negative mass square. If all scalars have positive mass square, the configu-
ration of intersecting branes is stable. On the other hand, the existence of
some tachyonic scalar signals an instability against a process in which the
intersecting D6-branes recombine into a single smooth one. We will not say
much more about this interesting process.

The important point in the above construction is that it provides a new
setup with D-branes containing non-abelian gauge symmetries and charged
chiral fermions. We now briefly describe how to exploit it in the construction

of 4d models. For a review, see [8].

Although intersecting D6-branes provide 4d chiral fermions already in
flat 10d space, gauge interactions remain 7d and gravity interactions remain
10d unless we consider compactification of spacetime. Hence, the general
kind of configurations we are to consider (see figure 8) is type IIA string
theory on a spacetime of the form M, x Xg with compact Xg, and with
stacks of N, D6,-branes with volumes of the form M, x II,, with II, C Xg
a 3-cycle. It is important to realize that generically 3-cycles in a 6d com-
pact space intersect at points, so the corresponding wrapped D6-branes will
intersect at M, subspaces of their volumes. Hence, compactification reduces
the 10d and 7d gravitational and gauge interactions to 4d, and intersections
lead to charged 4d chiral fermions. Also, generically two 3-cycles in a 6d
space intersect several times, therefore leading to a replicated sector of opens
strings at intersections. This is a natural mechanism to explain/reproduce
the appearance of replicated families of chiral fermions in Nature!

Denoting the 3-homology classes of the wrapped 3-cycles by [IL,], the
intersection number is computed I, = [I1,] - [II;], computed as described in

the lecture on topology. The 4d spectrum on the resulting configuration is
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Figure 8: Compactification with intersecting D6-branes wrapped on 3-cycles.

easy to obtain. From the sector of open strings strecthing among the D6,-
branes, we obtain the KK reduction on II, of the 7d U(NV,) gauge bosons and

7. From the sector

partners. In general we obtain 4d U(N,) gauge bosons
of open string stretching between the a'® and b stacks of D6-branes, we
obtain a chiral 4d fermion in the bifundamental for each intersection of the
corresponding 3-cycles. There are in general additional light scalars, which
may become massless if the intersection is locally supersymmetric (ie the
intersection angles define a rotation in SU(3)). Taken overall, the (chiral

part of the) 4d spectrum is

Gauge  TI,U(N.)
Left.Ch.Fm. >, Lo (T, D) (28)
We note that a negative intersection number indicates the fermions have the
opposite chirality.

These models have to satisfy some consistency conditions, namely can-
cellation of RR tadpoles. The D6-branes act as sources for the RR 7-forms

"Plus some partners if the 3-cycle II, is special lagrangian, i.e. the wrapped D-brane

preserves some supersymmetry. We will not enter into this discussion.
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via the disk coupling fy. C7. The consistency condition amounts to requir-
ing the total RR charge of D-branes to vanish, as implied by Gauss law in
a compact space (since RR field fluxlines cannot escape). The condition of
RR tadpole cancellation can be expressed as the requirement of consistency
of the equations of motion for RR fields. In our situation, the terms of the
spacetime action depending on the RR 7-form C; are

SC’? = / Hg/\*Hg—{—ZNa/ 07:
MyixXg a My

x1lg

_ /MMXG Cr A dH, + 30 Ny /M4 Cy A 6(1,) (29)

XXG

where Hg is the 8-form field strength, H, its Hodge dual, and §(II,) is a

bump 3-form localized on II, in Xg. The equations of motion read
dH, = Z N, o(I1,) (30)

The integrability condition is obtained by taking this equation in homology,
yielding

[Htot] = Z Na [Ha] =0 (31)

As usual, cancellation of RR tadpoles in the underlying string theory con-
figuration implies cancellation of four-dimensional chiral anomalies in the

effective field theory in our configurations.

Let us provide one simple example, obtained by taking Xg = T®, and
a simple set of 3-cycles. We consider Xg to be a six-torus factorized as
T® = T2 x T? x T2. Also for simplicity we take the 3-cycles II, to be given
by a factorized product of 1-cycles in each of the 2-tori. For a 3-cycle I1,, the
1-cycle in the " 2-torus will be labeled by the numbers (n,m!) it wraps

along the horizontal and vertical directions, see figure 9 for examples.
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Figure 9: Examples of intersecting 3-cycles in TS.

The intersection number is given by the product of the number of inter-

sections in each 2-torus, and reads
R B 1,1 2, 2 2,2 3,3 3,3
Iab - (namb - manb) X (namb - manb) X (namb - manb) (32)

To give one interesting example, consider a configuration of D6-branes on T®

defined by the following wrapping numbers

N =3 (1,2) (1,-1) (1,-2)
Ny=2 (1,1) (1,-2) (-1,5)
Ny=1 (1,1) (1,0) (-1,5)
Ny=1 (1,2) (-1,1) (1,0
Ns=1 (1,2) (=1,1) (2-7)
Ne=1 (1,1) (3,—4) (1,5)

The intersection numbers are

Ly=3 ILiz=-3 Iis4y=0 ILi5=0 Iig=-3
I3 =0 Iy =6 Iys=3 Ip=0 I33=—6
Iss = =3 I3g=0 I;s=0 I=6 I5s=3
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A U(1) linear combination, playing the role of hypercharge, remains mass-

less

Qr=-3Qi - 3Q - @~ Q (33)

The chiral fermion spectrum, with charges with respect to the Standard

Model - like gauge group, is

SUBB)x SU2) xU(1)y X ...
3(3,2)1/6 +3(3,1) 23 + 3(3, 1)1/3 + 6(1,2) 1o+
+3(172)1/2+6(171)1 +3(171)—1 +9(171)O (34)

Notice however, that the model contains additional U(1) factors and other
gauge factors, as well as matter beyond the context of the Standard Model.

In any event this general setup therefore allows the construction of a
large class of models with 4d gravitational and non-abelian gauge anomalies,
and charged chiral fermions. We leave their more detailed discussion for the
interested reader (see [8] for a review) and simply point out that, although
most models constructed in this setup are non-supersymmetric, there exist

several explicit supersymmetric examples in the literature.

4 Final comments

The main message of this lecture is that there exist constructions in string
and M-theory which have the potential of leading to low-energy physics very
close to that observed in Nature. Perturbative heterotic string are simply
one such setup, but there are others, like compactifications of Horava-Witten
theory, or models with D-branes. There is life beyond perturbative heterotic

theory!
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The novelty about these new setups is that they have localized gauge
sectors, and hence allow for fundamental scales not directly tied up to the 4d
Planck scale, and can even be significantly lower then the latter. In models
with a too low fundamental scale, there may be dangerous processes, like too
fast proton decay. In many of the D-brane models above, there exist some
symmetries which forbit this violation of baryon number.

The models are also interesting in that they provide an essentially new
way to obtain gauge symmetries and chiral fermions in string theory. In
particular this can be exploited to imagine new sources for the hierarchy of
Yukawa couplings and fermion masses in the standard model.

Besides these novelties and successes, it is however important not to loose
perspective and recognize that the models still leave many unanswered ques-

tions.

e If supersymmetry is present, how to break supersymmetry? If not,
how to stabilize moduli at values that may correspond to (seemingly

unnatural) large volumes?

e The moduli problem: Or how to get rid of the large number of mass-
less scalars which exist in many compactifications in string theory (and
whose vevs encode the parameters of the underlying geometry and

gauge bundle (like sizes of the internal manifold, etc)).

e The vaccum degeneracy problem: Or the enormous amount of consis-
tent vacua which can be constructed, out of which only one (if any
at all) is realized in the real world. Is this model preferred by some
energetic, cosmological, anthropic criterion? Or is it all just a matter

of chance?

e The cosmological constant problem, which in general is too large once
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we break supersymmetry. Does string theory say anything new about
this old problem?

As one can notice, the list is ‘isomorphic’ to the one we had in perturba-
tive heterotic models. This means that certainly these are difficult problems
which permeate any model buiding setup in string theory. Clearly we need
better theoretical understanding of new aspects theory. This is not impos-
sible, however, as for instance there are recent proposals to stabilize most
compactification moduli by studying compactifications with non-trivial field
strength fluxes for p-form fields [10]. Thus the above problems, which are
central questions in string phenomenology, will hopefully solved perhaps by

next-generation students like you!
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