Non-perturbative effects in (weakly
coupled) string theory

1 Motivation

We have seen that non-perturbative states are very important in the structure
of string theory at finite string coupling. In this lecture we will discuss that
non-perturbative states are also essential even in the weakly coupled regime
in certain situations, in which the purely perturbative sector of the theory is
incomplete and leads to divergent answers for physical quantities.

There are different situations of this kind in string theory. In this lecture
we center on two particular examples: enhanced gauge symmetries in type
ITA /M-theory on K3, and conifold singularities in Calabi-Yau compactifica-

tions.

2 Enhanced gauge symmetries in type ITA
theory on K3

2.1 K3

K3 is the only compact topological space with four dimensions admitting a
Calabi-Yau metric, i.e. of SU(2) holonomy (besides the four-torus T#, which
has trivial holonomy). We now state without proof some of its properties,
see [1] for a more extensive discussion.

Its Hodge numbers are
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The lattice of homology classes (with integer coefficients) turns out to be
even and self-dual. We can split the corresponding harmonic forms in self-
dual and anti-self dual forms, with respect to the 4d metric. This introduces
a signature in the homology lattice, with 20 self-dual forms (given by 19 of
the (1,1) forms and a linear combination of the (0,0) and the (2,2) forms)
and 4 anti-self-dual forms (one (1, 1) form and a combination of the (0,0) and
(2,2)). Hence, the (integer) homology of K3 has the very suggestive form of
a even self-dual lattice with a lorentzian (20, 4) signature.

The moduli space of Calabi-Yau metrics on K3 is 58-dimensional. There
are 38 parameters specifying the complex structure on K3 (i.e, telling us how
to cook up comlex coordinates starting from real ones), and 20 parameters
specifying the Kahler class.

At particular points (or more precisely, at some locus) in this metric
moduli space, K3 develops singularities, which are always of orbifold type *
C?/T, with T" a discrete subgroup of SU(2). This limits correspond to points
in moduli space where some 2-cycles within K3 have been tuned to zero size,
see figure 1. The simplest such situation is C2/Z,, where just one 2-cycle
collapses to zero size.

Notice that tuning more parameters, one can go to a limit where the
whole K3 has the form of a toroidal orbifold, of the kind studied in the

!That is, the only singular local geometries that are consistent with SU(2) holonomy
are of orbifold type. In three complex dimensions there exist singularities consistent with

SU(3) holonomy, which are not of orbifold type.



Figure 1: In K3, singularities arise when some 2-cycles are tuned to have zero

size.

lecture on orbifold compactification. For instance, there exist points in the
moduli space of metrics in K3 where it is of the forms T? /Z2, At each of the
16 fixed points of the orbifolds the local geometry is C?/Zy and there is a

zero size 2-cycle.

2.2 Type ITA on K3

We are interested in studying compactification of type ITA theory on K3.
Since K3 has SU(2) holonomy, each 10d gravitino leads to one 6d gravitino.
The resulting 6d theory has therefore 16 unbroken supercharges and (being
non-chiral) corresponds to 6d N = (1, 1) supersymmetry. The main massless
supermultiplets are

e the gravity multiplet, containing the graviton G,,, a 2-form B, a
real scalar ¢, four gauge bosons A,, two gravitinos ¥4, ¥4, and two Weyl
fermions v, 14, all of opposite chiralities.

e the vector multiplet, with one gauge boson A,, four real scalars, and
two Weyl fermions of opposite chiralities.

As usual, it will be thus enough to identify the bosonic fields in the 6d

theory, since the fermions simply complete the supermultiplets.

Since K3 is curved (unless we are sitting at the point of moduli space



corresponding to some global orbifold geometry) the 2d worldsheet theory
is not free, and we can discuss compactification only in the supergravity
approximation. This will provide the spectrum in the limit where all length
scales in K3 are large (in particular all 2-cycles are large), usually refered to
as large volume regime. Denoting ¥, the 22 (2,2) 2-cycles, II, II the (2,0)
and (0,2) 2-cycles, and II, the 20 (1,1) 2-cycles, the Kaluza-Klein reduction

of the massless 10d bosonic fields gives

ITA Gravity Vector
G — G 38+20 scalars
B — By Js, B
o — ¢
A - Ay
Cy — (s, J5Cs, J5Cs fna Cs

We thus obtain the 6d N = (1,1) supergravity multiplet and 20 vector
multiplets (with gauge group U(1)%).
The structure of the moduli space is (locally) of the form

SO(20,4)
SO(20) x SO(4) (1)

In principle this can be determined from supergravity, in the large K3 volume
regime. However it turns out to be completely determined by supersymmetry,
so it is exactly of this form (locally), with no o' or g, corrections. The
above structure is related as we know to the moduli space of 24-dimensional
(20,4) lorentzian even self-dual lattices up to rotations within the 20d and
4d signature eigenspaces. In K3, it can be regarded as the moduli space of
ways of splitting the 24d lattice of homology classes into sublattices of self-
dual and anti-self-dual forms. More technical considerations involving mirror

symmetry moreover allows to determine the global structure of moduli space



of ITA on K3 [2], which turns out to be
S0(20,4) @)
S0(20) x SO(4) x SO(20,4;Z)

2.3 Heterotic on T* / Type ITA on K3 duality

This is a prototypical example of string duality below ten dimensions. Let
us provide a list of supporting evidence for it; for details, see [3, 4].

e The spectrum of heterotic string theory on T (either for the Eg x Fjg
or the SO(32) theories, since they are equivalent upon toroidal compact-
ification) , at a generic point of its moduli space (see lecture on toroidal
compactification of superstrings) is given by the 6d N' = (1,1) supergravity
multiplet and 20 vector multiplets (with gauge group U(1)?°). The bosonic
fields arise from G ., B,., ¢, the 24 abelian gauge bosons G, By, A,{a and
the 80 scalars Gyun, Bun, AL, withm =1,...,4, I =1,...,16.

e The structure of the moduli space of both theories agrees, even globally.
As we know, T* compactifications of heterotic string theory have (2) as their
moduli space (with the lattice corresponding to the Narain lattice of left-
and right-moving momenta).

e The low-energy effective actions of bothe theories is the same, up to
a redefinition of the fields. Defining the 6d dilaton by e=2%¢ = Vy,e 2%,
with Vx, the volume of the internal space, the actions agree up to the field

redefinition

s =¢s ; Hs = ¢ %% x4 Hy

G =e¥qG ; Al =A! (3)
The relations work as above in any direction of the duality. The above
mapping implies that when the ITA theory has large 6d coupling, it admits

a dual perturbative description in terms of weakly coupled heterotic strings,

and vice versa.



e The spectrum of BPS states agrees in both theories. For instance,

Heterotic on T4 Type IIA on K3
F1 —> NS5 wrapped on K3
NS5 wrapped on T* +— F1
momentum k; D2 wrapped on any
winding w; — of the 22 2-cycles or
momentum Py DO, or D4 wrapped on K3

The tensions of these objects agree, and objects related as above have
equivalent world-volume field theories.

The fundamental string of one theory corresponds to the wrapped five-
brane of the other. Namely starting with the ITA theory and going to the
limit of large 6d coupling the wrapped fivebrane becomes weakly coupled and
sets the lightest scale, hence dominating the dynamics. In fact, it is possible
to see that the world-volume theory on this wrapped fivebrane is that of a
heterotic string (and viceversa of the IIA F1 vs the heterotic NS5).

2.4 Enhanced non-abelian gauge symmetry

The above duality suggests that there must exist an interesting phenomenon
at particular points (loci) in the moduli space of type ITA on K3. Indeed,
at particular points (or rather, subspaces) of the moduli space of heterotic
theory on T%, some abelian gauge symmetries get enhanced to non-abelian
ones. Recalling the left-moving spacetime mass formula
p2

o M?/2 = Ng+ 7L -1 (4)

we see that when the parameters are tuned such that some state has P? = 2,

we get two new massless state, corresponding to +Pp. They corresponds to
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a 6d vector multiplet, and carry charges +1 under some linear combination
of the U(1) gauge factors in the generic gauge group. Thus, they enhance
the corresponding U(1) gauge group to SU(2).

This process has clear generalizations. If the parameters are tuned in such
a way that additional states reach P2 = 2, then we obtaine enhancements to
larger gauge factors. In general, any non-abelian gauge symmetry with Lie
algebra of type A, D or E (or products thereof) and rank < 24 is possible
(Note that only these algebras are possible since they are the only ones with

all roots of length square equal to 2).

The states becoming massless are BPS states, so we know that there are
new massless states in heterotic theory, even at strong coupling. By duality,
this implies that type IIA must have enhanced non-abelian gauge symmetries
at particular points in K3 moduli space, even at weak coupling. This is a
very surprising conclusion: we have seem that compactification of type IIA
theory on large and smooth K3 spaces leads to abelian gauge symmetries.
Moreover one can use 2d conformal field theory tecniques to show (exactly
in o/) that any regular conformal field theory describing propagation of ITA
string theory on K3 necessarily leads only to abelian gauge symmetries.

Interestingly enough, it is possible to show that there are points in moduli
space of K3 where the 2d conformal field theory breaks down, i.e. the pertur-
bative prescription to compute things in string theory gives infinite answers.
Hence we suspect that it is at these points in moduli space where non-abelian
gauge symmetries may arise, due to non-perturbative effects (present even
at weak coupling!). These points in moduli space correspond to K3 geome-
tries where some 2-cycle is collapsed to zero size and where the integral of B
along the 2-cycle vanishes. The simplest situation corresponds to geometries
with one collapsed 2-cycle C' on which [, B = 0. As discussed above, this

corresponds to the geometry of a local C?/Z, orbifold singularity.



Now it is easy to identify how gauge symmetry enhancement occurs. The
6d theory contains a U(1) gauge boson arising from [, Cs. The theory con-
tains 6d particle states charged under it with charges 41, arising from D2-
branes wrapped on C' (with the two possible orientations). It is possible to

see that these states are BPS 2, and their mass is (exactly) given by

Ve + bl
9gs

M (5)

where V> denotes the volume of C' and b = [, B. Hence, at the point or zero
size and zero B-field the D2-brane particle is exactly massless, no matter how
small the string coupling is. This effect is very surprising, since we see that
the non-perturbative sector of the theory leads to significant effects (new
massless particles!) even in the weak coupling regime. It is reasonable (and
correct) to guess that these new particles in 6d belong to vector multiplets
N = (1,1) supersymmetry, and therefore enhance the gauge symmetry from
U(1) to SU(2). Clearly, these D2-brane particles are the duals to the P? = 2
states in heterotic theory. Note that this is in agreement with the mapping
of BPS states proposed above.

Several comments are in order

e Notice that in the ITA picture we have perturbative states (the U(1)
gauge boson) and non-perturbative ones (the D2-brane particles) on an equal
footing. Indeed, they are related by an exact gauge symmetry of the theory.

e In the above discussion we used heterotic/ITA duality to motivate the
appearance of enhanced gauge symmetries in ITA compactifications on K3.
However, the whole argument about the appearance of new massless charged

states could have been done based simply on our knowledge of D-branes and

2Understanding this requires some discussion of the supersymmetry unbroken by D-
branes wrapped on cycles in Calabi-Yau space. We chose to skip this discussion for our

introductory overview.



the BPS formulae, without any use of string duality. Clearly, we have enough
understanding of non-perturbative states in string theory to look for them
without help from duality, as we will do in next section.

e Once the additional multiplet of non-perturbative origin is included,
the physics of the configuration is completely non-singular. Equivalently,
the divergent behaviour of the perturbative sector can be understood as
due to incorrectly not including all the massless fields in the dynamics (as
often stated, due to integrating out (= to not incluing) the non-perturbative
state, incorrectly since it is a massless state that clearly must be included in
discussing the low energy dynamics of the system).

e Let us emphasize again that this non-perturbative effect takes place no
matter how small the string coupling is.

e The point Vo = 0, b = 0 is singular from the viewpoint of the 2d world-
sheet theory, which only sees perturbative physics. This may seem puzzling
at first sight: In the lesson on orbifold compactification we studied orbifold
singularities with cycles collapsed to zero size, and they were perfectly well
described by simple (in fact, free) 2d worldsheet theories. The key difference,
realized in [5], is that the orbifold describe by a free 2d worldsheet theory
corresponds to a point in moduli space where Vg = 0 but b # 0 (in fact
b = 1/2 for C2/Z5). In this situation, the D2 particle is very massive at
weak coupling, and the perturbative description is accurate and non-singular
(gives finite answers for all observables in the theory).

e There is a generalized version of this that explains other non-abelian
gauge symmetry enhancements. There is a classification of C2T singularities
with T" a discrete subgroup of SU(2). In this classification there is an infinite
A series (corresponding to cyclic Zy groups), and infinite D series (dihedral
groups) and an E series with three groups (denoted Eg, E7, Eg). When
parameters of K3 are tuned so that it develops a C2?/T" singularity of A,



D, E type (with zero B-fields over the collapsed 2-cycles), non-perturbative
states become massless and enhance the gauge symmetry to the correspond-
ing A, D, E gauge group. This provides the IIA dual to the configurations
of enhanced gauge symmetries in heterotic compactifications. Moreover, it
also establishes a 'physics proof’ of the so-called McKay correspondence in
mathematics, which establishes a relation between the geometry of orbifold

singularities C?/T" and Lie algebras.

2.5 Further comments

It is interesting to consider dual realizations of this gauge symmetry enhance-
ment. Indeed, we will find out that it is related to a very familiar phenomenon
we have already encountered.

The local geometry of C2/Z, is identical to that of a 2-center Taub-NUT
geometry in the limit where the two centers coincide. In fact, it is possible to
display the 2-cycle collapsing to zero size in quite an explicit way, see figure
2a. Both spaces differ only in their asymptotic behaviour at infinity, but
this is not important for the phenomenon of gauge symmetry enhancement.
Therefore, we conclude that multi - Taub-NUT spaces develop enhanced
gauge symmetry when two centers coincide, and the B-field is tuned to zero.

Performing now a T-duality along the isometric direction in the Taub-
NUT space, the two centers of the Taub-NUT geometry turn into two par-
allel NS5-branes of IIB theory, sitting at points in the transverse R%. Their
separation in R3 is determined by the volume and B-field of the T-dual 2-
cycle. The non-perturbative D2-brane state now corresponds to a D1-brane
stretched between the NS5-branes, which clearly becomes massless when the
NS5-branes coincide. Performing now an S-duality on this configuration we
obtain two Db-branes; the state related to the original D2-brane is now a

fundametnal string stretched between the Db5-branes. In this language, the

10



a)

b)
ﬂ@o;ﬁi@?&?m TS A
R3 s

|
TN center TN center D> D>

Figure 2: The S! fibration over a segment joining two centers in a multi Taub-
NUT geometry defines a homologically non-trivial 2-cycle with the topology of a
2-sphere. Its volume vanishes as the two centers of the Taub-NUT are tuned to

coincide.

exotic phenomenon of enhanced symmetry due to the D2-brane state is the
familiar phenomenon of enhancement of 6d gauge symmetry on the volume of
Db5-branes when they are coincident, due to the appearance of new massless

open (fundamental) strings, see fig 2b.

We would like to conclude by briefly mentioning that compactification
of type IIB theory on K3 leads to even more exotic physics [6]. Type IIB
theory does not contain abelian U (1) gauge symmetries associated to 2-cycles.
Rather it contains abelian 2-forms, arising from the KK reduction of Cj,
belonging to tensor multiplets of 6d N = (2,0) supersymmetry. Similarly,
IIB theory does not have D2-brane states and hence does not lead to new
massless particles in K3 with collapsed 2-cycles and zero B-field. Instead it
leads to BPS tensionless string states, charged under the 2-form fields, arising
from D3-branes wrapped on the collapsed 2-cycles. This surprising answer
is completely consistent with T-duality with the type IIA answer, once we
compactify both IIB and IIA on a further circle. Winding states of these I1B

tensionless strings are mapped by T-duality to momentum states of the ITA
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massless particles.

These configurations can be used to define exotic theories in 6d if we take
the limit of decoupling gravitational interactions. In particular, they can be
used to define the so-called (0, 2) superconformal field theoty, or the so-called
little string theory. Their discussion is however beyond our scope in these

lectures.

3 Type IIB on CY3; and conifold singularities

We now have enough understanding of BPS states in string theory to analyze
non-perturbative effects in other situations, even without the help from string

duality. For this section see [7].

3.1 Breakdown of the perturbative theory at points in

moduli space

Recall that type IIB on Calabi-Yau threefolds, with Hodge numbers (hy 1, ho 1),
gives rise to the /' = 2 4d supergravity multiplet, (h; 1+ 1) vector multiplets
and hg; hypermultiplets. The latter two kinds of multiplets contain scalars
spanning a moduli space. We are interested in looking for regions in this
moduli space where non-perturbative effects may be relevant, even at weak
coupling.

There is a non-renormalization theorem for 4d N' = 2 supersymmetry
that ensures that (to all orders in perturbation theory) the geometry of the
moduli space of vector multiplets (the moduli space metric, which controls
the kinetic terms of moduli in the effective action) does not depend on scalars
in hypermultiplets, and vice versa. In type IIB, both the dilaton and the
overall volume of the Calabi-Yau belong to hypermultiplets. This implies

12



that the geometry of the vector multiplet space does not depend on the
dilaton (i.e. does not suffer any quantum corrections in gs) or on the volume
scalar (i.e. does not suffer any o//R? corrections). The moduli space metric
determined in the classical supergravity approximation is exacty in g, and
o

On the other hand it is known that there are points in the moduli space
of complex structures (i.e. vector multiplet moduli space) of Calabi-Yau
manifolds where the effective action obtained from supergravity is singular.
Since we have argued that the supergravity result is exact, there is no o/
or g, correction (to any order in perturbation theory) which removes this
singularity. This means that even the o/-exact worldsheet theory (describing
compactification on the Calabi-Yau space at this point in complex structure
moduli space) is singular, and gives divergent answers for certain physical
quantities.

This breakdown of the perturbative prescription suggests that at this
points in moduli space there is some non-perturbative effect playing an es-
sential role, even if the string coupling is weak. Our aim in this section is to

discuss this effect.

3.2 The conifold singularity

Let us discuss, the generic, simplest, case where compactification on a CYj3
leads to a breakdown of the perturbative theory. It corresponds to sitting at
a point in complex structure moduli space, such that the CY3 has a region
which locally develops a so-called conifold singularity. Namely, a piece of the
CY3 can be locally described as the complex hypersurface in C* given by the

equation

(21)” 4 (22)* + (23)° + (z)” = € (6)
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Figure 3: Tuning a modulus in the Calabi-Yau geometry, a 3-cycle shrinks and

the geometry develops a conifold singularity.

The complex structure modulus is described by the parameter ¢, and the
problematic configuration corresponds to tuning ¢ — 0.

The above geometry corresponds, as € — 0 to a local singularity, which is
not an orbifold, but still is quite simple and well-knonw to mathematicians
(algebraic geometers). It is possible to see that the geometry (6) contains
a 3-cycle with the topology of a 3-sphere of size controlled by |e|. Namely,
let € = |e[e, and define 2} = ze /2. If we let z; = Re 2!, y; = Im 2}, the

3-sphere is given by
yi=0 ,  (21)"+ (22)" + (23)° + (24)* = |¢ (7)

As e — 0 the 3-cycle C collapses to zero size (see figure 3). In the configura-
tion with a zero size 3-cycle, the perturbative theory breaks down.

The cure of the problem is now clear. Type IIB string theory on this CYj3
contains non-pertubative particle states arising from D3-branes wrapped on
the 3-cycle C. It is possible to see that this state is BPS ? and that its mass

3The 3-cycle has the property of being Special lagrangian, which implies that D-branes

wrapped on it preserve some of the supersymmetry unbroken by the CYs3.
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is given by
vl
s

(8)
Thus it becomes massless precisely when ¢ — 0, suggesting that this states
solves the problem of the perturbative sector, as is indeed the case.

An important difference with respect to the case of IIA theory on K3, is
that the massless states belong to hypermultiplets of A = 2 4d supersymme-
try. They are charged under the (perturbative) U(1) gauge symmetry arising
from [, Cy. Therefore the effective action for the light modes in this region
in moduli space, is simply a U(1) vector multiplet coupled to a charged hy-
permultiplet of mass equal to e. In N' = 1 susy language, we have a U(1)
vector multiplet V', a neutral chiral multiplet ® (whose vev corresponds to €)

and two chiral multiplets of H, H' of charges +1. The action is of the form1
L = / POW W, + / d'0 (H'eVH — H''e" H') + / 20OHH'  (9)

This is a perfectly nice an smooth effective action. However, integrating out
the massless fields H, H' leads to the singular behaviour of the perturbative
sector. The pathological behaviour of the perturbative theory can be re-
garded as a consequence of missing important dynamical degrees of freedom
in the low energy dynamics.

Again, let us emphasize that the appearance of these non-perturbative

states takes place no matter how small the string coupling is.

3.3 Topology change

For this section see [8].
We have seen that the conifold geometry can be regarded as a limit of
a smooth geometry (6), containing a 3-cycle, in the limit where the 3-cycle

collapses to zero size. Mathematically, the conifold geometry can also be
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Figure 4: Topology change in the neighbourhood of a conifold singularity. Starting
with a finite size S3 we tune a modulus to shrink it; at this stage massless state

appear; a vev for them parametrizes growing an S2 out of the conifold singualrity.

regarded as a limit of a (different) smooth geometry, containing a 2-cycle, in
the limit where the 2-cycle collapses to zero size (and the B-fieldthrough it
is tuned to zero).

To understand this better, consider the equation (6) for ¢ = 0 in terms of

z; = Re z;, y; = Im z;. We get
?—y* =0 , z2z-y=0 (10)

where x, y are 4-vectors with components x;, y;. Equivalently, introducing a

new variable r taking positive values, we have
x=r" 5 y'=r°,z-y=0 (11)

The first equation implies that = describes a 3-sphere of radius r, while the
last equations implies that y describes a 2-sphere of radius . The geometry
of the conifold is a cone, with base S x S? and radial coordinate r. At r =0
both the 3-sphere and the 2-sphere have zero size.

The manifold (6) for non-zero € corresponds to a smoothing of the conifold

singularity by replacing the singular tip of the cone by a finite size 3-sphere,
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as illustrated in 4. This process is called deformation of the singularity. As
mentioned above, there is also the possibility of smoothing the geometry by
replacing the singular tip of the cone by a finite size 2-sphere, as illustrated
in figure 4. This process is called small resolution of the singularity, and

mathematically the smooth space is described by the equations

z2x +wyy =0

w_r+z2;y=0 (12)

in C* x Py, where C* is parametrized by 24+ = 21 £i20, we = (23 £i24), and
P, is parametrized by (x,y) (with the equivalence relation (z,y) ~ A(z,y)
with A € C*. The above equations define a smooth space, which is the same
as the conifold singularity except at the tip of the cone. Namely, for each
non-zero value of z4, wy, the above equations define a unique point, so the
resolved space has a 1-1 mapping to the conifold singularity (away from the
thip). When 2. = wy = 0, then (z,y) are unconstrained and instead of just a
singular point we obtain a whole P;. The resolved conifold thus corresponds
to a smooth space, containing a 2-sphere, given by the P;. When its size
goes to zero, the space becomes the conifold singularity.

Starting with a deformed conifold, we can imagine the process of shrinking
the 3-cycle to zero size to reach the singular conifold geometry, and then
growing a 2-cycle to obtain a resolved conifold. This process changes the
topology of the space, since we have A(hy1,ho1) = (1,—1). This process
is possible mathematically, but only passing through singular geometries.
However, we have just seen that physically string theory is smooth even at the
singular geometry. Therefore it is reasonable to wonder whether string theory
can smoothly interpolate between the two topologically different geometries.

It can be shown that this is not really possible in the above situation,

where the CY3 has only one conifold point. The new geometry does not
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contain any 3-cycle, hence the low energy theory should not have any U(1)
gauge symmetry. This suggests that the transition to the new geometry must
be triggered by a vev for the massless charged hypermultiplet. However,
the field theory (9) does not have a flat direction where the multiplets H,
H' acquire non-zero vevs. This cannot be done due to the conditions to
minimize the scalar potential: these include the D-flatness constraint for the

U(1) gauge symmetry
[H|* = [H']* =0 (13)

and the F-flatness constraint

oW ,
5 = HH' =0 (14)

In other words, since in the Higgsing of U(1) the vector multiplet must eat
one hypermultiplet, we are left with not scalars whose vev parametrize the
new branch.

On the other hand, this kind of topology changing transitions are possible
at points in complex structure moduli space where the CY3 develops several
conifold singularities, such that the 3-cycles at the conifold points are not
homologically independent. For instance, we can imagine a CY3 with N
conifold singularities, with the property that the homology classes of the
corresponding 3-cycles add to zero in homology. In such situation the gauge
symmetry is U(1)V~!; equivalently there are N gauge bosons U(1)Y, but
there is a relation between them, namely their sum is identically zero. On the
other hand, we still get N independent charged hypermultiplets arising from
D3-branes wrapped on the N collapsing 3-spheres. So in N/ = 1 multiplet
language we have N pairs of chiral multiplets H;, H] with charges +¢’ under
the o' U(1) factor, witha=1,...,N and ¥, ¢’ = 0.

The effective theory for these field does have a flat direction where the
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fields H;, H! acquire vevs, as can be checked from the D- and F-term con-

straints in this case

Siq (HP—H) =0 , a=1,...N
> g HHY = 0 (15)

And there is a flat direction, corresponding to (H}) = v, (H;) = w, i.e. i-
independent vevs. More intuitively, we have N charged hypermultiplets to
Higgs U(1)¥~! vector multiplets. Clearly N — 1 hypermultiplets are eaten
in the Higgs mechanism, making the vector multiplets massive, while a last
hypermultiplet is left. The two complex parameters v, w correspond to vevs
for scalars in this overall hypermultiplet.

The geometric interpretation of this new branch is clear. Since there are
no massless U(1)’s, all 3-spheres have disappeared from the geometry. Since
there is a new massless hypermultiplet, there is a new 2-sphere. Indeed, there
are N new 2-spheres at the N conifold points, which have been resolved, but
the geometry forces the sizes of all these spheres to be equal *. String theory
has managed to smoothly interpolate 3 between the two topologically differ-
ent geometries, thanks to the crucial presence of massless non-perturbative
states! (figure 5).

Some comments are in order

e Let us emphasize again that, at least in this particular setup, string the-
ory is able to interpolate smoothly between spacetimes of different topologies.

In a sense, this is a more drastic version of the statement that geometry is

Tt would be a bit tricky to explain this, see [9].
5Notice that the topology change as we have discussed it is not really dynamical, but

simpy and adiabatic change as some parameters of the model are varied. However, it is
easy to imagine configurations where moduli change slowly with time, so that their vevs
evolve in time, and we are really moving in moduli space as time goes by. In this setup

the above topology change could occur dynamically during time evolution.
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Figure 5: Topology change in CY spaces with conifold singularities.

dynamical in theories with gravity. In string theory, even the topology of
spacetime is, to some extent, dynamical and can change.

e After the transition to the small resolution branch, the original hyper-
multiplet which was of non-perturbative origin, becomes just a perturbative
hypermultiplet arising from the KK reduction of 10d type IIB theory on a
CY, with a 2-cycle. This is a very striking phenomenon, but certainly it is
implied by our discussion of topology change.

e The topology changing transitions allow to connect the moduli spaces
of different CY compactifications. Indeed it has been checked that all known
Calabi-Yau manifolds are connected by this kind of transition (or general-
izations of it). This is conceptually very satisfying, and suggests that the
election of particular compactification is as dynamical as the choice of vevs
for some fields in a(n extended) moduli space.

e Finally, we would like to point out that there exist dual versions of this
phenomenon, where it looks much more familiar. For instance, there exists a
dual version in terms of heterotic theory compactified on K3xT?, where the
above process corresponds to simply deforming the internal gauge bundle of

the compactification.
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4 Final comments

There are two finals comments we would like to make

e Non-perturbative effects can be important in string theory even in the
weakly coupled regime. These effects are particularly crucial in situations
where the perturbative sector of the theory is singular.

e The ideas in this lecture suggest a powerful tool to determine new inter-
esting phenomena in string theory (and check its self-consistency). Namely,
cook up situations where some singular behaviour arises, and try to identify
what effects solve the problem Many new phenomena of string theory have

been uncovered using this idea, and many more lessons still wait to be learnt.
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