Non-perturbative states in string
theory

Some useful references for this lecture are [1, 2, ?].

1 Motivation

We have studied the main properties of string theory within the framework of
perturbation theory. We have uncovered very interesting formal properties of
the theory, and potential applications for model building of unified theories
of gauge and gravitational interactions.

In the following lectures we start reviewing several results of the re-
cent years on the structure of string theory beyond perturbation theory.
This is important i) to obtain information perhaps eventually leading to
a non-perturbative formulation of string theory, and ii) to determine non-
perturbative effects which may be important even at weak coupling.

In particular in this lecture we describe certain important non-perturbative
states in string theory (the so-called p-branes), their properties, and their im-
plications for string theory at the non-perturbative level (for instance, duality

properties, etc).

2 p-branes in string theory

Non-perturbative states are states in the theory which do not have a per-
turbative description, i.e. they do not correspond to oscillation states of the
string. Given that there is no definition of string theory beyond perturbation

theory, the main question is how to look for non-perturbative states.



The main tool to do so is to use the low energy effective theory to con-
struct them. The form of the supergravity effective actions, for large enough
number of supersymmetries, is fixed by supersymmetry up to some order in
the number of derivatives. Therefore it is valid even at finite coupling, if
the energy densities involved are not too large (low energies). We can thus
construct field configurations solving the supergravity equations of motion,
with the structure of a localized core and asymptoting to flat space. These
solutions describe classical excitations over the vacuum of the theory, which
is given by flat space. It is useful to regard them as the field background
created by a source sitting at the core of the solution. Unfortunately, super-
gravity is just an effective theory, and is clearly not enough to provide us
with a microscopic description of these objects.

First there is the approximation of taking the lowest order in alpha'.
Solutions will be reliable when the curvature lengths are larger than the
string length. Second, there is the approximation of describing the solutions
at leading order in g,. However, some reliable information can be extracted
from supergravity for some particular classes of solutions. This is the topic
of this lecture.

In particular we will center on solutions which preserve some supersym-
metry (and correspond to the so-called BPS states), and on properties of
the solutions which are protected by supersymmetry. Before entering this
discussion, let us describe the different kinds of objects we will deal with.

Detour on ¢-form gauge fields and charges

To describe them in a unified way, it will be useful to introduce, for each
(p + 1)-form field Cpy in the theory, with field strength (p + 2)-form H, o,
the corresponding dual (7 — p)-form C7_, with field strength (8 — p)-form
Hg_,, defined by Hg ,, = xH, 5.

An object with p spatial dimensions sweeps out a (p + 1)-dimensional



subspace W, of spacetime as it evolves in time. Such object is said to be
electrically charged under Cp, if the theory contains a coupling @ [y, ., Cpt1-

The terms containing Cj, 4, in the action are

[ Hywi A sHyi+Q /WW o= [ CoandxHyi+Q [ Cpa AS(Wyis) (1)

where 6(W,41) is the Poincare dual to the cycle W, 1, bump (9 — p)-form

with support on W,,,. The equation of motion reads

dHyp = Q5(Wpin) 2)

This implies that the flux of Hg , around a (8 — p)-sphere surrounding the

object in the transverse (9 — p)-dimensional space is

Hyy= [ dHsy=Q [ 6(Wp)=Q (3

S&-p

where B%P is the interior of the (8 — p)-dimensional sphere. Similarly, an
object with (7 — p)-dimensional volume W7_, is charged magentically under

Cp1 if it satisfies

Hp+2 = QI (4)

Sp+2

Notice that this implies that the object couples electically to the dual poten-
tical C7_,.

2.1 p-brane solutions

The main examples of elementary ! are the D-branes, the NS fivebranes, and

the fundamental strings.

The Dp-brane

Lin the sense that they carry charge under just one p-form field
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Figure 1: Two pictures of the p-brane as a lump of energy. The second picture

shows only the transverse directions, where the p-brane looks like point-like.

This solution exists in type IIB theory for p odd, in type ITA theory for
p even, and in type I theory for p = 1, 5; this kind of solution does not exist
for heterotic theories.

The solutions (see section 14.8 in [4]) have the form (for p < 6, so as to

have flat space asymptotics)

ds?> = Z(r) Y?n,dztde” + Z(r)2da™dz™
e = Z(r)B»2

prr
2(r) = 1+ ; o 7=gQaT P
Q
Hg_p = md(UOl)SSﬂn (5)

where £ = 0,....,p, m =p+1,...,9, r = 3, |2™? and d(vol)gs—» is the
volume form of the (8 — p)-sphere of unit volume.

The above solution has a core given by a flat (p+ 1) dimensional plane at
r = 0 and asymptotes to flat 10d space. See figure 1. The core describes an
object electrically charged under the RR field Cy, 4, with charge proportional
to ). This is very remarkable, since there is no perturbative state in string
theory charged under RR fields.



It is possible to compute the tension and charge using standard ADM

techniques in gravitational systems, and get the result

T} = () = - (4nal) (6)

9sK1o K1

Notice that the tension is inversely proportional to the string coupling, so
the state is non-perturbative, and is often referred to as soliton.

The solution is invariant under half of the supersymmetries of the vacuum
of the theory. It described a so-called BPS state. This implies the particular
relation between the tension and charge of the object, as we discuss below.

The fluctuations of the supergravity fields around the soliton background
contain a sector of fluctuations which are localized on the (p+1)-dimensional
volume of the soliton core. Since the soliton leaves 16 unbroken supersym-
metries, these fluctuations must arrange into supermultiplets of the corre-
sponding (p + 1)-dimensional supersymmetry. In fact, for Dp-branes in type
IT theory, they form a U(1) vector multiplet of 16 susys in (p+ 1)-dimensions
(e.g. for a type IIB D3-brane, a vector multiplet of 4d A/ = 4 supersym-
metry); this contains a U(1) gauge boson, (9 — p) real scalars, and a set of
fermion superpartners. On the other hand, for type I D-branes, the spectrum
of fluctuations is more complidated and will be discussed in later lectures,
using a simpler microscopic description.

These fluctuations localized on the soliton volume can be thought of as
field living on the brane world-volume. Moreover, their dynamics is related to
the dynamics of the soliton. For instance, the scalars on the brane volume are
goldstone bosons of translational symmetries of the vacuum, broken by the
presence of the soliton. As such, the vevs of these (9—p) scalars parametrize
the location of the brane in transverse (9 — p)-dimensional space. A fluctu-
ation leadint to non-constant profile for these scalars describes a fluctuation

where the brane volume is no longer flat. The low energy effective action



of these (p + 1)-dimensional fields (which is basically the Maxwell action
and kinetic terms for the scalars and fermions) is an effective action for the
dynamics of the brane.

There exist also multi-soliton solutions, where the field configuration has
several cores, localized at different positions z7* in the transverse space. The
interactions between the different soliton cores cancel as a consequence of
the BPS conditions, namely the gravitational attraction cancels agains their
’Coulomb’ repulsion due to their (equal sign) RR charges. Thus these static
configurations are solutions of supergravity. They are described by a bakc-
ground (5), with

prr
Z(r) = 1+ Z [z

—

(7)

and a more complicated form for Hg_,, with the property that integrated
over any (8 — p) sphere surrounding ™ = z7" gives Q.

The analysis of certain properties (e.g. the analysis of fluctuations around
the soliton background) of these multisoliton configurations is reliable only
if the inter-soliton distances are larger than the string length.

We would like to conclude by emphasizing that at weak coupling there
exists a microscopic description for Dp-branes, which will be the topic of
next lecture. The above facts and many other will be derived from this

microscopic description.

The NS5-brane
This 5-brane solution exists for type ITA and type IIB theories, and also
for heterotic theories; type I theory does not contain such states.

For type II theories, the solution (see page 182 in [4]) is of the form
ds® = nudztds” + Z(r)dz™dz™
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Hy" N5 = xgrg9dp (8)

For heterotic theories, it has a similar expression, since the background does
not excite the 10d gauge fields.

The solution describes a (5 + 1)-dimensional core, namely a 5-brane. It
is electrically charged under the NSNS 6-form dual to the NSNS 2-form.
Namely it is magnetically charged under the latter. The tension and charge

of the object can be computed to be

2m2al 22/
Tnss =55 Q@ ; Qnss=—750 (9)
gsK1o0 K1

The solution is invariant under half of the supersymmetries of the vacuum,
and so describes a BPS state. This implies the above manifest relation be-
tween the tension and charge of the object.

The spectrum of fluctuations localized on the brane volume fill out super-
multiplets under the unbroken supersymmetries. For the type IIA NS5-brane,
they form a 6d N' = (2, 0) tensor multiplet (containing a 2-form with 6d self-
dual field strength, 5 real scalars, and 2 Weyl fermions); for the type IIB
NS5-brane, they form a 6d N' = (1,1) vector multiplet (containing a gauge
boson, 4 real scalars and 2 Weyl fermions); for the Eg x Eg heterotic, they
form a 6d N/ = 1 tensor multiplet (containing a self-dual 2-form, 1 scalar
and 1 Weyl fermion) and hypermultiplet (containing 4 scalars and one Weyl
fermion); for the SO(32) heterotic, one 6d N = 1 vector multiplet (with
one gauge boson, and one Weyl fermion), one neutral hypermultiplet and
29 hypermultiplets charged under the 10d gauge group (this will more easily
determined in later lectures).

Other properties of the solution are analogous to those of D-brane. For

instance, the existence of multi soliton solutions, or the interpretation of
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Figure 2: An infinitely extended fundamental string is a source for supergravity
fields. The field configuration it excites is a solution of the supergravity equations
of motion, which corresponds to the 1-brane like configuration. The two are simply

different descriptions of the same object.

fluctuations as 6d fields describing the dynamics of the brane. An important
difference, however, is that there is no known microscopic description for
NSb5-branes at weak coupling. One intuitive explanation of this is that the
effective couplig constant g.;; = e? grows at the core of the soliton, no matter

how small the asymptotic coupling g; is.

Fundamental string

In addition to the above objects, there exist supergravity solutions pre-
serving half of the supersymmetries, and describing 1-branes electrically
charged under the NSNS 2-form, and with tension Tr; = (2a/)~!. This
object is not non-perturbative, and has the same properties as a fundamen-
tal string with infinitely extended flat worldsheet. The natural proposal is
that the supergravity solution is providing the field configuration excited by
a large macroscopic fundamental string, so does not correspond to a new
object. In this sense, the fundamental string is providing a microscopic de-
scription of the object we found in the ‘rough’ approximation of supergravity.
See fig 2.



This object exists for type IIA, type IIB and heterotic theories. The
reason why type I theory does not have a fundamental string sugra solution
is that the type I string is not a BPS state. In fact, BPS states are necessarily
stable, while the type I string can break.

2.2 Dirac charge quantization condition

Following an analysis similar to the discussion in section A.1, we can show
that in a quantum theory the electric and magnetric charges under a p + 1
form C,;; must satisfy a Dirac quantization condition.

Consider a p-brane charged electrically under Cp,4, i.e. the theory con-
tains a term Q [y, . Cpy1 in the action. In the presence of a (6 — p)-brane
coupling magnetically under Cj,,, the flux of the dual field strength H,
over an (p+2)-sphere surrounding the (6 — p)-brane in the transverse (p+3)-
dimensional space is

gp+2 Hpyo = Qnm (10)
Wrapping the p-brane over a SP™! in the equator of the above SP*2, see figure
2.2, the phase in the path integral can be written as an intergral of H,, over
a hemisphere. The change in the phase depending on which hemisphere one

chooses is

eA/C'=e/H—/H:e/H:e’11
Q o1 P Qe( S p+2 5o pi2) = Q goia L PT2 QcQy,(11)
In order to have a well-defined phase, we then need

QeQy, € 27Z (12)

If the theory contains dyonic objects, carrying electric and magnetic charges

at the same time, consistency requires
QeQr, — QmQ, € 27Z (13)
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At the level of supergravity these conditions are not visible. However,
they should follow form any consistent microscopic description of these soli-
tons (see lecture on D-branes). And they should hold in any consistent

quantum theory, so we explicitly require them to hold in our theories.

2.3 BPS property

In analogy with the discussion in the field theory setup in section A.2, the
10d supersymmetry algebras of the different string theories can be seen to
admit extensions by central charges, which is this case are tensorial. The
supersymmetry algebras have the structure

{Q4.QF = —264BP,Thy — 24 Z8B  (DH . THe) 0 (14)

B1-efhp+1

The operators Z,, are central charges, in the sense that they commute

1elip 41
with the ()’s and P,’s, but behave as tensors with respect to the generators of
the Lorentz group. They commute with the hamiltonian, hence are moduli-
dependent multiples of the (p + 1)-brane charge.

In a sector where just one of these central charges is non-zero, one can
go to the rest frame of the corresponding state and derive a BPS bound for
the tension of the corresponding p-brane object. Also, BPS states, i.e. states

saturating the bound, belong to short representations of the supersymmetry

10



algebra. This implies that they cannot cease to be BPS under continuous
deformations of the theory, and also that the dependence of their tension
with the moduli is exactly determined from the classical result (does not
change by quantum corrections or otherwise).

The p-brane states studied in section (2.1) are BPS states, in this sense.
This guarantees that, although they were constructed in the supergravity
approximation, they exist in the complete theory (once o/ and g5 corrections
are included), and their properties, charge and tension are exactly knonw as

function of the moduli.

Going through the list of string theories and brane states, the conclusion
is that for any string theory, the theory contains states charged under all
p-form gauge fields and their duals. These states have tension controlled by
their charges, and are guaranteed to be stable (since there is no lighter state

carrying those charges (it would violate the BPS bound)).

3 Duality for type II string theories

In this section we scratch the surface of the implications of the existence of
these states in string theory. The main implication we would like to explore
here is the existence of duality relations in string theory, which are analogous
to the field theory duality in section A.3. Our discussion is not complete, but

just inspirational. We will return to the issue of duality in latter lectures.

3.1 Type IIB SL(2,Z) duality

Ten-dimensional Type IIB supergravity has a classical SL(2,R) invariance.

It acts on the NSNS and RR 2-forms B, B and the complex coupling 7 =

11



a +ie ¢ (which takes values in the coset SL(2,R)/U(1) as
ar +b
ct+d

(5) = (0 0)(5) @

leaving the metric G (in the Einstein frame) and the 4-form A, fields invari-

ant.

Clearly this continous symmetry cannot be a symmetry of the complete
quantum theory, since it would rotate the charges continously, in contra-
diction with the fact that they must lie in a lattice by Dirac quantization
condition. There is however plenty of evidence for the conjecture that a dis-
crete SL(2,Z) subgroup (defined by a,b,c,d € Z) is an exact symmetry of
the complete string theory.

This remarkable proposal has the implication that there is a strong-weak
duality between the theory at coupling g, @ = 0 and the theory at coupling
1/gs, a = 0. Namely, the strong coupling regime of type IIB theory is
equivalent to the perturbative weak coupling regime of a dual type IIB theory.
Following the dependence of brane tensions as g, changes it is possiblo to

match the BPS states in both theories. For instance

IIB at g, IIB at 1/g,
F1 — D1
D1 — F1
NS5 D5
D5 > NS5
D3 D3

We see that starting at g, ~ 0, as g, increases at goes to infinity the
initial fundamental string becomes a D1-brane in the dual description, while

the original D1 becomes light and turns into the fundamental, perturbative

12
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Figure 3: As a modulus (the dilaton vev) is changed, the original weakly cou-
pled string theory becomes strongly interacting, and at infinite coupling it can be
described as a weakly interacting dual theory. Perturbative and non-perturbative

states are reshuffled in this interpolation.

string in the dual description. The flow of BPS states is illustrated in figure
3.

This has the striking implication that the fundamental string is ‘funda-
mental’ only at weak coupling, while at finite coupling both the D1 and the
F1 are both simply two BPS string-like objects, and at strong coupling the
D1 is the one becoming the fundamental, perturbative object.

Indeed the situation is even more intriguing. The SL(2,Z) symmetry
predicts the existence of BPS strings with charges (p, ¢) under the two type
ITB 2-forms, all forming an orbit of SL(2,Z). These are easily constructed as
supergravity solutions, by applying SL(2,Z) transformations to the known
F1 or D1 solutions (which correspond to (p,q) = (1,0), (0,1)). At different
points in the moduli space of the coupling 7, related to the perturbative limit
by an SL(2,Z) transformation, it is a different (p, q) string which becomes
the perturbative object in the dual (SL(2,Z) transformed) theory.

Since the symmetry relates theories which are equivalent, up to (very non-

trivial) field redefinitions, the moduli space of physically distinct theories is

13



SL(2,R)/(U(1) x SL(2,Z)),

Duality relations in other 10d string theories will be studied in later lec-
tures. We conclude this lecture by pointing out that the picture for type II

theories is even more intricate as one lowers the dimension.

3.2 Toroidal compactification and U-duality

Let us consider compactification of type IIB theories on e.g. T®. The results
for type ITA on T® would be equivalent via T-duality, but the interpretation
in terms of the original 10d theory is clearly different. It will be better
understood in later lectures.

We are interested in studying non-perturbative states and duality prop-
erties of this theory (the case of other toroidal compactification is similar in
many respects, see [1, 2]. We are interested in i) the moduli space of scalars
ii) the 4d gauge fields, in particular 1-form gauge bosons iii) the BPS states
preserving 1/2 of the supersymmetries iv) the duality group.

i) Let us determine the structure of the moduli space of scalars. In T®
compactifications of type IIB theory we have 36 scalars from the moduli G;;,
B;;. These are known from the Narain lattice description to take values in
the coset

S0O(6,6)

SO(6) x SO(6) x SO(6,6:Z) (16)

In addition, we have the scalars a, ¢ inherited from 10d, and which parametrize
the coset

SL(2,R)
U(1) x SL(2,Z)

(17)

In addition, we have 15 scalars Bz-j, 15 scalars Ajjkl and two scalars, dual to

the 4d 2-forms B,,, B,,. Overall we have 70 scalars, which in the supergrav-

14



ity approximation live in a coset locally of the form
E7/SU(8) (18)

where F; denotes the (non-compact) group generated by exponentiating the
Lie algebra generated by generators of SO(6,6) and SL(2).

The supergravity effective action has a continuous symmetry E7 acting
non-trivially on the moduli space of scalars. As usual, classical supergravity
is not sensitive to quantization conditions, and it will be only a subgroup of
this which will be proposed to correspond to a full symmetry of the theory.
This will come later on.

ii) The theory contains 56 4d 1-form fields. 24 of them are given by B,
Bm and their 4d duals; these transform in the representation (12,2) of the
classical global symmetry SO(6,6) x SL(2,R). The remaining 32 are given
by 12 from G,; and their duals and 20 from * A, ; these transform in the
representation (32,1) of SO(6,6) x SL(2,R). In total the 56 gauge bosons
transform in the representation 56 of the classical symmetry E7.

iii) The elementary (in the sense that they carry at most one charge) BPS
states carrying charged under gauge bosons are of different kinds

e We can have fundamental strings winding along any of the 6 directions
in T®. We can also have D1-strings winding along any of these directions.
These are charged under the fields B,;, B,“-

e We can have 6 particle-like states in 4d from NS5-branes wrapped in
all dimensions of T® except one 3 Similarly we get 6 additional states from

D5-branes wrapped in all dimensions of T® except one. These are charged

ZNotice that A} has self-dual field strength in 10d.
3To consider branes with some transverse compact circle, we can consider starting with

an infinite transverse dimension, on which we place and infinite periodic array of branes
(this is possible and static due to the BPS no-force condition), and then modding by

discrete translations to obtain a circle.

15



under the duals of B,;, B,;. The above 12 states plus these 12 transform in
the (12,2) representation of the global symmetry SO(6,6) x SL(2,R).

e KK momentum states. These are described by fundamental string
states with momentum along some internal direction in T®. There are 6
basic states, charged under the 4d gauge fields G ;.

e The corresponding states charged magnetically under G; (i.e. charged
electrically under their 4d duals) are Kaluza-Klein monopoles (also known as
KK5-branes). The KK monopole configurations are discussed in appendix
B. These 6 states are labelled by 7 = 1,...,6 and have their isometrical
direction along the ** direction in T® and volume spanning the remaining 5
directions in T®.

e Finally we have 20 additional states given by D3-branes wrapped on
three internal directions in T€. The above 12 states plus these 20 transform
in the representation (32,1) of SO(6,6) x SL(2,R).

In total, these states transform in the representaion 56 of the classical
symmetry group E7

iv) These states must have quantized charges, so clearly the full contin-
uous F; symmetry cannot be an exact symmetry of the complete theory.
Rather, the proposal is that the discrete subroup of F; which leaves the 56-
dimensional lattice of charges invariant is an exact symmetry of the quantum
theory.

This is a simple generalization of thing we already know. In fact, the dis-
crete duality group, denoted E7(Z), is the also the group of discrete transfor-
mations containing the T-duality group SO(6,6;Z) and the S-duality group
SL(2,Z). The global structure of the moduli space is

E7
SU(8) x E7(Z)

(19)
All BPS states in the theory transform in representaions of the duality group

16



E7(Z) (known as U-duality group).

This has remarkable implications. In particular there are infinite sets of
points in moduli space which are equivalent to weakly coupled large volume
compactifications of IIB on T® once written in suitable dual terms. The
perturbative parameter in these dual theories can be a complicated combi-
nation of the 70 scalars in the coset E;/SU(8), and not just a function of the
dilaton. Moreover the string-like object which is becoming the fundamental
string in this dual theory can be a complicated object, not just the F1 or the
D1-string. In fact string-like objects also form a complicated representation
(I think the 133) of E7(Z): we have the unwrapped F1, and D1, A D3-brane
wrapped in two directions, D5-branes wrapped in four directions, etc. Any of
these can become the fundamental string in one particualr corner of moduli

space.

For the interested reader, let us simply point out that similar duality
relations hold in toroidal compactifications of heterotic string theory. In
fact, T® comapctfifications lead to N = 4 4d theories, whose gauge sector is
a generalization of the kind of theories in appendix A, and have an SL(2,Z)
duality which corresponds to Montonen-Olive in the associated gauge field
theory. We will rederive Montonen-Olive duality in later lectures, using D-

branes to study gauge field theories.

4 Final comments

We have seen that string theory contains plenty of non-perturbative states.
These are very important for the theory at finite coupling, and are in a sense
on an equal footing with perturbative or fundamental objects in this regime
(p-brane democracy). In fact, they can become the fundamental degrees of

freedom in different corners in moduli space, and can be described as the
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fundamental strings in a suitable dual description.

We still do not have a microscopic description of string theory which is
valid beyond perturbation theory, and which includes all these BPS states
on an equal footing. What is clear anyway is that as soon as we go beyond
the perturbative regime, string theory is no longer a theory of strings! and

must also include other extended objects.

A Some similar question in the simpler con-

text of field theory

A more detailed reference for this section is [6].

A.1 States in field theory

We consider a well studied and simple 4d field theory, which is N' = 4 su-
persymmetric SU(2) gauge theory. The vector multiplets contain one gauge
boson, four Majorana fermions and six real scalars in the adjoint. The scalar

potential has the form V (¢) = |[phi’, ¢’]|, so a generic vacuum is labelled by

¢ = (7; _Ovi) (20)

We denote v = Y ;v2. A generic vev v breaks spontaneously the gauge
symmetry SU(2) — U(1).

At low energies in one of these vacua, F < gy v the effective theory is

diagonal vevs of the form

N =4 susy U(1) gauge theory, with action

2

1
S=[| —FAN«xF+0 | FAF (21)
4d Gy pp 4d
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Figure 4: Picture of the hedgehodge configuration for the Higgs field.

The theory clearly contains states electrically charged under the gauge po-
tential A; they are the massive gauge bosons. The mass of one such state

with charge n, € Z is
M = |ne|gymv (22)

We can also look for non-perturbative states of the theory by constructing
solutions to the equations of motion (see [5] for an introduction to solitons).
Indeed the theory contains particle-like states known as 't Hooft-Polyakov
monopoles, as we discussed in the introductory lectures. Such monopoles are

described by field configurations asymptoting as
$(E 1) - —2t +0(1/r)
r
, 1 .
AN 7, t) — ST O(1/r?) (23)

This is the so-called hedgehdoge configuration, shown in figure 4. From the
point of view of the low energy U(1) theory, the field configurations are
Wu-Yang monopoles of the kind studied in the differential geometry lecture.

These objects carry magnetic charge n,, € Z under the gauge potential

A, and their mass is
M = [npm|v/gym (24)

19



(if the # parameter is non-zero, they also carry an electric charge proportional

to gefn.,,). The mass of a general state with electric and magnetic charges

(Ge, gm) is given by
M2 = o2 ’ 25
=v §|qe+TQm‘ ( )
where 7 = 0 +i/¢%,,. For § = 0 this gives

1
M = |v||gymge + —qm| (26)
gy m

Dirac charge quantization condition

This is a consistency condition on the possible set of charges in a theory
with electric and magnetic charges. A particle with electric charge g, moving
in a circle worldline C' acquires a phase exp(ige [ A) in its path integral. In
the presence of a particle carrying magnetic charge ¢,, the gauge potential
is not globally well defined, so the above expression could be ambiguous,
leading to an ill-defined wavefunction for the electric particle. Indeed, as
shown in figure A.1, the integral [, A can be computed via Stokes theorem
as [, F' over some surface ¥ with 90X = C. The result however can depend
on the surface ¥ chosen. For the two surfaces in the picture, the difference

in the exponent of the phase is
Ae/A:e/F— F:e/F:e’ 27
G J, A= 0], L B = | F = dean (27)

where S? is a surface that encloses the magnetically charged particle. In

order to have a well-defined phase, we then need
4.y € 217 (28)

This is Dirac quantization conditions, which constrains the charges in a the-

ory with electric and magnetic objects.

20



If the theory contains dyonic particles, carrying electric and magnetic
charges at the same time, consistency of the phase picked up by moving a
particle of charges (g.,¢n) in the presence of a particle of charge (¢.,q),)

requires

Qedh, — Gm4, € 27Z (29)

This implies that charges (ge, ¢n) must lie in a 2d discrete lattice. One can
check that the charges of the above theory, which are of the form (g, ¢,,) with
Ge + 1Qm = Ne + TNy, With ne,n, € Z, satisfy this constraint (zzz Warning:

I was not careful about 27’s).

A.2 BPS bounds

The general supersymmetry algebra for N' = 4 has the structure
{Q4,QF " = —2048 P, — 212455, (30)

where Q4, A =1,...,N are the N supercharges (N = 4 in our case) with
a (Majorana) spinor index . The ZA4Z are operators that commute with
the @)’s, the P’s and hence with the Hamiltonian. Thus they are conserved
charges of the system, known as central charges, which are combination of

the conserved gauge charges of the theory.
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In a given state, Z4Z forms a real antisymmetric matrix, which can be

brought to a block diagonal form with blocks

( —0%' %Z ) (31

The supersymmetry algebra implies a bound on the mass of particle states
in the sector of fixed (central) charges ¢;. This is done as follows: take for
simplicity a sector of equal charges ¢; = ¢, we can go to the rest frame of
the particle, where (P,) = (M,0,0,0). Then the matrix {Q%, Q5 '}, which

is positive definite, is diagonal in blocks of the form

2M  2iq (32)
—2iq 2M

This implies that the eigenvalues, which are 2(M + ¢) must be positive, so
that we get a bound

M > |q| (33)

This is known as BPS bound. States saturating this kind of bounds are
called BPS states. They are special because they correspond to zero modes
of the supercharge anticommutator matrix, and this implies that they are
annihilated by some supercharges. This is equivalent to saying that BPS
states are invariant under some supersymmetry transformations (generated
by the corresponding supercharges). On the other hand, this implies that
the supermultiplets to which these states belong are shorter than the generic
supermultiplet.

This implies that upon continuous deformations of the theory (for in-
stance including quantum corrections or threshold effects of the underlying
high energy theory) BPS states cannot cease being BPS, since the number of

fields in the supermultiplet cannot jump discontinuously. This also implies
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that, since the mass of the state is fixed by the supersymmetry algebra, it
is exactly known, and does not suffer any correction form quantum loops or
otherwise. Therefore, the classical result for the mass of a BPS state can be
exactly extrapolated to strong coupling and other difficult regimes.

In our case above, it is possible to show that in a sector of electric and
magnetic charges (ge, ¢,) the central charge for the superalgebra is of the

above form

¢ =q=v9ym(qe + Tqm) (34)

This allows to claim that the above discussed states are BPS and the masses
(25) is exact.

A.3 Montonen-Olive duality
The equations of motion for the U(1) gauge theory are (for § = 0)
dF' = jm
dxF = j. (35)

where j., j are the electric and magnetric charge currents. They have a

global SL(2,R) rotation invariance

(F)(f) o (2)n(2) - wo(0 ) o

This also acts by rotating the charges (ge, ¢n), so it is able to exchange
the roles of elementary electrically charged states and solitonic magnetic
monopoles, i.e. of perturbative and non-perturbative states in the system.
Indeed, for the theory (e.g. the energies of the states) to be invariant,
SL(2,R) must also act on the coupling constant 7 by

ar+b

T =
ct+d

(37)
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Since the charges must live in a discrete lattice due to the Dirac quantization
condition, it is clear that the classical SL(2, R) symmetry cannot be a sym-
metry of the full quantum theory. However, the subgroup SL(2,Z) given by
matrices M with a, b, c,d € Z leaves the charge lattice invariant as a whole,
and also is a symmetry of the mass formula (25). The Montonen-Olive dual-
ity proposal is that this SL(2,Z) is an exact symmetry of the full quantum
theory.

This symmetry has very non-trivial implications:

e It implies that BPS solitons must appear in orbits of SL(2,Z). In par-
ticular this implies the existence of BPS dyonic states with charges q.+iq, =
Nne + TN, for coprime n,, n,,; this is the orbit containint the elementary elec-
tically charged states (ne,n,) = (£1,0) and the basic magnetic monopoles
(e, nm) = (0,£1). Some of these dyonic states have been explicitly con-
structed [7].

e It implies that the theory at coupling gy, @ = 0 has a completely
equivalent description in terms of a theory with coupling ¢}, = 1/g9yum,
6’ = 0. One says that it is a strong-weak coupling duality. This implies that
the strong coupling of the first theory is described by a weakly coupled theory
in the dual side. The theory simplifies enormously in the limit of very strong
coupling, which in principle looked like a very difficult regime!. The theory
becomes simply perturbative Maxwell theory in terms of the dual elementary
fields, which are the solitons of the initial theory.

e In fact, there is an infinite number of limits where the dynamics reduces
to perturbative Maxwell theory in terms of a dual theory, which is related
via an SL(2,Z) transformation to the original one.

e These properties are a good toy model for the dualities in string theory.
This has been our motivation for discussing this field theory example. In

fact, we will see in later lectures that duality in string theory implies duality
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in field theory.

B The Kaluza-Klein monopole

Consider a D-dimensional theory with gravity, compactified on a circle, so
that it corresponds to a vacuum of the form Mp_; x S'. The Kaluza-Klein
monopole is a purely metric configuration, which corresponds to an excited
state of this theory, and exists if D > 4. It is described by a geometry Mp_4 X
Xrn, where the so-called (multi)Taub-NUT space X7y has the following

metric
ds* = V(Z)~'dz? + V(Z)(dr + & - dT)? (38)
with
Vxd=V(E) V(j’)zl-i—Zﬁ (39)

The space Xty is a fibration of S! (parametrized by 7) over R (parametrized
by ¥), with the properties that (see figure 5)

i) the S* in the fiber asymptotes to constant radius at infinity on the base
R3. So it is a finite energy excitation of the vacuum Mp_; x Si.

ii) the S* denerates to zero radius at the location of the so-called centers
T =2,

iii) The S* fibered over an S? in the base R® surrounding a center, is a
non-trivial S* (or U(1) )bundle over S? with first Chern class equal to 1. If
the S2 surrounds k centers, the Chern class of the bundle of S over S2 is k.
In fact, one can show that the mixed component of the Christoffel connection
is exactly the gauge field of the Wu-Yang monopole studied in the lecture on
differential geometry.

iv) This implies that the geometry carries a topological magnetic charge

under the D — 1 dimensional gauge boson G ;). The sources of the charge
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Figure 5: A picture of the multi-Taub-NUT space X7n. It is a circle fibration
over R3, with fiber asymptoting to constant radius at infinity, and degenerating
to zero radius over the centers, shown as black dots. Around an S? surrounding a

center, the S! fibrations defines a non-trivial U(1) bundle with first Chern class 1.

are localized at the centers of the metric, which then behave as magnetic
monopoles for this field. The configuration defined by Taub-NUT space is
known as Kaluza-Klein monopole.

The above metric has SU(2) holonomy (so can be though of as a non-
compact Calabi-Yau in two complex coordinates) so it is invariant under
half of the supersymmetries. It is a 1/2 BPS state. Its ADM tension is
proportional to R?/g?, where R is the radius of the isometrical direction S*
parametrized by 7.

In circle compactifications of string theory, the resulting 9d object is
Poincare invariant in six dimensions, and is localized in three dimensions. It
is often called the Kaluza-Klein fivebrane. In toroidal compactficiations of
several dimensions, one can have different BPS states given by the different
choices of the circle in T9 chosen to correspond to the isometrical direction

n XTN-
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