Calabi-Yau compactification of
superstrings. Heterotic string
phenomenology

1 Motivation

We have seen that toroidal compactification leads to 4d theories at low en-
ergies. However, it is too simple to lead to anything realistic, similar to the
Standard Model of Particle Physics. The fact that toroidal compactification
does not break any of the supersymmetries of string theory implies the 4d
theories are non-chiral. We are missing an essential ingredient of Particle
Physics.

Thus we have to consider more general compactifications with background
geometry My x Xg, where Xg is a compact curved manifold !. Since the
background metric is not flat, the worldsheet 2d theory is interacting, and
not exactly solvable. Hence one usually works at leading order in the 2d
expansion prameter, which is o/ /r?, where r is a curvature length scale in
spacetime. This corresponds to working at low energies, in the supergravity
limit, and is a good approximation if all curvature length scales of Xg are
large compared with the string length. This is essentially a point particle
limit, and the stringy physics will be hidden in the o' corrections, which are
very difficult to obtain.

It should be pointed out, though, that there exist some abstract exactly
solvable 2d conformal field theories, known as Gepner models, which are

proposed to describe (exactly in /) the physics of string theories on spaces of

'We also include in our ansatz that backgrounds for other bosonic fields are trivial, e.g.
we do not consider compactifications with field strength fluxes for p-form fields, which

only very recently have been considered in the literature.



stringy size. Also, in next lecture we will study orbifolds, which are in a sense,
simple versions of non-trivial spaces, which still lead to free 2d worldsheet

theories (with sectors of non-trivial boundary conditions).

1.1 Supersymmetry and holonomy

We are interested in compactifications which preserve some 4d supersym-
metry. Compactifications breaking all the supersymmetries would be very
interesting but

e often contain instabilities, appearing as tachyonic fields in 4d.

e lead to a too large 4d cosmological constant to be of any phenomeno-
logical use to describe the real world.

Nevertheless, it is important to realize that assuming supersymmetry is
also an oversimplification if one is interested in describing the real world,
which is not exactly supersymmetric. Upon breaking supersymmetry (by
some of the mechanisms in the market) the above two problems rearise 2.

Finally, it is possible to see that the conditions imposed on Xg by super-
symmetry ensure that the background satisfies the supergravity equations of
motion, it is a good vacuum of the theory. This can be found in the main

reference for this lecture [1].

What are the conditions on Xg in order to have some unbroken 4d su-
persymmetry? Recall from our discussion of Kaluza-Klein reduction that 4d
fields visible at low energies are zero modes, constant in the internal space.
Similarly, gauge symmetries visible at low energies correspond to gauge trans-
formations constant over the internal space. Analogously, supersymmetries

unbroken in the low energy 4d physics correspond to (local) supersymme-

2Yes, it is a bit disappointing that for the moment string theory has not given a strong

proposal to solve the cosmological constant problem, despite many attempts.



try parameters (which are spinors £(z#,z%) in My x Xg) which are covari-
antly constant in Xg (with the connection inherited from the metric), i.e.
Vxe&(z') = 0.

Recalling now the discussion of the holonomy group of a Riemannian
manifold, we can obtain a conditions on Xg to admit covariantly constant
spinors. Clearly, a covariantly constant spinor is a singlet under the holon-
omy group (of the spinor bundle with the spin connection), since it does not
change under parallel transport around a closed loop. This implies that the
holonomy group of a Riemannian manifold I X leaving some 4d susy unbro-
ken is not generic. The generic holonomy for a metric in a 6d manigold is
SO(6), and spinors transform in the representation 4 or 4 under it (depend-
ing on their chirality 2), hence there is no singlet, and no covariantly constant
spinor. For metrics of SU(3) holonomy, spinors transform as 3+ 1 or 3+ 1,
hence there are components which are singlets under the holonomy group,
corresponding to covariantly constant spinors. The decomponsition of a susy
parameter in 10d under the holonomy and 4d Lorentz groups follows from

the following chain

SO(10) — SO(6) x SO(4) — SU(3) x SO(4)
16 (4,2) + (4,2 (3,2) +(3,2) + (1,2) + (1,2')

In the last column only the SU(3) singlet components lead to 4d super-
symmetries, while the others are broken by the compactification.

The surviving supersymmetries can also be verified by looking at the KK
reduction of 10d gravitinos under the holonomy group. This is described by
the following chain. The 10d gravitinos are in the say 565 of SO(8), which
arises from a product 8y x 8. Decomposing with respect to SO(6) x SO(2),

3The Lie algebras of SO(6) and SU(4) are the same, and the spinor representations
of SO(6) are the fundamental and antifundamental of SU(4), so they are often written 4
and 4.



we have 8y — 6y + 111 and 8¢ = 45 + 4_4 /2, Where subindices denote the
SO(2) charges. We are interested in 4d gravitinos, which have spin 3/2 with
respect to SO(2); these fields are obtained from the product 141X (41 /24412,
and decompose under SU(3) x SO(2) as 141 X (312 4+ 3_1/2 + 112 + 1_1)2).
Clearly only the latter lead to 4d gravitinos unbroken by the compactification.
It is possible to check that one 10d gravitino leads to one 4d gravitino if the
holonomy group of the compactification manifold is SU(3).

The generalization of the above statements to other dimensions is that
compactification on a 2n-dimensional manifold with SU(n) C SO(2n) holon-

oIy preserves some supersymmetry.

1.2 Calabi-Yau manifolds

A 2n-dimensional manifold admitting a metric with spin connection of SU(n)
holonomy is a Calabi-Yau manifold.

This definition is difficult to use in order to determine whether a manifold
is Calabi-Yau, since in principle one needs an explicit construction of the
metric. This is very difficult: in fact there is no known explicit metric for
any (non-trivial) compact Calabi-Yau, explicit metrics are knonw only for a
few examples of non-compact spaces. Happily the existence of a metric with
this property is guaranteed for manifolds satisfying the following (simplest to
check) topological conditions: the manifold must be Kahler and (its tangent
bundle must) have vanishing first Chern class.

To understand better the meaning of these conditions, we need some
background information on complex differential geometry.

An n-dimensional complex manifold is a topological space M, together
with a holomporphic atlas, i.e. a set of charts (Us, %)) Where z(,) are maps

from U, to some open set in C”, such that i) the U, cover M, ii) on U, N Ug,
B



Figure 1: Charts covering a complex manifold.

the map

2(B) © Z(;l) : Z(a)(Ua ﬂ Uﬂ) — Z(ﬂ)(Ua ﬂ Ug) (1)

is holomorphic (namely 0z)/0%() = 0. See figure 1.

Notice that a complex n-dimensional manifold can always be regarded as
a real 2n-dimensional differential manifold, by simply splitting the complex
coordinates into its real and imaginary parts. On the other hand,a real
2n-dimensional manifold M can be regarded as an n-dimensional complex
manifold only if it admits a globally defined tensor of type (1, 1), J*dz™® 0,
satisfying

) Jrgl= 6L

(this is used to define local complex coordinates dz' = dz* + iJ;'dy' and
dzt = dz* —iJ}'dy)

ii) The Niejenhuis tensor vanishes

Nfy = oy Jf — JPJ0,0f =0 (2)

i
which ensures that the local complex coordinates have holomorphic transition

functions. Such a J is called a complex structure *.

“Manifolds with tensors J satisfying i) but not ii) are called almost complex, and J is

called almost complex structure.



Notice that a given real differential manifold can admit many complex
structures. A familiar example is provided by the 2-torus, which admits a
one (complex) dimensional family of complex structures, parametrized by a
complex number 7; the two real coordinates z, y can be combined to form a
complex coordinates via dz = dz + 7dy.

In a complex manifold, p-forms and their cohomology classes (and p-
chains and their homology classes) can be refined according to their number of
holomorphic and antiholomorphic indices 5. For instance, the 3-cohomology

group splits as
HY(M) = HEOOD) + HED() + HYD () + HOO0n  (3)

where H®9) corresponds to forms with p holomorphic and ¢ antiholomorphic
indices (spanned by a basis dz* A...Adz" Adz’* A...Adz’». The dimensions
of the H®9 are denoted h,, and known as Hodge numbers; although to
define them we have introduced a complex structure, they do not depend on
the particular complex structure chosen, so they are topological invariants of

M.

A metric in a complex manifold is called hermitian if it is of the form
ds® = gﬁdzidzj (4)

namely has non-zero components only for mixed indices. Such metric can be
used to lower one index of the complex structure tensor and thus define the
(1,1) form

J = gzd2' A dZ (5)

A hermitian metric is called Kahler metric if the associated (1,1)-form

satisfies

dJ =0 (6)

5In fact, this can be done even for almost complex manifolds.



The (1, 1)-form is known as Kahler form. A manifold which admits a Kahler
metric is called a Kahler manifold; this is a topological property of the man-
ifold.

Notice that the Kahler form defines a non-trivial cohomology class in
H®Y(M). It defines a cohomology class because it is closed. We can show

that the class is non-trivial because (5) implies

_ 1 =1 n j=n __
/MJ/\.../\J_/M,/detgdzdz ...dz"dz" = Vol(M) (7)

which would be vanishing if J is exact (since J = dA would imply [ J...J =
Jd(AT...J)=0).

The Kahler form is very interesting since it characterizes the overall vol-
ume of the manifold M. In particular, o/ corrections are in fact weighted by
the adimensional parameter «'/r?, where r is an overall size determined by
the Kahler form.

Returning to the issue of holonomy, the crucial property of Kahler mani-
folds is that the Christoffel connection induced by the Kahler metric leads to
a parallel transport that does not mix holomorphic and antiholomorphic in-
dices. This implies that the holonomy group is in a U(n) subgroup of SO(2n),
as is manifest e.g. by splitting the basis of tangent space in holomorphic and

antiholomorphic elements
(Op1y..yOpn; Oty .., Ogn) (8)

The U(1) part of the holonomy can be seen to be associated to the Ricci
tensor, so the manifold must admit a Kahler and Ricci-flat metric to have
SU(n) holonmy. A necessary topological condition for this is that the first
Chern class ¢; (R) of the tangent bundle is trivial. Calabi conjectured this to
be also a sufficient condition, as was finally proved by Yau (hence the name

Calabi-Yau for such spaces).



Yau’s theorem states that, given a complex manifold with ¢;(R) = 0
and Kahler metric ¢ with Kahler form .J, there exists a unique Ricci-flat
metric ¢’ with Kahler form J' in the same cohomology class. It provides, as
promised, a topological way of characterizing manifolds for which a SU(n)
holonomy metric exists (without constructing it explicitly). This facilitates
the classification and study of Calabi-Yau spaces, in fact tables with many
hundreds of such spaces exist in the literature.

Yau’s theorem also provides a characterization of the parameters that
determine the SU(n) holonomy metric. For a given differential manifold M
we should

i) specify the parameters that define a complex structure on this real
manifold to make it a complex manifold. This set of parameters spans what
is called the compelx structure moduli space, and can be computed to have
(complex) dimension hy 1 (M).

ii) for fixed complex structure, specify the parameters which define the
Kahler class. This set of parameters is known as Kahler moduli space, and
clearly has (real) dimension hq ;(M).

The complete moduli space of Calabi-Yau metrics in a given differential
manifold M is (locally) the product of these.

We would like to point out that the condition for supersymmetry which
we have used is valid to lowest order in o/. In particular, one can imagine
that there could be higher order o corrections that modify the ’equation of
motion’ condition Ricci=0. However, there are diverse arguments (see [2])
showing that in differential manifolds, satisfying the topological conditions
of being Kahler and have zero first Chern class, there exists some underlying
2d interacting field theory which is conformal exactly in o/. In other words,
the leading o proposal for the metric can be consistently completed to an o/

exact one.



The Calabi-Yau condition implies certain structure of Hodge number. For
6d manifolds admitting a metric of holonomy SU(3) (and not in a proper
subgroup like SU(2)), often referred to as Calabi-Yau threefolds, they read

ho,o 1
hio hon 0 0
hao hix hog 0 hip O
hso hai hio hog 1 hoy hgy 1
hsi  hoo hsa 0 hig O
hso hogs 0 0
hs.3 1

’

where equality of some Hodge numbers is due to duality between H®9
and H®~P3-9_ Due to its shape, this diagram is known as Hodge diamond.

We conclude with some examples. In one complex dimension, the only
compact Calabi-Yau space actually has trivial holonomy, it is the 2-torus.
In two complex dimensions, there is only one topological space admitting
SU(2) holonmy metrics, known as K3 (complex) surface. Although a lot
is known about the topology of this space, no explicit metrics are known.
In three complex dimensions, there exist many compact Calabi-Yau spaces.
One of the simplest is the quintic, which can be described as the (complex)

hypersurface

f5(21,...,25)20 (9)

in P, the (four) complex (dimensional) projective space ®. Here f5(z1,. .., 25)
denotes a degree 5 polynomial (so that it is homogeneous and well-defined in
P5). The general such polynomial (up to redefinitions) depends on 101 com-

plex parameters, which determine the complex structure of the Calabi-Yau.

6This is the set of points (z1,...,25) € C® with the equivalence relation (z1,...,z2s5) ~
(Az1,...,Az5) with A € C — {0}.



Also, there is one Kahler parameter determining the overall size of Pg and

hence of the quintic. Its Hodge diamond has therefore hy; = 101, hy; = 1.

2 Type Il string theories on Calabi-Yau spaces

We now study what kind of theories arise from compactification of type II

string theories on SU(3) holonomy spaces.

2.1 Supersymmetry

Type II theories have two 10d gravitinos. Upon compactification on Calabi-
Yau threefolds we obtain two 4d gravitinos, which corresponds to 4d N' = 2
supersymmetry. This is a non-chiral supersymmetry, so it appears for both
ITA and IIB theories. The massless supermultiplets that may appear are:

i) the gravity multiplet, containing a graviton, a gauge boson (gravipho-
ton), and two gravitinos of opposite chiralities

ii) the vector multiplet, containing a gauge boson, a complex scalar and
a Majorana fermion, all in the adjoint representaion of the gauge group

iii) the hypermultiplet, containing two complex scalars (in conjugate rep-
resentations) and two Weyl fermions (in the same representation with oppo-
site chiralities).

This structure makes it sufficient to determine the bosonic fields after
compactification; the fermionic fields can be completed by using this multi-

plet structure.

2.2 KK reduction of p-forms

Since type II theories contain p-form fields in 10d, we need to know how to

perform their KK reduction. A p-form in 10d C,(2?,...,z%) can give rise to

10



4d ¢-forms via the ansatz
C;“...uqml...mr (IO’ LR 379) = Cul...uq (xO’ s ’$3) Aml...m,n ($4a LR xQ) (10)

with ¢+r = p. The 4d ¢-form has a 4d mass given by the laplacian acting on

the internal piece. The laplacian is read off from the kinetic term of p-forms,

which is

/ dC A %dC = /(dC, dC) = /(0, AC) (11)
and A = dd" + d'd. Hence to get a massless 4d ¢-form we need to pick the
internal 7-form A,,, .., (z%,...,2%) to be a harmonic 7-form in Xg, namely
dA=0,d"'A=0.

Since the number of linearly independent harmonic r-forms in Xy is
b.(Xg), the dimension of H"(Xg,R), we obtain b, independent ¢-forms in
the KK reduction of the 10d p-form C,.

That is, the ansatz for the zero mode of C, is

by
Cor.pigmr .y (2°,...,2%) = z Crr e (2°,...,2°) Al (z*,...,2%) (12)
a=1

The 4d g-form is often written as [y Cj, where r of the indices of C, are
integrated along the r-cycle ¥,, dual of the r-form A,.

We would like to emphasize the fact that out of a unique 10d field we
have obtained several 4d fields with same quantum numbers. This arises
simply because of the existence of several zero modes for a kinetic operator
in the internal space. That is, several zero energy resonance modes of a 10d
field in the 6d ’cavity’ given by the internal space. As we will see later on,
this beautiful mechanism is a possible origin of family replication in heterotic

models reproducing physics similar to the Standard Model.

11



2.3 Spectrum

We now have enough tools to directly determine the spectrum of type IIA/B
compactifications on Calabi-Yau threefolds with Hodge numbers (hy 1, ho1).
We just need to recall that the number of scalars obtained from the KK
reduction of the metric is h;,; real scalars plus ho; complex scalars. These
arise because the metric depends on these numbers of complex and Kahler
and complex structure parameters, so the internal kinetic operator for 10d
gravitons should have the corresponding zero energy directions. It is impor-
tant to note that Calabi-Yau threefolds do not have isometrical direction,
thus the KK reduction of the 10d metric does not lead to 4d gauge bosons.
Finally, p-forms are KK reduced as above. To simplify notation we denote
Y, the non-trivial (1,1, )-cycles, &, their dual (2,2)-cycles, A, and A, the
(2,1)- and (1, 2)-cycles, and w, émega the (3,0)- and (0, 3)-cycles.

Recall that the bosonic fields for 10d type ITA are the graviton G, the
NSNS 2-form B, the dilaton ¢, and the RR 1-forms A; and 3-form Cj

ITA Gravity hi; Vector  heq Hyper Hyper
G - Guv hia 2hg 4
B — Js, B c
o —
A =
Cy — Js, Cs Ja, Css J3, O3 [, Cs, J;C3

Here c is the scalar dual to the 4d 2-form b,,, i.e. dc = *44db. In total, we
get the N = 2 4d supergravity multiplet, h; vector multiplets (with abelian
group U(1)"1) and hy 1 +1 hypermultiplets (neutral under the gauge group).

The bosonic fields for 10d type ITA are the graviton G, the NSNS 2-form
B, the dilaton ¢, and the RR 0-form a, 2-form B and 4-form C; (with self
dual field strength).

12



1IB Gravity hg; Vector hy; Hyper Hyper

G = Juv 2h91 b

B — Js, B c
o — ¢
a a
B, — Js, B é

2

Foo LD O . CF

Note that the self duality dC; = *dCy reduces the number of independent
integrals of C;” that can be taken.

In total, we obtain the N' = 2 4d supergravity multiplet, hy; vector
multiplets (with abelian gauge group) and (h;;+1) hypermultiplets (neutral
under the gauge group).

2.4 Mirror symmetry

Consider two Calabi-Yau threefolds X and Y, such that (hyy,he1)x =
(ha,1,h11)y. Then the low energy spectrum of type IIA on X and type
IIB on Y are the same.

This suggest more that a coincidence. The mirror symmetry proposal is
that for each Calabi-Yau threefold X there exists a mirror threefold Y such
that type ITA string theory on X is exactly equivalent to type IIB string
theory on Y. This of couse implies the above relation between their Hodge
numbers, but much more, since the claim implies equivalence of the two
theories to all orders in ¢/, i.e. including stringy effects (there are proposal
for equivalence also to all orders in the spacetime string coupling constant).

There is a lot of evidence in favour of this proposal. For instance, classifi-
cation of large classes of Calabi-Yau threefols show that they appear in pairs,

for each X there is some Y, with the right relation of Hodge numbers. Obvi-

13



ously, this is necessary but not sufficient for mirror symmetry. Nevertheless
it is a compelling piece of evidence.

More convincing is the explicit construction of two different Calabi-Yau
geometries starting from a unique 2d interacting conformal field theory, by

two different geometric interpretation of the 2d fields. See [3].

The mirror symmetry proposal has very interesting implications. It im-
plies an exact matching of the complex structure moduli space of X with
the Kahler moduli space of Y (with the Kahler parameters complexified by
the addition of scalars arising from B-fields), exactly in o/. This has led to
remarkable predictions in mathematics, as follows. A non-renormalization
theorem of N/ = 2 4d supersymmetry ensures that the structure (metric) of
the vector multiplet moduli space is independent of scalars in hypermulti-
plets, and vice versa. Recall that o corrections are controlled by a Kahler
parameter, which for type IIB(ITA) is a hypermultiplet (vector multiplet)
scalar. This implies that in the compactification of type IIB on Y the vector
multiplet moduli space, i.e. the complex structure moduli space, does not
suffer o/ corrections, and the result obtained in the supergravity approxima-
tion is o exact. Mirror symmetry proposes that this is exactly the vector
multiplet moduli space of type IIA on the mirror X; this is the Kahler mod-
uli space of X, and it suffers from o' corrections. Mirror symmetry is giving
us a tool to resum all the o/ corrections to the metric in the Kahler moduli
space of IIA on X via its equivalence with the complex structure moduli
space of IIB on Y, which is exactly computable from classical geometry in
supergravity. The o/ corrections on the Kahler moduli space of ITA on X are
interesting, because a non-renormalization theorem ensures that there are
no perturbative (in the o/ expansion) corrections; on the other hand, there
are non-perturbative (in the o/ expansion) corrections, due to worldsheet in-

stantons: these are processes mediated by configurations where the closed

14



string wraps around a holomorphic 2-cycle in X. Mirror symmetry allows
to compute these contributions from the mirror, and to extract from this
the number of holomorphic 2-cycles in the Calabi-Yau threefold X. These
numbers are very difficult to compute from other mathematical means, and
easily derived from mirror symmetry. Hence mirror symmetry has attracted

the attention of many mathematicians.

3 Compactification of heterotic strings on Calabi-
Yau threefolds

In this section we study the more interesting (and difficult) compactification
of heterotic theory on Calabi-Yau threefolds. They will lead to models with
potential phenomenological application, in the sense that they are similar to
the physics of Elementary Particles we observe in Nature.

Notice that since we work in the supergravity approximation, heterotic
S0O(32) and type I compactifications will be very similar. Also both heterotics
require the same tools for this compactification, hence (for historical reasons,
and also because they lead to nicer models with the particular ansatz we
make (standard embedding)), we center on compactifications of the Fg x Fjg

heterotic.

3.1 General considerations

The original massless 10d fields of the theory are the metric G, the 2-form B,
the dilaton ¢, and the gauge bosons A® in Fg X Fjg, plus the fermion super-
parters of all these. We compactify the corresponding supergravity theory on
M, x Xg. Clearly, the condition that we get some unbroken 4d supersymme-

try, in particular some 4d gravitino, implies that Xg must be a Calabi-Yau

15



threefold. We see that starting with a single 10d gravitino we will end up
with a single 4d gravitino, namely the 4d theory has N' = 1 supersymmetry.
This is very nice, since it is a low enough degree of supersymmetry to allow
for chiral fermions. On the other hand, we know that N/ = 1 supersymme-
try is considered one of the most promising extensions beyond the Standard
Model.

One difference of heterotic compactifications, compared with type II com-
pactifications, are the presence of the 10d nonabelian gauge fields. Hence in
the compactification there is the possibility of turning on a non-trivial back-
ground for their internal components A, (z%,. .., z%). More formally, we need
to specify not just a compactification manifold, but also a gauge bundle (a
principal G-bundle, with G C Eg x Fjg) over the internal space Xg. Such
bundles are also constrained in order to lead to unbroken 4d susy in the gauge
sector of the theory (see below).

Before discussing the bundles in more detail, let us wonder whether we
really need non-trivial bundles, or else compactifications with trivial gauge
bundle are consistent. The answer is that such compactifications are incon-
sistent if the Calabi-Yau is non-trivial (i.e. is not a six-torus). To see this,
recall the Green-Schwarz terms in the 10d action, that we mentioned in the
discussion of heterotic (or type I) 10d anomalies. In particular, there is a
term of the form

Bg A (tr F? — tr R?) (13)
10d

where F' and R are the curvatures of the gauge and tangent bundle, and Bg
is the dual to the NSNS 2-form, dBg = *dB,. This leads to an action for B

which can be written

Hy A dBg +/ Bg(tr F? — tr R?) (14)
10d

10d
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where Hj is the field strength for By. This leads to the equations of motion
dHz = tr F? — tr R? (15)

Taking this equation in cohomology (both sides are closed), the left hand

side is exact so corresponds to the zero class. We get
[tr F?] = [tr R*] mnamely cy(E) = c3(R) (16)

the second Chern class of the gauge bundle must equal that of the tangent
bundle. The latter is trivial only for the six-torus, so consistency of the

equations of motion requires the internal gauge bundle to be non-trivial.

Thus we need to specify a connection in a non-trivial principal G-bundle
to have a consistent compactification. The requirements on this connection
in order to have unbroken 4d supersymmetry is that the curvatures obey the

conditions

Fy=0 ; Fz=0 ; ¢7F;=0 (17)

tj
Again, explicit solutions to these equations are difficult to find. However,
there is a theorem (by Donaldson, Uhlenbeck and Yau) which guarantees the
existence of a solution for gauge bundles satisfying the (simpler to check,
since they are almost topological) conditions

i) The complexified vector bundle (with fiber given by the vector space of
complez linear combinations of the basis vectors) is holomorphic (i.e. transi-
tion functions are holomorphic).

ii) The bundle is stable. This is a complicated to state condition, which
in physics terms ensures that the gauge field configuration is stable against
decay into product of bundles.

The classification or even the construction of stable holomorphic bundles
over a Calabi-Yau is a difficult task even for mathematicians, so we will not

say much about this.
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Happily, there is a very natural gauge bundle that satisfies the above
conditions, and can be used for any Calabi-Yau manifold, therefore leading
to a 4d N = 1 supersymmetric compactification. It amounts to taking
the gauge bundle to be isomorphic to the tangent bundle, and the gauge
connection to be the same, at each point, to the spin connection. This is
called the standard embedding, or embedding the spin connection on the
gauge degress of freedom.

Note that since F' = R it automatically satisfies the condition cy(F) =
c2(R). Also note that due to the Calabi-Yau property, the tangent bundle
has holonomy SU(3), so the non-trivial part of the gauge bundle is embedded
in an SU(3) subgroup of one of the Eg, i.e. H = SU(3).

We emphasize that the standard embedding is just a possible choice of
consistent gauge background in the heterotic compactification. Any other
choice of bundle, with different structure group, etc, would lead to equally
consistent models. In this lecture we however center on standard embedding

models for simplicity.

3.2 Spectrum

Before entering the construction of the final 4d spectrum, recall the basic 4d
N =1 supermultiplets.

i) the gravity multiplet, containing the 4d metric and one gravitino

ii) the vector multiplet, containing the gauge bosons and the gauginos
(Majorana fermions in the adjoint)

iii) the chiral multiplet, containing a complex scalar and a Weyl fermion,
both in some representation of the gauge group.

With this information it will be enough to determine just the spectrum

of bosons or of fermions.
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The reduction of the 10d N/ = 1 sugra multiplet leads to the following
bosonic fields in 4d

Het Gravity hy; Chiral hg; Chiral Chiral
G - Guw hiq 2hg 1
B — Js, B c
¢ - ¢
Thus we get hy; + hgy + 1 chiral multiplets, neutral under the gauge

group.

In the compactification of the 10d N' = 1 Eg x Eg vector multiplet, it
is easy to identify the resulting 4d vector multiplets. This can be done by
realizing that the gauge symmetries surviving in 4d are those gauge trans-
formations in Fg x Eg which leave the background invariant. Thus the 4d
gauge group is the commutant of the subgroup H with non-trivial gauge
background turned on.

For the standard embedding H = SU(3), embedded within one of the
two FEg’s. Thus, the other Fg is untouched and survives in the 4d gauge
group. About the Eg on which we embed the SU(3), the unbroken 4d gauge
group by realizing that Fg has a maximal rank subgroup Fs x SU(3) and we
embed the gauge connection on the last factor. The adjoint representation

of Fg decomposes as (see below)

joN — By x SU(3)

248 — (78,1) + (1,8) + (27,3) + (27, 3) (18)
The generators commuting with SU(3) must be singlets under it, so the
unbroken 4d group is Fg (times Fj).

To verify the above decomposition, recall that the generators of Fg are 8

Cartans H! and the non-zero roots

1
(£:£.0,0,0,0,0,0) 3 (&%, %%, %, 4,4, pm) (19)
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(with an even number of minus signs in the second set).

The decomposition (18) is as follows

SUB3) — H,—H,, H, + H, — 2H,
(+,=:0)
Eg Hy+ Hy+ Hs, Hy, Hs, Hg, H7, Hsg
(0,0,0,+,+,0,0,0)
1(+,+,+,:|:,:|:,:|:,j:,:|:)

2

1

5(_7 BEREE) :|:7 :I:, j:a :|:7 :t)
(27’ 3) (+’ 0’ O’ :ta 07 0: 05 0: 0)

(_a B 05 Oa 05 Oa 05 0)

1

§(+a ) :I:a :ta j:a :ta :t)

(_7 07 07 :l:7 07 07 07 0’ O)

(+a +, Oa Oa 0: 0; Oa 0)

1

5(—,+,+,:|:,:|:,:|:,:|:,:i:) (20)

Thus we get 4d N/ = 1 vector multiplets of Eg x Eg. This is very interesting,
since the group Fg has been considered as a candidate group for grand unifi-
cation models. So in a sense, it is relatively close to the Standard Model (we
simply point out that slightly more complicated models, with other structure

group on the gauge bundle, can lead to gauge groups even closer to that of
the Standard Model).

Finally, we need to discuss the spectrum of chiral multiplets. To obtain
these it is more convenient to obtain the fermionic components that arise in
the KK reduction of the 10d gaugino. Let us discuss the general idea of how
to do this, before going to the particular case of the standard embedding.
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For simplicity, we center on the Fg factor broken by the compactification, the
corresponding gaugino transforms in the adjoint of the original gauge group
Eg. In the breaking of the gauge group Fs — H X (G44, the adjoint of Fy

suffers a general decomposition

Eg — HXG4d
248 > (Ru;, Re,) (21)

The ansatz for the profile of the 10d gaugino in the KK reduction is of the

form

Ry Rg,;
A(20...,2%) = %, ( i (x4,...,xg)w_f/’Q(a:O,...,x3)+
Ry i Rg,i
N A L) (22)

where &, & are spinors of opposite chiralities in the internal 6d and t¢.,/,
as spinors of opposite chiralities in 4d. The singlet component of £ gives rise
to the 4d gauginos.

As usual, the 4d mass of a chiral left handed 4d fermion 1/)?{’/’; in the
representation R¢; of Gug is given by the eigenvalue of the kinetic operator on
the corresponding internal wavefuncion ff ¢ This is the 6d Dirac operator
for fermions in the 4, coupled to an H-bundle in the Rp; representation.
Hence we obtain a left handed chiral 4d fermion in the R¢; for each solution

of the equation

Dy &™ =0 (23)

The number of fermions ny,,  is hence the dimension of kerlDRH’i.

In general, the number of zero modes of wRH,i is not given by a topological
quantity of Xg or the bundle. The reason is that the KK reduction of the 10d
gaugino can also lead to 4d right-handed chiral fermions in the representation

Rp;. The number n} o of such zero modes is given by the dimension of
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kerlDLH,i. Since two 4d chiral fermions of opposite 4d chiralities and in the
same representation of the gauge group can couple to get a Dirac mass, they
can disappear from the massless spectrum. This can be triggered by a small
change of the geometry of the manifold or the gauge bundle, while staying in
the same topological sector. Therefore, the individual numbers of massless
chiral fermions nﬁa,i are not topological. However, in all these processes
of Dirac mass generation, the difference between the two two numbers is

conserved. Indeed, it was known to mathematicians that the difference,

indg,, ; = dim ker g, ; — dim ker IDLHJ (24)

called the index of the Dirac operator (coupled to a suitable bundle) can be

expressed in terms of characteristic classes of the tangent and gauge bundles

ind Pp,, , = /X _ch(F)\/A(R) (25)

where it is understood that one must expand the Chern character (computed
in the representation Ry ;) and A-roof genus, and pick the degree 6 piece to
integrate it.

This is satisfactory enough, since we expect that generically vector-like
pairs of fermions pick up large masses, of the order of the cutoff scale (the
string scale or compactfication scale) since there is no symmetry or principle
that forbids it. Hence, the only fields that we see in Nature would be the
unpaired chiral fermions (this is a version of Georgi’s 'survival hypothesis’)

Returning to the case of the standard embedding, we are interested in
obtaining the (net) number or fermions in the 27 of Es. Since the gauge
connection is determined by the spin connection, the index theorem gives
the number of such 4d fermions in terms of just the topology of Xg. It can

be shown that the index theorem gives
Ny — gy = &(Xe)/2 = hiy — hay (26)
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Figure 2: The replication of chiral families has a geometric origin in heterotic

compactifications on Calabi-Yau spaces.

where £(Xg) is the so-called Euler characteristic of Xg. Therefore we get
this number of chiral multiplets in the 27 of Eg. This is very remarkable
because in Fg grand unification the Standard Models families arise from
representaions 27, hence £/2 is the number of fermion families in this kind of
compactification. As we discussed above, this is a beautiful geometric origin
for the number of families, as they arise from different zero energy resonances
of a 10d field in the internal space! (see figure 2).

This number can be quite large in simple examples. For instance, for the
quintic Calabi-Yau we get a model with 100 families, far more than we would
like. In any event, there exist Calabi-Yaus where this number is small, and
can be even three.

Note that the KK reduction would also lead to other fields, like singlets
of Fg (arising from internal wavefunctions in the 8 of SU(3)). These can
be obtained from the index theorem, although the topological invariants are

much more difficult to compute, so we skip their discussion.
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3.3 Phenomenological features of these models

Let us start by mentioning that far more realistic models have been con-
structed explicitly. In particular one can achieve smaller gauge groups, closer
to the Standard Model one, by adding Wilson lines breaking Eg. All exam-
ples of heterotic compactification show some generic features, which can be
considered as predicitions of this setup (although there exist other ways in
which string theory can lead to something similar to the Standard Model,
with different phenomenological features).

e The string scale must be around the 4d Planck scale. The argument is

as follows. The 10d gravitational and gauge interactions have the structure

/dlox—Rlod 3 /dlo s Fl(z)d (27)

where M;, gs are the string scale and coupling constant, and Ryoq, Fioq are

the 10d Einstein and Yang-Mills terms. Upon Kaluza-Klein compactification
on Xg, these interactions reduce to 4d and pick up a factor of the volume Vj
of XG

M8V, M Vi
/d4$ ;2 ° Ria /d4 7 6F10d (28)

From this we may express the experimental 4d Planck scale and gauge cou-

pling in terms of the microscopic parameters of the string theory configura-

tion
M8V, 1 M8V,
ME=—2~10"GeV ; —— = -2~ 0(1) (29)
gs 9y m gs
From these we obtain the relation
Ms = 0y M Mp >~ 1018 GeV (30)

This large string scale makes string theory very difficult to test, since it
reduces to an effective field theory at basically any experimentally accessible

energy.
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e This large cutoff scale makes the proton very stable, since in principle
baryon number violating operators are suppressed by such large scale.

e Gauge and gravitational interactions have a similar coupling constant
at the string scale, since they are controlled by the vev of the dilaton, which
is universal. This is in reasonable good agreement with the renormalization
group extrapolation of low energy couplings up in energy (assuming no exotic
physics beyond supersymmetry in the intermediate energy region).

e The compactification scale cannot be too small. In order to avoid
unobserved Kk replicas of Standard Model gauge bosons, the typical radius
of the internal space should be much smaller than an inverse TeV. Other
arguments about how the volume moduli modify the gauge couplings of string
theory at one loop suggest that the compactification scale should be quite
large to get weak gauge couplings. Usually one takes the compactification
scale close to the string scale.

e The Yukawa couplings are given by the overlap integral of the internal
wavefunctions of zero modes of the Dirac operator in Xg. These are difficult
to compute, in particular for the more realistic models which do not have
standard embedding. So it is difficult to analyze the generic patterns of
fermion masses at the string scale.

Finally, let us mention that this construction is very remarkable. We have
succeeded in relating string theory with something very close to the observed
properties of Elementary Particles. However, the setup has several serious
problems, which are being addressed although no satisfactory solution exists
for the moment

e How to break supersymmetry without generating a large cosmological
constant?

e The models contain plenty of massless or very light fields, in particular

the moduli that parametrize the background configuration. How to get rid
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of these?

e The vacuum selection problem. There is no criterion in the theory that
tells us that a background is preferred over any other. Is the string theory
that corresponds to our world special in any sense? Or is it a matter of
chance or of anthropic issues that we see the world as it is?

Despite these open questions, we emphasize again the great achievement
that we have reviewed today. We have provided a class of theories unifying
gauge and gravitational interactions, and leading to 4d physics similar to the

physics observed in Nature!
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