Orbifold compactification

The basic reference for this lecture is [1]. See also [2].

1 Introduction

1.1 Motivation

We have seen that compactification on smooth Calabi-Yau spaces leads to
very interesting 4d theories. However, they require quite a lot of geometrical
tools, and the information one can extract is, in a sense, limited (because
of the need to use the supergravity approximation (lowest order in o ex-
pansion), and the difficulty in constructing explicit metrics, only topological
quantities can be reliably obtained).

In this lecture we discuss orbifold compactifications. They share many of
the features of compactification on smooth Calabi-Yau spaces (they can be
regarded as compactifications on singular Calabi-Yau’s), but are described
by free 2d worldsheet theories. Hence, the quantization of the string can
be carried out exactly in the o/ expansion, and one can compute quantities
explicitly, and including the stringy corrections. In this sense, orbifolds are
(almost) as simple as toroidal compactifications, but have the advantage of
leading to models with reduced supersymmetry. In this lecture we center on
6d orbifolds preserving 1/8 of the supersymmetries; namely i.e. leading to 4d
N = 2 supersymmetry for type II theories or to 4d N/ = 1 supersymmetry for
heterotic theories. The description of orbifolds of type I theory (also known
as type IIB orientifolds) is more technical and is not discussed (left for the

final projects).
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Figure 1: T2/1Zy orbifold. The 2-torus is shown as the 2-plane modded by
discrete translations; hence the sides of the unit cell, shown in dashed lines, are
identified. The rotation @ maps each point to its symmetric with respect to the
origin. The action on the 2-torus is obtained by translating the points into the

unit cell. Crosses represent points fixed under the action of § on T2.

1.2 The geometry of orbifolds

A toroidal orbifold (or just orbifold, for short) T®/T is the quotient space of
T® by a finite isometry group I', which acts with fixed points.

One simple example, before going to the 6d case, is the 2d orbifold T?/Z.
Consider a T? parametrized by two coordinates x, 2, with periodic identi-
fications x; ~ x; + 1, and consider the Z» action generated by the symmetry
6 : z; — —x;. The orbifold T?/Z, is T? with the identification of points
related by the action of §. This is shown in figure 1.

The action 6 has fixed points, namely points with coordinates (z1,x2)

equivalent to (—x1, —23) up to periodicities. Namely obeying
(—z1, —x2) = (x1,22) +n(1,0) + m(0, 1) (1)

for some n,m € Z. There are four such points, with coordinates (0,0),
(0,1/2), (1/2,0) and (1/2,1/2). These fixed points of the orbifold action

descend to conical singularities in the quotient space. This can be seen by
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Figure 2: The quotient R%/Zs has a conical singularity at the origin. This can be
seen by starting with the 2-plane (a), keeping points in the upper half (b) (points
in the lower half are their § images, and performing the remaining # identification

in the horizontal boundary (c).

studying the local geometry near one of this points, which is a quotient space
R?/Z,, and can be regarded as the space obtained by taking a piece of paper,
cutting half of it, and glueing the two halves of the boundary to obtain a
cone. This is shown in figure 2. The idea generalizes to more complicated
higher-dimensional orbifolds.

Notice that to obtain a well-defined quotient, the discrete group must
be a symmetry of the torus. This is most easily checked by regarding the
d-dimensional torus as RY modded out by translations in a lattice. The
group [' should be a symmetry of the lattice. Such groups are said to act
crystallographically on the lattice, by analogy with crystallographic groups
in solid state physics. An example of a 2d lattice is shown in figure 3.

A very popular example is the 4d orbifold T*/Z,, with the generator 6 of
Z, acting by z; — —x; on the four coordinates of T#. The resulting quotient
space is a singular limit of the Calabi-Yau space K3, with 16 singular points,
locally of the form R*/Z,.

Clearly, one can form orbifold using other discrete groups. For instance,



Figure 3: A 2d lattice, admitting a Zo symmetry (reflection with respect to any

point in the lattice. It is easy to cook up other 2d lattices with Zg or Z4 symmetry.

we will later on center on a 6d orbifold T®/Z3, where T® is described by
three complex coordinates z;, with the periodic identifications z; >~ z; + 1

and z; ~ z; + e*™/3_ The generator # of Zz is an order three action given by

0 : (21,22, 23) = (€732, ¥ /32y, e 4/32,) (2)

—4mi/3 instead of e2™/3 for z3 in order to stick to the convention

We have used e
(useful in later purposes) that the sum of the phases in the rotations add up to
zero. The orbifold action is a simultaneous rotaion by 120 degrees in all three
complex planes, as shown in figure 4. The action has 27 fixed points which
are points where the coordinates z; are either of the values 0, (14 e27i/3)/3,
(e27i/3 + €*™/3) /3. Each point is locally of the form C3/Zs.

Although it is possible to construct orbifolds where I' is a non-abelian
discrete group, these are technically more involved and not specially illumi-
nating. So in this lecture we center on abelian I', and in particular to cases

[' = Zn;, generated by an action # acting on three complex coordinates by
0 : (21,29, 23) — (€512, €22y €213 2,) (3)

with (vi, ve,v3) = (a1, a2,a3)/N and a; € Z L.

L An additional condition >, a; = even, is required for the quotient space to be spin.
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Figure 4: The T®/Z3 orbifold.

Orbifolds are not smooth manifolds, but are similar in many respects
to manifolds. Indeed, removing the singular points they are manifolds. In
fact one can define the holonomy group, and will be related to the amount
of supersymmetry preserved by the compactification, just like for smooth
manifolds. By parallel transporting a vector around closed loops which were
closed in the torus, the holonomies generated are trivial, because the metric
on the torus is flat. However, there are loops in the quotient space that
surround the singular points, and are closed in the quotient altough they are
not closed in the ’parent’ torus. The holonomies around those loops are non-
trivial, and generate a holonomy group which is precisely I'. This is shown
for I' = Zg in figure 5.

This suggests that 2n-dimensional orbifold preserving some supersymme-
try should be defined by discrete groups I' whose geometric action is in a
subgroup of SU(n). For 6d orbifolds with I' = Zn generated by the ac-
tion (3), the condition is v + v + v3 = 0 mod N, for some choice of signs
(the choice determines which susy (out of the many susys of the torus) is

preserved). We will stick to orbifolds obeying the condition

1)1+U2+U3:0m0dN (4)



Figure 5: Holonomy on an orbifold: we start with the vector v and parallel
transport it along a loop (closed up to the 6 action); the vector ends up rotated

by an action R which is isomorphic to 6.

These orbifolds are simple versions of Calabi-Yau manifolds.
One easily checks that the T*/Zy and T®/Z3 examples above are super-

symmetry preserving, while T2 /Z, is non-supersymmetric.

1.3 Generalities of string theory on orbifolds

One might think that a physical theory defined on an orbifold space could
be singular, due to the bad geometric behaviour at the singular points. In-
terestingly, string theory on orbifold spaces is completely non-singular and
well-behaved. This result follows from a very special set of states in string
theory (twisted states), which arise due to the extended nature of strings
(and would be absent in a theory of point particles).

To define string theory on an orbifold, we should regard the orbifold as a
quotient of the torus by a symmetry. Therefore, string theory on the orbifold
can be constructed by starting with string theory on the 'parent’ torus, and
imposing invariance under the discrete symmetry group, i.e. keeping only
states which are invariant under the action of I' (on the Hilbert space of

string states). This sector is inherited from the spectrum of states in the
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Figure 6: Open string in a twisted sector in a Zg orbifold.

toroidal compactification, and is called untwisted. Clearly it is described by
a free 2d theory, because the metric is locally flat.

However, this is not the complete story. There exist additional closed
string sectors arising from strings which are closed in the orbifold, but do
not correspond to closed string in the ’parent’ torus. They correspond to
strings whose 2d fields have boundary conditions periodic, up to the action

of some element g € I, for instance
X(o+4,t) = (9X)(0,1) (5)

this is shown in figure 6.

These sectors/states are known as twisted sectors/states. Notice that,
these sectors are localized in the neighbourhood of fixed points, so in a sense
are the sectors that carry the information that the orbifold space is not a
torus, but has some curvature concentrated at those points. Note however,
that the local 2d dynamics on the string is still the same as in the torus
(since the inside of these strings still propagates in a flat metric), and all
the non-triviality of the geometry enters simply in boundary conditions like
(5). This remarkable feature allows to quantize the 2d theory exactly in o/,

although it describes propagation of strings in a non-trivial geometry. Note

7



finally that twisted states exist because strings are extended objects, they
would be absent in a theory of point particles.

The complete spectrum of the string theory on the orbifold is given by
the untwisted sector (states in the torus, projected onto I'-invariant states),

and twisted sectors (one per element of I' and per fixed point of the element).

Modular invariance

We would like to make a short and qualitative comment (although the
argument is also quantitatively correct) showing that twisted sectors are
absolutely crucial in order to have a consistent modular invariant theory,
i.e. a consistent worldsheet geometry. Hence, twisted states are crucial
in maintaining the good properties of string theory (finiteness, unitarity,
anomaly cancellation, etc), and making it smooth even in the presence of the
singular geometry. In a sense, we may say that o stringy effects (the very
existence of twisted states) corrects the singular behaviour of the geometry
and leads to smooth physics.

Let us describe the 1-loop partition function for the theory on T® as a
torus, parametrized by o,t, as in figure 7a. In order to construct the theory
on T®/Zxn, let us insert a projector operator

1 N-1
P:ﬁ(1+0+...0 ) (6)

in the ¢ direction, which forces that only Zn-invariant states give a non-zero
contribution to the partition function. See fig 7b. Since only Zyn-invariant
states propagate, this describes the partition function for the untwisted sec-
tor.

Now we can see that this contribution is not modular invariant. Let us
rewrite it as a sum of contributions with insertions of #* in the ¢ direction,
and perform a modular transformation 7 — —1/7, which exchanges ¢ and t.

We obtain a sum of amplitudes with insertions of #* in the sigma direction,
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Figure 7: Modular invariance of string theory on orbifolds requires the existence

of twisted sectors.

Figure 8: Modular invariant partition function for an orbifold.

see figure 7c. They correspond to closed strings which are periodic in o, up
to the action of #*; that is, they are twisted strings. Clearly, the complete
modular invariant amplitude is as in figure 8, a sum over the untwisted and
twisted sectors, with projector insertions in ¢ to ensure that only Zy-invariant

states propagate.




2 Type II string theory on T®/Zj3

Let us consider the above described T®/Zs orbifold, where the underlying
T® background is described by three complex coordinates z; ~ z + R; ~
2 + R;e*™/3 and zero NSNS B-field. Recall that the generator 6 of Zs acts
by 6 : z; — €*™i with v = (1,1, —-2)/3.

We describe the 2d worldsheet theory (in the light-cone gauge) by the
following fields: Along the two real non-compact coordinates, we have 2d
bosons X2, X3 and 2d fermions 2, ¥3; to describe the three complex di-
mensions in T®, we have 2d bosons Z', Z%  Z* (and their conjugates Z') and
2d fermions W', U2 ¥3 (and their conjugates ¥'). The action of § on these
2d fields is

Zi N eQWiUi Zz ; \I’Z N eQm'vi \IIZ (7)

Let us consider the untwisted sector. The spectrum is obtained by simply
taking the spectrum of the theory on T® and keeping states invariant under
the Zs action. In the theory on T®, different sectors are labelled by the mo-
mentum and winding along the internal dimensions. For the corresponding

2d fields we have the following expansion

; ; kz 27TRZ' ;
Z'(o,t) = 2z + R~p+t + 7 w'o +
(Y S [0 rmingornye | G amingo—ne
— = “n win(o “n 2win(o ]
" nz;éo ln e + e (8)

where all the coefficients in the mode expansion (zy, k, w, a’s, @’s) are
complex, and the expansion for 7 involve the complex conjugates.

The action of @ on the coefficient of the mode expansion are

ZB SN e27rwizé : kz SN e?mviki : wz — evaiwz
1 2w, . n . ~1 2T, ~1
ap, = el 5 al —e™ay 9)
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ans similarly for the 2d fermionic coordinates.
Untwisted states in the orbifold are obtained by taking suitable Z3 invari-
ant linear combinations. For sectors of non-zero momentum and/or winding,

such states are roughly of the form
Ok, w) + (0%)|0k, Bw) + (O7)|6%k, §?w) (10)

where O is a generic sausage of operators, and superscript 6* implies taking
its image under #*. The zero momentum and winding sectoris not mixed
with other sector by 6, so one is constrained to use only operators O which
are directly Zgz invariant. The mass formula for all these states is given by
the same expression as for T®.

We will be interested in massless states. As usual, they arise from the
sector of zero momentum and winding, so the spectrum is obtained by con-
structing the left and right vacua, and applying left and right moving oper-
ators whose phase transformation under 6 cancel each other.

Consider the massless states in the left moving NS sector. They are

State SO(8) weight Zjg phase
¥21/200), 92, 5/0)  (0,0,0,+) 1
\1111/2‘()) (+,0,0,0) /3
‘1121/2‘(» (=,0,0,0) e~/

2 can be also described as

The phase picked up by the different states
e?™™v where r is the above SO(8) weight and v = (vy, v, v3,0).
For left handed states in the R sector (with GSO projection selecting the

8¢ as vacuum), we have

2This arises naturally if one bosonizes the internal 2d fermions into 2d bosons ¢* com-
pactified on a lattice of SO(8) weights. The phase rotation of the 2d fermions becomes a

translation of the corresponding bosons, which carry a lattice momentum r.
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SO(8) weight Zs phase

%(+a+a+a _) 1
%(_7 R +) 1
%(_a+a+a+) 62m/3
%(—1_7 Ty T _) 6727”./3

Performing the same computation for the right movers (with opposite

GSO on the R sector, since we are working on type ITA), the massless un-

twisted states are
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4d field
G/u/a Bul/a ¢
Gg, B
9 cmplx scalars

4d field
w,ua: %
4d gravitino and Weyl fermion
9 spin 1/2 ...

...Weyl fermions

4d field
wuaa ¢a
4d gravitino and Weyl fermion
9 spin 1/2

Weyl fermions

4d field
Gauge boson
A, and
cmplx scalar
Cia3, Ci3
9 Gauge bosons
9C;

iju

Notice that there are two 4d gravitinos, signalling NV = 2 4d supersymme-

try. Recalling the structure of the corresponding supermultiplet, the above

fields are easily seen to gather into the supergravity multiplet (G, the two
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Yue and A,), one hypermultiplet (the two 1,, ¢ and the scalar dual to B),),

and 9 vector multiplets (scalars Gz, Bz, Weyl fermions in RNS and NSR,

ij> Pijs
gauge bosons C;5,).

Let us now consider the twisted sector. As mentioned above, there is one
such sector per non-trivial element in Zg and per fixed point. The twisted
states at each fixed point are similar, so we simply obtain 27 replicas of the
content in one of them. Finally one can check that states in the 62 twisted
sector correspond to the antiparticles of states in the 6 twisted sector (it is
easy to see graphically that states in oppositely twisted sectors can annihilate
into the vacuum). So we just compute the latter.

In the 0 twisted sector, we impose boundary conditions of the kind
Z'o+4,t) = ¥™i Z'(0,t) + 2mR;n’ (11)

(where n' is a vector in the two-torus lattice A;). That is, the string is closed
up to the rotational and translational identification in the toroidal orbifold.

Similarly for the 2d fermions. Using the general mode expansion

Zo,t) = zh+ —t
(o,t) 2+ e + 7

al, , aL o s
+ Z 71:,6727mu¢((7+t)/2 + Z 7l:,e27rz1/¢(aft)/€ (12)

nto +

(and similarly for 2d fermions) the boundary conditions impose that the zero

mode sits at a fixed point
z = e*™ izl mod 27 R; A (13)

that the momentum p' and winding w® vanish, and that the moddings of

oscillators are shifted by +wv;. Indeed, we have the oscillators

i . ~i . i .
a 0 Ongeyy 5 Oy
‘I,z"

n+p—v; ;

~i

Ckn—’ui
i It

v ‘IIVH-P-FW

n+p—v; 3

(14)
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with p = 1/2,0 for NS and R fermions.
The fractional modding of the oscillator modifies the vacuum energies.
In the notes on type II superstring we used the familiar regularization by an

exponential, and derived the relation

1 1 1
5 7;)(77, + Oé) = _ﬂ + Za(l - Oj) (15)

for @ > 0. Vacuum energies for orbifold follow from application of this
formula.

We should now construct the Hilbert space of twisted states and impose
the Zs projection. Centering on left movers, the mass formula is given by

2

2 __
M2==
[0

(Ng + Nr + Ey) (16)

with Ey = —1/6 in the NS sector and Ey = 0 in the R sector.

In the NS sector, we define the vacuum as annihilated by all positive mod-
ding oscillators, and build the Hilbert space by applying negatively modded
oscillators to it (and respecting the GSO projection). In the R sector, there
are no fermion zero modes in the internal directions, just in the two non-
compact ones. The vacuum is two-fold degenerate, and the GSO projection

selects one of them as the only massless state. At the massless level, the

states are
Sector State Mass r+v e2mi(r+v)r
NS 02,400) m*=0  (33,50) 1
RoATD) m=0 (hef-hod)

where we have labelled the states by a vector r + v, which is useful in

determining the Zz phase picked up by the state 3.

3In the bosonized formulation, twisted states have momentum in a shifted lattice, so

the notation r + v is more natural.
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Working similarly with the right moving sector (with opposite GSO in

the R sector, since we are in ITA), we can construct the massless physical

states
Sector r+o®F —v SO(2)
NSNS (55300855550 0
NSR (5330 ® (G55 —3) —1/2
RNS (=5 =5 —3) 8 (=5, —5,—3,0)  —1/2
RR (chobohobetibio) -l

It is important to recall that right movers have an opposite shift in the
modding of oscillators (hence we label the states are 7 — v.

Together with states in the 6 twisted sector (antiparticles), we obtain one
4d N = 2 vector multiplet per fixed point. They give rise to independent

U(1) gauge symmetries (no non-abelian enhancement).

The total spectrum of type ITA theory on the T®/Z3 orbifold is: the 4d
N = 2 gravity multiplet, one hypermultiplet and 9+ 27 = 36 (abelian) vector

multiplets.

2.1 Geometric interpretation

This spectrum is very much like the spectrum on a compactification on a
smooth Calabi-Yau with Hodge numbers (1, ho1) = (36,0).

Indeed, mathematicians know that the singular space T®/Z3 can be re-
garded as a particular limit of a smooth Calabi-Yau, in the limit in which 27
4-cycles collaps to zero size (This is a singular limit in the geometric sense,
but is completely smooth in string theory, due to twisted states, namely to
o effects).

In other words, the singular space T®/Zs can be continuously smoothed

to a non-singular space, preserving the Calabi-Yau property. This is done by
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T%z,

Figure 9: The singular orbifold T¢/Zj3 is a particular limit of a smooth Calabi-
Yau in the limit in which some P2 4-cycles go to zero size. The smooth Calabi-Yau
is called the blowup of the orbifold.

the procedure known as blowing-up the singular point; roughly, this amounts
to removing the 27 singular points of the orbifold and replacing them by a
suitable 4-cycle, which for the singularities at hand must be a Ps, the two

(complex) dimensional projective space 4

. see figure 9. The resulting space
is Kahler and has vanishing first Chern class, so it admits a SU(3) holonomy
metric. The smooth spaces are characterized by moduli which control the
size of the P3’s, so the singular orbifold is geometrically recovered at the
point of moduli space corresponding to zero sizes. Of course this limit is
beyond the reach of the supergravity approximation, which is not valid for
so small lentgh scales. Happily, the singular limit is nice enough so that we
can quantize string theory exactly in that regime.

The homology of the resulting smooth space can be computed as follows:
Before blowing up the homology was given by the homology of cycles in T®
invariant under the Zs (what mathematicians call the equivariant homology)

which leads to Hodge numbers (hy1,hs1) = (9,0). To these we must add

4This is the set of points (z1,29,23) € C2 with the identification (21,22,23) ~
)\(2’1,22,23) with A\IC — {0}
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the homology of cycles associated to the P»’s, which appear after blowup.
Each P> has one 2-cycle and no 3-cycle inside it, so their contribution to
Hodge numbers is (27,0). Therefore we see that the homology of the smooth
blowup T¢/Zs is (36,0).

Thus, string theory is clever enough to 'know’ that the singular orbifold
belongs to a continuous family of smooth spaces with Hodge numbers (36, 0),
and thus gives the right spectrum in the orbifold space.

The above geometric interpretation allows a geometric interpretation for
the twisted sector fields in string theory. Indeed, denoting > the 2-cycle
inside the collapsed P4 at each singularity, we interpret: the two real scalars
correspond to the geometrical size of Py (i.e. a metric modulus) and to [5, B;
the gauge boson corresponds to [5, Cj.

It is important to emphasize that the philosophy of the geometric inter-
pretation of the orbifold spaces also exists for other orbifolds (although the
cycles arising upon blowing up are in general more involved). It is in this
precise sense that orbifolds are very similar to Calabi-Yau spaces (in fact,

they are CY’s at a particular point in moduli space) but far more tractable.

3 Heterotic string compactification on T°/Z3

3.1 Gauge bundles for orbifolds

Compactification of heterotic string on orbifolds is very similar to type II.
The main difference is that noew we have the left moving internal bosons
X!, and we have the freedom of choosing a non-trivial action of I' on them.
For I' = Zn a simple choice is to require that the generator # acts as a shift
5 XTI — X'+ V! where NV is a vector in the internal 16d lattice Ajp .

50One may thing that it is more natural to use a rotation of the X7 instead of the

above shift. In fact, both options are related by conjugation of the rotation to the Cartan
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Using the relation of T®/Z3 with the singular limit of a smooth Calabi-
Yau threefold, the above embedding of Zy in the gauge degrees of freedom
corresponds, from the geometric viewpoint, to using a non-trivial gauge bun-
dle in the compactification. In fact, just as for Calabi-Yau compactification,
it is not consistent to choose V' = 0. Indeed, modular invariance imposes the

constraint
N(V? —v?) = even (17)

(this arises from requiring invariance under 7 — 7 + N, which imposes a
constraint on the contributions from the unpaired right moving fermions and
left moving internal bosons).

A natural choice of gauge shift, although there exist other consistent ones,
is to take V to be a copy of v. For instance, we center on the Zs orbifold of

the Fg x Eg heterotic string, so we take

11 2
V:(_,_,—_,0,0,0,0,0) X (OaO’OaOaOaO’O’O) (18)
3’3 3
Clearly this is the equivalent of the standard embedding which we studied

for smooth Calabi-Yau threefolds.

3.2 Computation of the spectrum

The computation of the spectrum is easy as for the type II theories. In the
untwisted sector we need to take the states of the theroy on T® and keep
those invariant under Zs. In heterotic theory the only additional ingredient
is to realize that states with internal momentum P! pick up a phase >V
under the action of f. At the massless level, we have the following massless

right and left moving states

subalgebra. More manifestly, the shift in the bosonic coordinates is equivalent to a rotation

of the 32 internal fermions in the fermionic description of the heterotic.
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Right

T eZmir r 2mir
NS  (0,0,0,%) 1 R Z(+,+,+,—) 1
(+,0,0,0)  e?i/3 L 1
(=,0,0,0) e 2mi/3 Lo+, 4) e
%(4_’ — —, =) e i3
Left
State 6 phase State | P) 2T PV
o?,10) 1 B! 1
a?,[0) 1 Eg x SU(3) 1
o' ,|0) e2mi/3 (3,27) o2mi/3
a’1[0) e=2mi/3 (3),27) o—27i/3
ol 1]0)

The decomposition of the Eg x Eg roots with respect to the Eg x SU(3) x Eg

is exactly as in the lecture on Calabi-Yau compactification, from which the

2mi PV

phases e are easily obtained.

Glueing the left and right moving states in a Zs invariant fashion we get

Sector State 4d Field
NS (0,0,0, %) ® }|0) Guvs By, ¢
(0,0,0,4+) ® [ Eg x SU( ) X E§] Gauge bosons
(+,0,0,0) ® [(3,27) Complex scalars

]
(=,0,0,0) ® [(3, 27)] Complex scalars

R +2(+, 4+, +,—) 2|0y 4d gravitino, Weyl spinor
+i(+,+,+,—) ® [ Es X SU(3) x EL] Gauginos
(=, +,+) ®[(3,27)] Weyl spinors
51— = =) ®1(3,27)] Weyl spinors

In total, we get the 4d N' = 1 supergravity multiplet, vector multiplet
with gauge group Fg x SU(3) x E}, one neutral chiral multiplet, and 3 chiral
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multiplets in the (3,27). Note that the spinors in the conjugate representa-

tion have also opposite chirality, so they are their antiparticles.

In the 0 twisted sector, the only new ingredient is that the 16d internal
momenta P are shifted by V. This follows from the boundary conditions for

the internal coordinates in a twisted sector
Xlo+t+0)=X"(oc+t)+ P +V! (19)

(with P! is a winding/momentum in Aj,.. Upon imposing it on the corre-

sponding mode expansion

X( t _‘P;é[ - g’ I 721rin(a+t)/l 20
La+)—2p++z QZane (20)

we obtain the promised relation P/ = PI+VI and the oscillators are integer-
modded.

The right moving sector behaves as in type II. The left-moving spacetime

mass 1s
2 P + V 2
My = _I(NB““%JrEo) (21)
We have the right moving massless states
Sector r4+uv o2mi(r+v)T
NS (3.3,3,0) 1
R (_%’_%’_%a_%) 1

The massless left moving massless states are
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Osc. P P+V

NB =0 (—,—,0,0,0,0,0,0) (_ga_ga_gaoaoaoaoao)
(0707 +7ia0707070) (%7%7%7:&,0’0,070)
%(_:_a—{_ai,iaiaia :t) (_éa_é,_éa %ai%ai%ai%ai%)
Np=1/3 (0,0,0,0,0,0,0,0) (3,3,—32,0,0,0,0,0)
(;,0,"{‘,0,0,0,0,0) (_ga%aénoaoa 050,0)

where we have ignored the momentum in the second Fg piece of A, since
it is zero for all these states.

The N = 0 states transform in the representation (1,27) under SU(3) x
FEs. All of them pick up a phase e2™(P+V)'V = 1. The states with Np = 1/3
transform in the representation (3,1) under SU(3) X Eg. There are three of
them correspoding to the oscillators o, /37 ot /3 and 051 /3- They also pick
up a total phase 1 under 6, with the oscillator phase compensating the phase
from the internal momentum.

Glueuing the left and right moving states is now straightforward. The
result is one chiral multiplet in the (1,27) and three chiral multiplets in the
(3,1) per fixed point. Note that the §#* sector contains the antiparticles of
these.

In total, the massless spectrum is given by the 4d A/ = 1 supergravity
multiplet, Eg x SU(3) x Ej vector multiplets, the dilaton chiral multiplet,
and the following charged chiral multiplets

3(3,27;1) +27(1,27;1) + 27 x 3(3,1; 1) (22)

This is remarkable, since it corresponds to an Fg grand unificiation theory
with 36 fermion families. Although not realistic, it is remarkable that we can
obtain an explicit construction of string theory models with features similar
to those of the Standard Model.

22



There an important point we would like to mention. Notice that SU(3)
has potential chiral anomalies (Eg is always automatically non-anomalous).
The anomalies however vanish because the spectrum contains as many chiral
multiplets in the 3 as in the 3. Note that for this to be true it is essential that
twisted sectors are included in the theory! Hence this is a simple example
where we see that string theory requires the presence of twisted sectors for
consistency. Incidentally, we point out that the story of anomaly cancellation
in 4d is even richer in models with U(1) factors in the gauge group, since
mixed anomalies involve a 4d version of the Green-Schwarz mechanism. we

leave this discussion for the interested reader.

Notice that the above spectrum is roughly (looking just at the number
of Eg representations) that corresponding to compactification on a smooth
Calabi-Yau with Hodge numbers (36,0) and gauge bundle specified by the
standard embedding. This agrees with the geometric interpretation of T®/Z3
we described in type II. It is interesting to notice that in this case the fields
in twisted sectors that correspond to resolving the singularity are the states
with Ng = 1/3. They not only blow up the singularities but also deform the
gauge bundle (and break the gauge factor SU(3)). On the other hand, the
states with Np = 0 correspond to deformations of the gauge bundle (break
the gauge group) preserving the singular geometry (these states do not carry
any index of the internal space). See [3] for a nice discussion of moduli space

of local versions of this orbifold.

3.3 Final comments

In conclusion, we see how easily and systematically one can construct com-
pactifications on orbifolds. These have the advantage that they allow explicit

string theory models, exact in o/, while keeping the rich and interesting dy-
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namics of reduced supersymmetry.

These constructions have many advantages:

e The low energy effective action is computable including o corrections,
which include the effects of massive string states. This kind of corrections
can be important, for instance, in the computation of threshold effects to the
unification of gauge coupling constants.

e The classification and construction of heterotic models is very system-
atic (and easy to program on a computer), hence allows for searching phe-
nomenologically interesting models.

e There are many generalizations of the basic construction we have de-
scribed: inclusion of Wilson lines, other orbifold groups. A less intuitive
extension is that of asymmetric orbifolds [4], where one considers modding
the left and right movers with different orbifold action, being careful to ensure
modular invariance. These have the interesting feature that many moduli are
frozen at fixed values (typically corresponding to self-dual points with respect

to the T-duality group). They are however too technical to be discussed here.

The lesson to take home is that orbifolds allow to construct compactifica-
tions of full-fledged string theory (and not just supergravity) with interesting

features, even close to those of Particle Physics.
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