Toroidal compactification of
superstrings

1 Motivation

In this lecture we study toroidal compactification of the (spacetime super-
symmetric) superstring theories. The main motivation is to obtain theories
which reduce to 4d at low energies. Although the models obtained in this lec-
ture are not interesting to describe the real world (they are non-chiral), they
will be useful starting points for further constructions, like orbifolds. Also,
toroidal compactification illustrates, just as in bosonic theory, the very strik-
ing features of stringy physics. For instance, the phenomenon of T-duality in
will reveal that the seemingly different superstring theories are related upon

toroidal compactification.

2 Type II superstrings

In this discussion we follow section 13.1 of [1].

2.1 Circle compactification

Let us consider the type IIA, IIB theories compactified to 9d on a circle St
of radius R. The 2d fermion sector is completely unchanged by the compact-
ification; the only effects of the compactification are

i) the possibility of boundary conditions with non-zero winding w for the

2d bosonic fields, namely

X%oc+£,t) = X°(0,t) + 27Rw (1)



ii) the fact that momentum along z° is quantized, py = k/R.

In a sector of momentum k£ and winding w, we have the mode expansion

Xp(o+t) = B PGy
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We have the spacetime mass formulae
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From these expressions we can obtain the spectrum of 9d states at any radius

R. For a generic R, the only massless states are in the sector of £k = 0, w = 0.

These states correspond to the zero modes (zero internal momentum) of the

KK reduction of the effective field theory of 10d massless modes. Note that

these states are present in field theory because they have zero winding.

The proccess of KK reduction to 9d and keeping just the zero mode

amounts to simply decomposing the representations with respect to the 10d

SO(8) group into representations of the 9d SO(7) group. Working first with

e.g. the purely left moving sector, at the massless level we have

Sector State SO(8) SO(7)
NS 1ﬁi_1/2|0> 8y 7+1
R (£5,%35,+5,£35) 8s 8

8¢ 8



Notice that the chiral 10d spinors of different chirality reduce to the same
spinor representation of SO(7), which does not have chiral representations
(there is no chirality in odd dimensions).

In order to glue left and right movers, we may tensor the SO(8) repre-
sentions for left and right movers to get the 10d fields, and then decompose
with respect to SO(7), or decompose the left and right states with respect to
SO(7) representations and then tensor them. Both methods give the same

result, so we may use any of them at will.



For type IIB theory, the massless 10d fields are the metric, 2-form and
dilaton, G, B, ¢; two gravitinos and two spin 1/2 fields 1,4, 1a; the scalar
axion, a 2-form and a self-dual 4-form, a, B, Af. We have the following set
of 9d massless states (See table 35 [3] for tensor products in SO(7)):

NS-NS
8y, 8y — 8y X 8y = 3By + 28y + 1
\J \J \J \J
T+1,7+1 — TxX 7= 21+ 21 + 1 Guv, By, ¢
Tx1+1x7= 7 + 7 Gou, Boy
1x1 1 G
R-NS
8¢, 8y — 8¢ x 8y = 56s  + 8s
\J \J \J
8, 7+1 — 8x 7= 48 + 8 1 Yuas Voa
— &x1= 8 (1
NS-R
8y, 8¢ — 8y X 8¢ = o6s  + 8s
\J \J \J
T+1,8  — Tx8= 48 + 8 l Yuar Yoa
— 1x8= 8 Ya
R-R
8¢, 8¢ — 8c X 8¢ = 1 +  28¢ 4+ 3b5¢
\J \J \J \J
8, 8 — 8x 8= 1+ 7+21 + 35 a, By, Bu, Agu,
Here ;4 = 2,...,8 runs in the seven non-compact directions transverse to the
light-cone.



For type ITA theory, the massless 10d fields are the metric, 2-form and
dilaton, G, B, ¢; two gravitinos and two spin 1/2 fields ¥4, Yo, Yua, Va; @
1-form and a 3-form A; C5. We have the following set of 9d massless states
(See table 35 [3] for tensor products in SO(7)):

NS-NS
8y, 8y - 8y x8y = 35y 4+ 28y + 1
1 { { {
T+1,7+1 — TX7= 27+ 21 + 1 Guvs Bu, ¢
Tx14+1x7= 7T+ 7 Gopu, Boy
1x1 1 Gog
R-NS
8¢, 8y - 8¢ x8y = 565 +  8g
I 1 1
8 7+1 — 8x 7= 48 + 8 { Yuas Yoa
— 8x1= 8 (R
NS-R
8y, 8g — 8y x 8g = 56c + 8¢
1 l {
7T+1,8  — Tx8= 48 + 8 l Yuas Yoa
— 1x8= 8 Va
R-R
8¢, 83 — 8¢ X 8g = 8y + 56y
1 { {
8, 8 — 8 x 8= 147 21 + 35 Ag, Ay, Copy Cuuy

Several observations are in order:
e Notice that there is one additional scalar besides Ggg (which defines the
compactification radius), namely Ag. It would be interesting to describe the

compactification for an arbitrary background of this field. Unfortunately, it



is not known how to couple RR fields to the worldsheet 2d theory, so we
will be unable to do this. In later sections, in the compactification of several
dimensions, there appear additional scalars arising from the NS-NS sector.
For these it is known how to couple the background to the 2d theory, and the
latter is exactly solvable (still a free theory), so we will be able to describe
the compactification in a general background of these fields, in the complete
string theory.

e Notice that both type II theories lead to the same 9d massless spec-
trum. In particular, notice that chirality of type IIB theory is lost in toroidal
compactification, since there is no chirality in 9d. Notice also that the origin
of the 9d fields in the RR sector is very different from the 10d viewpoint in
the ITA and IIB theories. The low energy effective theory for the massless
modes in either case is described by 9d supergravity with 32 supercharges
(which is a unique theory).

e The generalization to compactification to lower dimensions (here we
refer to square tori, and trivial B-field background, see later for non-triival
cases) is very easy. At the massless level, one simply decomposes the repre-
sentations 8y, 8¢, 8¢ with respect to the surviving Lorentz group, and then
tensors them together. In particular it is possible to see that compactifica-
tion to 4d on T leads to the field content of N = 8 4d supergravity. Notice
that again this theory is non-chiral, so it is not useful to describe the real
world. The large amound of susy in lower dimensions is related to the fact
that compactification on tori does not break any supersymmetry. This will
motivate to discuss more involved compactifications in later sections (e.g.
Calabi-Yau compactification).

e There is no point (besides R = 0 or R = 00) at which states become
light. At R — oo we have a tower of states of zero winding and arbitrary

momentum which become very light. This corresponds to the decompacti-



fication limit of the theory. As R — 0 we instead have a tower of states of
zero momentum and arbitrary winding which become light. It is natural to
think that this corresponds to the decompactification limit of a dual theory,
where momentum is the original winding, etc, just as in the bosonic string

theory. We study this in next section

2.2 T-duality for type II theories

Recall from the bosonic theory that the effect of T-duality is to relate a theory
compactified on a circle of radius R with a theory compactified on a circle of
radius R = /R, in such a way that states of momentum, winding (&, w)
are mapped to states of momentum, winding (k¥', w') = (w, k). Equivalently,
starting with a 2d field theory of left- and right-moving bosons X (o + t),
Xr(o —t), with a spacetime geometry spanned by X (o,t) = X, + Xg, T-
duality related it to a theory on a spacetime geometry spanned by X" (o,t) =
X7 — X3, XH(o,t) = XI + X&.

In type II theory we also have the 2d fermions. In order to be consistent
with 2d susy, we require that the T-dual theory is described also by the
fermion field ¥ (o, t) = ¥? (0 + t) — Y}(0 — ¥).

Hence, T-duality acts as spacetime parity on the right-movers. It is then
intuitive that at the level of the spacetime spectrum, it will flip the chirality of
the R groundstate, exchanging 8¢ <> 85. Namely, it flips the GSO projection
on the right movers. Hence, starting with type IIB theory compactified on
radius R the T-dual will describe type IIA theory compactfied on radius
R' = o/ /R. This is T-duality for type II theories. Notice that it implies that
the spectrum of massless fields at generic radius must be the same for both
theories; the full spectrum is the same only for R, R’ related by the T-duality

relation.



The flip in the GSO projection can be derived more explicitly as follows.
Recall that to build the R groundstate one forms the linear combinations of

fermion zero modes
+ _ ./ 2a - 1 2a+1
Aa - %0 + Wo (5)

So T-duality acts as AF < AF. In the original theory, one defines a state

|0) satisfying A, |0) = 0 and the states surviving the GSO are e.g.

0) » ALALI0) ,  ATATAJALIO) (6)

2

In the T-dual theory, one would define a state |0) by A,’~|0)' = 0. In terms
of the original operators we have A, [0) = 0 for a = 1,2,3 and A;|0)' = 0.

Hence we have
0)' = A7]0) (7)

This implies that the (—1)" eigenvalue of |0)’ is opposite to that of |0). This
implies the GSO projection is opposite in the T-dual. Indeed, the surviving
states (6) read, in the T-dual

AZI0) -, Ag AgLALL0) (8)

3

From the viewpoint of the T-dual theory, we are choosing the opposite GSO
projection.
It is easy to check the effect that T-duality has on the 10d fields, by

comparing the 9d spectra. For instance, for bosonic fields

ITIA & IIB
Gu, B < Bu,Gu
Ag, A, < a, By,
Cow>Cuvp < By, Aguup 9)



The beautiful conclusion of T-duality is that IIA and IIB theories are
much more intimately related than expected. In fact, they can be regarded
as different limits of a unique theory, namely type II compactificaion on S*

in the limits of R — 0 and R — oo.

2.3 Compactification of several dimensions

In this section we study compactification on a d-dimentional torus T9. These
compactified theories contain more additional scalar fields, which correspond
to 10d fields with some internal indices. Hence the vaccuum expectation value
of these scalars correspond to specifying the backgrounds for the metric and
other fields in the internal manifold.

We are interested in studying the set of possible toroidal compactifica-
tions, that is, the set of vevs that these scalar fields can acquire. This is
called the moduli space of (toroidal) compactification. Unfortunately, it is
not known how to quantize the 2d theory exactly if backgrounds for RR fields
are turned on. So we will restrict to turning on backgrounds for the NS-NS
fields, namely the metric and 2-form !

We describe T? by periodic coordinates z° ~ 2’ + 27 R, and define its
geometry by a constant metric tensor G;;. We also introduce a background
for the 2-form, B;;, which must be constant so as not to induce cost in energy
(for constant B, its field strength vanishes).

The light-cone gauge-fixed action for an arbitrary metric background

reads (see equation after (27) in lecture on quantization of closed bosonic

!The moduli spaces including RR backgrounds can be studied in the supergravity
approximation; we postpone this discussion to coming lectures, since the analysis is most

useful to study non-perturbative properties of string theory.



string)

1
Ao

Lo = —p 0 () + /0 Y do Gy (0,X°0,X7 — 8,X°9,X7)  (10)

where we have used p™ = ﬁ

0o, and set £ = 2wa/p™, 50 gy = 1.
To this we must add the term that describes the interaction of the string

with the B-field, which reads

1 e 1 e o
Ly = / do e By 0,X'0,X7 = — [~ do B, 9,X°0,X7 (11)
0

Ao o' Jo

In total we have
1 o 1 iq v i X7y 4 2 i9, X
L = %/0 do [Q—O!,Gij (O X'0 X7 — 0,X'0,X7) + aBij 0 X" 0, X7 |(12)

The presence of the backgrounds and the periodicity of the coordinates z°
do not modify the oscillator piece for the 2d bosons. We are already familiar
with this fact for the metric background, from our experience with circle
compactifications. For backgrounds of the B-field, this follows because the

lagrangian term in Lp is a total derivative
€0, X' 0, X" B;j = 0,(e® X0, X’ B;;) (13)

so it is insensitive to the 2d local dynamics, and feels only the topology of
the 2d field configuration (namely, the winding number).

Thus it is enough to work with the zero oscillator number piece in the
mode expansion of the 2d bosons. In a sector of momenta and winding
k;, w? € Z this reads

. . . 2 :
X' (o,t) = xy + 3"t +W7Rwla (14)

where @' will be related to k; below. Plugging this ansatz into the lagrangian,

we get

10



14 1 2R o 1 2R
= % Q—QIGZ] (aczxj — (T)QMZU}]) + EBZ] Tt —— w?

14

L

The canonical momentum conjugate to x* is

oL ¢ | 9rR
_ _ i onnd
= 95 = 27 (Cud + Byw' =)

Di

It is quantized in units of 1/R, namely p; = k;/R. This leads to

T (Eg B EBﬂwl)
and
) ) Gij kj R l i
X"(o,t) = zf + e (E — i )t‘f‘a,—wwa
Splitting between the left and right movers, we have
i xf pPL
Xj(o+t) = 50 + 2?(1,%0)
i : Pr
Xp(o—1t) = EO + %ﬁ(t_a)
with
k; R
Pri = p+ (Gij — Bij)w
ki R
Pri = p + a( Gij — Bij)w
and mass formulae read
2 2
M} = =(Ng+Np+Eo) + %
A P
Mg = J(NB—FNF-FEo) + DY

Narain lattice

11
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The 2d-dimensional lattice of momenta (pr,, pr) has two very special prop-

erties. It is even with respect to the Lorentzian (d, d) signature scalar product
(pz,pr) - (P, PR) = o D (PLpLi — PrPri) = 2 Z 'w +w'k;) € Z(22)
i

and it is self-dual. These two properties ensure that the 1-loop partition
function for the theory is modular invariant. Namely, the partition function

has roughly speaking the structure

Z qa’pi/Z —a'p Z qa’pi/2 —a'p% /2 (23)

(kyw) (pL,pR)

It is easy to see that the even and self-duality properties ensure that this is
invariant under 7 — 7+1 and 7 — —1/7, resp. So each choice of background
fields determines a (lorentzian) even and self-dual lattice of momenta (py,, pr)-
This is the so-called Narain lattice.

Conversely, any choice of ((d, d) lorentzian) even and self-dual lattice 'y 4
can be used to define a consisten modular invariant toroidal compactification
of type Il theory, by simply using the vectors in the lattice to provide the
sectors of momenta (pr, pgr) in the theory.

This description, first introduced by Narain [4] in the heterotic context,
is useful to provide a complete classification of all possible toroidal compact-
ifications (which correspond to free worldsheet theories). Hence they allow
to compute the moduli space of such compactifications, as follows.

A general theorem in mathematics states that all possible (d, d) lorentzian
even self-dual lattices are isomorphic, namely any two such lattices differ by
an SO(d, d) rotation. This does not mean that there is a unique physical com-
pactification, because the physics is not invariant under arbitrary SO(d, d)
transformations. In particular, the spacetime mass of a state with momenta
(pr,pr) depends on p? + p%, which is only SO(d) x SO(d) invariant. This
is illustrated in figure 1. Hence, physically different theories are classified by

12



Figure 1: Heuristic picture of the relation between lattices and physical theories.
Although the two lattices are related by a rotation in 2d spcace, the physics is
sensitive to the independent values of p;, and pr, and therefore not invariant under
the rotation. Physics is not invariant under the mathematical isomorphism that

relates the two lattices. The rotation parameters encode the background fields.

elements in the coset SO(d, d)/[SO(d) x SO(d)]. This is (almost, see below)
the moduli space of compactifications. Note that it has dimension d?.

It would be interesting to be able to provide an interpretation of a com-
pactification defined by these abstract lattices, in terms of background fields
as those introduced above. In fact, the number of background fields is also
d(d + 1)/2 (for Gi;) plus d(d — 1)/2 (for B;;), namely a total of d. This
suggests that any abstract lattice corresponds to a particular choice of back-
ground fields.

In fact we can be even more specific: The background fields themselves
are the rotation parameters in SO(d, d)/[SO(d) x SO(d)]. For instance, it is

easy to show that the lattice of momenta for generic Bj;

k; R ok R -
(prispri) = (5 + 5 (Gij = By)w's 5 + — (=Gig = Biy)w’) - (24)
are related to the lattice of momenta for B;; = 0
k; R -k R -
(PLisPRi) = (E + JGU w’; R JGU w) (25)

13



by the rotation matrix
6 _1pJ ipJ

Ma — % 2 .z '2 7 . 2

? ( —3Bf &+ %BZJ> (26)

-B

-B
menta for generic G;; can be related to the momenta for cubic metric Gy; = d;;

via an SO(d, d) rotation

Mo — cosh S sinh S B 1/0 S (27)
¢ sinh S cosh S —exp2 S 0

B
which is in SO(d, d) because Mp = exp 3 < B). Similarly, the mo-

where S;; is a symmetric matrix.

From either viewpoint we reach the conclusion that the moduli space
of compactifications with these backgrounds is SO(d, d)/[SO(d) x SO(d)].
In fact, this statement needs some refinement. In the description in terms
of abstract lattices, it is clear that there may exist some finite SO(d,d)
transformations, not in SO(d) x SO(d), which leave the lattice I" invariant as
a whole, although acting non-trivially on the individual points (pr,, pr). Since
the lattice defines the physics, we should mod out by those transformations.
They correspond to rotation matrices with integer entries, and generate a

group denoted SO(d, d; Z). Therefore the complete moduli space is
SO(d,d)/[SO(d) x SO(d) x SO(d,d;Z)] (28)

These latter transformations act nontrivially on the winding and momentum
quantum numbers, and also relate theories with different backgrounds. They
include large diffeomeorphisms of T, large gauge transformations of the B;;,
and also T-dualities (sign flips of right-moving momenta). For this reason,
SO(d, d;Z) is often called the T-duality group.

Some observations are in order

14



e States in the theory must form representations of the T-duality group:
Since it leaves the theory invariant, there must be sets of states which are
shuffled among themselved by the action of the symmetry. They thus lie in
representations of the group. Representations of SO(d, d; Z) are easy to con-
struct from representations of SO(d, d) by restriction. To give one example
of this discussion, the d states k; = 1, w’ = 0 and the d states k; =0, w/ =1
form a 2d-dimensional representaion of SO(d, d; Z), which is the representa-
tion obtained from restriction of the vector representation of SO(d, d).

e Again, we recall that toroidal compactifications contain more moduli
than those discussed here. The inclusion of the additional backgrounds leads
to large moduli spaces. They cannot be computed in full-fledged string the-
ory, but can be computed in the supergravity approximation (which is reliable
since the large amount of supersymmetry protects the structure of moduli
space to a large extent).

e Finally, there will be enlarged duality groups, which act nontrivially
on the states and on the backgrounds. A novelty, to be studied in later
lectures, is that these enlarged duality groups act nontrivially on the string
coupling, and therefore relate weakly coupled and strongly coupled regimes
of string theory. The corresponding duality multiplets therefore contains
perturbative string states (such as strings with momentum and winding)
and non-perturbative states (the so-called branes) Hence dualities provide an

extremely useful tool to study non-perturbative phenomena in string theory.

3 Heterotic superstrings

In the discussion we follow section 11.6 of [2]

15



3.1 Circle compactification without Wilson lines

This is the simplest compactification, although not the most generic one
(additional background fields, Wilson lines, are turned on in later sections).
We simply take spacetime to be My x S* (so we make one coordinate periodic,
2% ~ 2%+ 27 R) and turn on no background for the 10d gauge fields. As usual,
the compactification only modifies the theory by the inclusion of winding
sectors, and the restriction to quantized momenta in the compact direction.
Therefore, different sector of the theory will be labelled by left and right

moving momenta

kE R
PLRr = Ei il (29)

as well as the internal 16d lattice left moving momenta P! in the Ey x Fjg
or Spin(32)/Zz lattices. Defining the internal left moving 16d dimensionful
momenta Pp, = (/2/a’ P, the mass formulae are given by

pP? p? 2
M = L 47 Z(Ng—1
L y T Tyl
B 2o g
M; = 7+E(NB+NF+E0) (30)

The spectrum of massless states at a generic radius (in particular at large
radius) is the p;, = pr = 0 sector. This corresponds to kK = w = 0, hence we
recover the zero modes of the (field theory) KK reduction from 10d to 9d.
States are just the group theory decomposition of the massless states in 10d.
We have

16



NS
8Va az—1|0>
1
T+1,7+1

80’ ai—1|0>
8, 7+1

NS
8Va O{£1|0>
!
741, 1
8v, | Pr)p2=2
!
741, 1
R
8C'a a£1|0>
!
8 1
8¢, | Pr)pr—2
!
8,1

_)

—

—

8y X 8y = 35y
1

TXT= 27
TX1+1x7= 7
1x1 1
SCXSV: 565
1

88X 7= 48 + 8

8§x 1=

8y x 1= 8y
1

741

8v><1= 8V
1

7T+1

80)(12 80
1

8

80)(12 80
1

8

+

_|_

28y + 1

\
+ 1 Gu,Bu, ¢
Gou, Boy
Goag

lpuaa wQa
Vo

Al A

Apy, Apg

M

w[

Yp

The first set of states is the gravity multiplet of 9d supergravity with 16

supersymmetries.

17

The second set of states are 9d vector supermultiplets



with respect to 16 supersymmetries, namely 9d gauge bosons, gauginos and
real scalars in the adjoint of the gauge group, which is E8 x Eg or SO(32).
Hence the 10d gauge group from the internal lattice is unbroken. In addition,
there is the usual U(1)? gauge group arising from the familiar KK mechanism
from the 10d graviton and B-field.

The generalization to lower dimensions is very easy, one simply needs to
decompose the fields with respect to representations of the corresponding
Lorentz group. Notice that in any of these compactifications chirality is
lost. In particular, compactifications to 4d lead to theories with 4d N' = 4
supersymmetry, which are automatically non-chiral.

Notice that in the above construction (i.e. without gauge field back-
grounds) the pattern of enhance gauge symmetries at special values of R is
exactly like in bosonic string theory. That is, the generic U(1)? gauge sym-
metry from the graviton and B-field enhance to SU(2)? at R = v/o/. Notice
that there are no values of R for which the enhancement of the group involves
both the U(1)? and the original 10d group. This will be different when we
include Wilson lines.

Finally, we would like to mention that the Fg x Eg and SO(32) heterotic
theories are self-T-dual. The Eg x Eg heterotic theory on a circle of radius R
is equivalent (up to relabeling of £ and w) to the Fg x Eg heterotic theory on
a circle of radius R' = o/ /R (and similarly for the SO(32) heterotic theory).
This would suggest that the two heterotics are not as intimately related as
type ITA and IIB theories. We will see that they are: if one considers the
more general case of compactifications with Wilson lines, there are T-dualities

relating compactifications of the two heterotic theories.
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3.2 Compactification with Wilson lines

The compactifications discussed above are not the most general circle com-
pactifications. Note that the resulting 9d theory had additional scalars be-
sides Ggg, namely the scalar fields A¢ in the adjoint of the gauge group. A
vev for these scalars corresponds to turning on backgrounds for the internal
components of the gauge fields, the so-called Wilson lines. In this section we
discuss Wilson lines, first in the context of field theory, then in the context

of heterotic string theory.

3.3 Field theory description of Wilson lines

Consider the following toy model of compactification from 5d to 4d. Con-
sider a gauge theory with gauge group G in a spacetime My x S, with S?
parametrized by the periodic coordinate z* ~ z* + 27 R.

We also turn on a constant backbround for the internal component of
the gauge bosons A$. Locally, this is pure gauge, namely it could be gauge
away, but the gauge parameter would not be a single-valued in S* and thus
would not define a global function. For instance, for G = U(1), the gauge

background can be locally gauge away with a gauge transformation
A, — A0\ with A = —(A,)a* (31)

and ) is not globally well defined on St.
The gauge non-triviality of the gauge background can be encoded in the

gauge-invariant object, called the Wilson line, defined by
we = expz'/1 A% = exp(2ir RAY) (32)
S

Notice that A$ is periodic with period 1/R. It is convenient to define flff =
2m RA$ which has period 1.

19



From the 4d viewpoint, the Wilson lines or gauge backgrounds of this

kind are interpreted as giving a vacuum expectation value to the 4d fields
4, which are 4d scalars transforming in the adjoint of the gauge group.

This makes it clear that, using global transformations in the gauge group,
one can always diagonalize the hermitian matrix of vevs. This means that
one can always rotate within the gauge group to a configuration where the
gauge backgrounds are non-zero only for Cartan generators. We will denote
the gauge background in this basis by A}, with I = 1,...,rank G. This is a
vector of Wilson line vevs.

We are interested in obtaining the spectrum of light 4d fields. To obtain
them we should expand the 5d action around the background defining the
compactification (namely, the circle geometry and the gauge background).

The 5d action for the gauge fields roughly reads
Ssa = / tr Fary FUN (33)
M4 xSt
with

Fun = OmAn + [Au, An] 5 Au =) Ayt° (34)

The terms |[Apr, Ax]|? in the compactification lead to 4d mass terms for
gauge bosons |[A,, A4]| ~ tr(A%A%)W? unless the generators associated with
the gauge bosons commute with the generators associated with the gauge
background. This is called the commutant of the subgroup where the gauge
background was turned ont. To understand better which gauge bosons sur-
vive, we describe their generators in the Cartan-Weyl basis.

Gauge bosons of Cartan generators always have zero mass terms in 4d
(since they always commute with the background, because it is embedded in
Cartan generators as well). The rank of the 4d gauge group is the same as

for the 5d group.
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For non-Cartan generators, associated with some non-zero root «, the
corresponding gauge boson survives in the massless sector if the commutator

vanishes
[<H1>a Ea] = a’IAi =0 (35)

Namely we obtain massless 4d gauge bosons for a - Ay = 0. Recalling the
periodicity in Af, careful analysis leads to the slightly more relaxed a-AL € Z.

Recalling that the oy are integer, and the A} are continuous parameters,
it is clear that generically the only surviving massless gauge bosons are the
Cartan generators, generically the 4d group is broken to U(1)", with r =
rank G. For special choices of Wilson line (i.e. at particular points in Wilson
line moduli space) we will obtain enhanced non-abelian gauge symmetries.
For instance, for zero Wilson lines the 4d group equal to G. Turning on small
wilson lines starting from a point of enhanced symmetry, breaks the gauge
group. From the viewpoint of the 4d theory this is understood as a Higgs
effect due to the scalars in the adjoint of the enhanced gauge group.

To give a simple example, consider G = U(n), and consider that the
Wilson line along z* corresponds to (Af) = (0,...,0,a). For generic a, the
only elements of SU(n) that preserve the background (commute with the
Cartan with Wilson line) are the U(n — 1) rotations in the first n — 1 entries,
times the total trace U(1). The unbroken group is U(n — 1) x U(1).

There is an alternative description of what fields remain massless in the 4d
theory in the presence of Wilson lines, which is valid not just for gauge bosons
but for any 5d field i) charged under the 5d gauge group. Recalling that in
a gauge theory all derivatives must be promoted to covariant derivatives,
involving the gauge field, and that derivatives are related to momenta, it is

clear that the natural momentum in the fifth direction z* is not associated
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to 04, but to

Dytp = 04 + qr Afp
Py = (k+qA})/R (36)

with £ € Z.

The 4d mass of the KK modes of this field is given by m? = PZ, for varying
k. Clearly we obtain 4d massless fields only if ¢- A4 € Z. This generalizes the
condition on gauge bosons, which is recovered by recalling that the roots of
are simply the charges of the gauge bosons under the corresponding Cartan

generator.

Before concluding, we would like to mention how this generalizes to com-
pactification of several dimensions, i.e. T¢ compactifications. In this case,
we can turn on gauge backgrounds along any of the internal directions, A¢.
Now in order to turn on this background without any cost in vacuum en-
ergy (so that we are still describing a vacuum of the theory) we have to
avoid that backgrounds in different directions contribute to the energy via
the commutators [A4;, A;] in the higher dimensional gauge kinetic term. This
implies that backgrounds in the different direction commute among them-
selves. (From the viewpoint of the 4d theory, it implies a conditions on the
corresponding scalar vev, which is condition of minimization of the scalar
potential). On the other hand, it means that the corresponding matrices
(in the gauge indices) can be simultaneously diagonlized, i.e. the complete
background can be rotated to the Cartan generators. Therefore, the most
general configuration of Wilson lines corresponds to backgrouns A! for the
Cartan generators. Clearly, the basic rule is that we obtain massless fields
for states with charge vector ¢’ satisfying ¢ - 4; € Z, for any i = 1,...d.
Namely, each Wilson line acts independently.

In later sections we will see how this effective field theory description
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arises in string theory, at least in the limit of large radii.

3.4 String theory description

Narain lattice

In order to discuss compactification with Wilson lines in string theory,
is to couple the gauge background to the 2d worldsheet theory. Happily, in
the presence of constant gauge backgrounds the 2d theory is still free, and
so exactly solvable. The gauge backgrounds Al in a T compactification can

be seen to couple e.g. to the 2d bosons through a term
Sy = / d2€ ¢ 9, X7 3, X T Al (37)

The complete action is quadratic, a free theory.

The canonical quantization of the complete lagragian in the presence of
backgrounds G;;, B;; and Al is discussed in [5]. This is analogous to our
study of type II compactification on T9, but there is a subtlety in that the
2d fields X' are constrained to be purely left moving. The use of Dirac
method of quantization of constrained systems implies a subtle additional
piece in the canonical momenta. Skipping the details, the result for the left

and right moving momenta in this compactifications are given by

2 .
PL = = (P" + RA[w')

ki R , R :
Pri = o + o (Gij — Bij)w’ — PTA] — 514{14; w’
ki R . R .
PrRi = 7t (—Gij — Bij) w’ — P'A] — 5AfA§ w’ (38)
The formulae are given by
P p? 2
2 _ 1% L
M; = o + o + E(NB_D
2 p%z 2 - Y >
My = 5> 1 J(NB+NF+E0) (39)
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The lattice of momenta (38) is even with respect to the Lorentzian scalar
product P} P!’ +p}p}, ;— Pk’ ;» and self-dual. This ensures that the partition
function for these theories is modular invariant for any choice of background
fields, so they define consistent vacua of the theory.

As in type II compactifications, we are interested in the structure of the
set of vacua of these theories, namely the moduli space for the scalars in
the compactified theory. Following Narain, any T¢ compactification can be
defined in terms of an abstract (16+d, d) lorentzian even and self-dual lattice
I'i61da of momenta. Mathematical theorems ensure that (p,q) lorentzian
even self-dual lattices exist iff p — ¢ is a multiple of 8, which is fortunately
satisfied in our case. Also, for d > 1 all (16 + d, d) even self-dual lattices are
isomorphic, up to a rotation in SO(16+d, d). Again, this does not mean that
all physical compactifications are equivalent, because the physics (e.g. the
mass formulae) is invariant only under SO(16 + d) x SO(d). Therefore, the
set of inequivalent T9 compactifications of the theory is the coset SO(16 +
d,d)/[SO(16 + d) x SO(d)].

This space has dimension (16 + d)d, so a vacuum of the compactified
theory is defined by (16 + d)d parameters. In fact, this is the number of
parameters that define a background configurations, namely d* from G;, B,
and 16d from the Wilson lines Af. In fact, it is possible to see that these
background fields are indeed the SO (16 +d, d) rotation parameters. Namely,
the momenta (38) for generic values of B;;, Al are related to those for B;j—o,
Al'=0

[2
I I
k; R ,
Pri = 1 + EGij w’
k; R ,
Pr; = E - JGijw] (40)



by the matrix
5 244 -z
Mpa = | —JZA! 6! —LiBI—2AlAli  1pi=aAlAl (41)

VEAL 3B gaA g LB =g ala

which is an SO(16 + d, d) rotation since
0 VZAL —\[ZA]
Mpa = | —\/24] -Bj B} (42)
_\/gAJ'I _Bji Bji

As in type II, the momenta for generic G;; are related to those for cubic
metric by a rotation

coshS sinh S 1/0 S
Mg = . =expy (43)
sinh S cosh S 2\S 0

As in type II, we should be careful in constructing the moduli space, since
there may exist finite SO(16 + d, d) transformations which leave a lattice of
momenta invariant, although acting non-trivially on individual states. These
transformations form the group SO(16 + d,d;Z) and corresponds to large
diffeomorphisms of T9, shifts on B;;, Al by whole periods, and T-dualities.
Since theories related by these rotations are physically equivalent, the moduli

space has really the structure
SO(16 +d,d)/[SO(16 + d) x SO(d) x SO(16 + d, d; Z)] (44)
This result will be useful in the discussion of non-perturbative dualities in

compactifications of heterotic theories, etc, in later lectures.

Spectrum
At generic R the spectrum of light states is easily computed. For instance
we obtain massless states from the decomposition of 8, x o’ ;|0) and 8¢ x

o’ |0}, which lead to the 4d N = 4 supergravity multiplet. Notice that
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it includes gauge bosons arising from the 10d metric and 2-form with one
internal index.

We also get massless states from the decomposition of (8, +8¢) x af,|0),
they correspond to 4d N/ = 4 U(1)'® vector multiplets. Finally, states with
nonzero 16d momentum lead to massless states if p;, = pr = 0, P2 = 4/d.

This can only be achieved in the w' = 0 sector where

[ 2
pI pl
L = o

o (k-P- 4
PL:; = R
ki — P-4

(T (45)

N

Pri =

So massless states correspond to P2 = 2, P- A; € Z. This result, valid for
generic R (and thus also for large R) reproduces the field theory analysis,
as should be the case. These modes correspond to the KK reduction of the
10d N' = 1 vector multiplets in the presence of Wilson lines. For generic
Wilson lines the non-abelian gauge bosons do not survive and the 4d gauge
symmetry is simply U(1)°.

On the other hand, by tunning some backgrounds, it is possible to achieve

situations where some vector in the lattice of momenta satisfies
P2 +pl=14/d (47)

leading to some enhancement of the gauge symmetry breaking due to states
(8y + 8¢) x |Pr,pr). One simple particular case is tunning the Wilson lines
to zero.

Notice that in general the new massless states at enhances symmetry

points involve non-zero spacetime winding and momentum. This means that
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they are charged under the U(1)?? gauge bosons arising from the 10d metric
and 2-form, in addition to being charged under the U(1)'® from the internal
16d ‘space’. The complete non-abelian group gathers Cartan generators of
very different origin in 10d language!. The general recipe is that any non-
abelian (simply laced?) group of rank < 16 + 2d can appear as the gauge
group in a corner of moduli space of T9 compactifications.

As a final comment, let us mention that moving away from such points
(of enhanced gauge symmetry) in moduli space corresponds to a Higgs effect
from the viewpoint of the lower dimensional effective field theory. This is

similar to what we saw for the bosonic theory.

T-duality of Eg x Eg and SO(32) circle compactification

The fact that the moduli space of e.g. S compactifications of heterotic
string theory is connected implies that a single theory in 9d can receive
two interpretations, as compactification of Eg x FEg heterotic on a radius
R with Wilson lines A/, and as compactification of SO(32) heterotic on a
different radius R’ with different Wilson lines A!’. Both compactifications
are physically equivalent, although look different in 10d language. They
are hence related by T-duality transformation. In this section we study the
simplest example of these T-dualities (we follow section 11.6 of [2]).

Consider compactification of Eg x Eg and SO(32) heterotic theories on
SY’s of radii R and R’ repectively, with Gg9 = 1, G4y = 1. The momenta

2 .
Pl = ,/E(Pf + RA"w")

k R R
PLr = Eigw—P-A—EA-Aw (48)

2A group is simply laced if all its roots have length square equal to 2).

lattice read
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and similarly for primed parameters. Consider the choice of Wilson lines
~ 11111111
AN = (3,2, 2,2 = =, =, = ;
( )~ (2’2’2’272’2’2’270’0’0’0’030’050)
(A" = (1,0,0,0,0,0,0,0;1,0,0,0,0,0,0,0) (49)
for Eg x Eg and SO(32), resp.
The T-duality is the statement that these two theories are equivalent if
R = d'/(2R). To show this one would have to see that the two Narain lattices
are exactly the same. This can be done [6], but is a bit involved, so we will
be happy by just showing the matching of some subsets of states.
For instance, it is easy to see that in either case the gauge group is defined

by the surviving non-zero root vectors

(£,+,0,0,0,0,0,0;0,0,0,0,0,0,0,0) ; (0,0,0,0,0,0,0,0;+,+,0,0,0,0,0,0)

satisfying P - A € Z. They correspond to a group SO(16) x SO(16) in both
cases.

We can also match other states. Let us consider states uncharged under
the 10d gauge group, i.e. neutral under SO(16) x SO(16), which have P;, =0
and so P! = —RA§wj . Using the particular form of the vectors P! for the
lattices, it can be seen that this condition requires that w is even, w = 2m.

Hence, the spacetime left and right moving momenta are
k  wR wRA-A_k—l—2mi2mR

_ - = 50
PLR = RE o T R R o (50)
and similarly for primed quantities. Defining k =k + 2m, we get
k  2mR
PLr = 7 + o
k' 2m'R
Phon = 5t (51)

We see that the two theories are equivalent for R’ = o//(2R), k' = m,
m' = k. Es x Eg heterotic theory and SO(32) heterotic theory can be
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considered different (decompactification) limits of this 9d theory. We then

have a picture similar to that of type II theories.

4 Toroidal compactification of type I super-
string

In this section we study type I superstring compactified on a circle. Gener-
alization to T9 is analogous and will be mentioned only briefly.

Recall thet type I theory is a theory of unoriented closed and open strings.
We have the 10d massless fields G, B, ¢, and SO(32) gauge bosons (and
superpartners). This field content is the same as for the SO(32) heterotic,
which means that in the large R regime the results (which are well described
by field theory in this regime) will agree with those in heterotic theory. The
string theory description, however, will be very different, and the stringy
features, like gauge enhancement or T-duality will be very different.

Before entering the detailed discussion, let us point out that in a general
toroidal compactification it is possible to turn on background for the RR 2-
form B; however, it is not known how to couple such backgrounds to the 2d
worldsheet theory. Hence, the only backgrounds we will be able to describe

exactly in the string theory are metric and Wilson line backgrounds.

4.1 Circle compactification without Wilson lines

We start discussing the simplest case of compactification on a circle of radius
R, with zero gauge background. We have to describe the closed and open

string sector independently.

Closed string sector

The toroidal compactification of the closed sector of type I is simply the
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Q) projection of the toroidal compactification of type IIB theory. In type I1IB
theory on a circle, different sectors of the theory are characterized by the
momentum and winding, ¥ and w, which define the mode expansion of the

compactified direction (for clarity we omit the index in X°)

To  PL 1
Xy(o+t) = 2, P N
L(O’+) 9 +2p++a’p+ B
x 1 -
Xp(o—t) = D4 PR, (52)

N
2 2pt  aolpt B
The effect of Q2 on k, w is easy to find out, by recalling that it maps X to
X% such that

X%0,1) = X(—0,1) (53)

This implies that Omega acts by zo — zg, k — k, w — —w.

Hence Q-invariant states are linear combinations of states in opposite
winding sectors, schematically |w)+|—w). This implies that winding number
is not a well defined quantum number for states in this theory. This will be
a relevant point in understanding some features of the T-dual version.

In the w = 0 sector, €2 relates states within this sector. This implies that
we get the usual projection on the operator piece of the states; namely in the
NSNS sector the states of the form

¢51/2|w =0)® 1/;9;1/2|w =0) (54)

survive only by taking the symmetrized product, exactly as in the original
10d theory. Indeed it is easy to check that the w = 0 sector gives the KK
reduction of the massless fields in the original 10d theory.

In sectors of w # 0 (these are massive states, but we are interested
in discussing them at this point), there exist {2-invariant combinations of

winding excitations of these states both in symmetrized and antisymmetrized
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prodcucts. For instance, in the NSNS sector the state

¢¥1/2|w> ® 1[){]1/2|w> + ¢’§1/2| —w) ® 1/3];]1/2| —w) (55)

survives. It can be considered as a winding excitation of the field B;; since it
is in a sense left-right antisymmetric. Nevertheless it is invariant under €2 due
to the additional action on winding number. The observation that winding
excitations of {2-odd 10d massless fields are €2 invariant will be relevant in
the discussion of the T-dual picture.

In any event, the spectrum of states massless at generic R is obtained
by the Q-invariant states in the £k = 0, w = 0 sector of the IIB theory. As
expected, this is simply the zero modes of the KK reduction of the 10d N' =1
supergravity multiplet.

Notice that since the parent 1IB theory did not have any enhanced sym-

metries at special values of R, neither does the closed sector of type I theory.

Open string sector

(We start the discussion in compactfications without Wilson lines; inclu-
sion of the latter will be discussed in later sections.)

A key difference between the compactification of open string sectors and
closed string sectors is the absence of winding. As shown in figure 2, open
strings can always unwind in a compact dimension. This agrees with the fact
that winding was defined using the periodicity in o for closed strings, and
this does not exist in open strings.

Hence, the only effect of the circle compactification in the open string
sector is that the internal momentum is now quantized and equal to k/R.
Since there is no winding, compactification of open strings is very much like
KK compactification in field theory.

We have the mode expansion for 2d bososn

k
X(o,t) = xo + Rt + oscillators (56)
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Figure 2: Open strings with NN boundary conditions in a compact direction
cannot wind around it. String seemingly wrapped on the internal circle are in the

same topological sector as strings with no winding.

leading to the mass formula

k2

i (57)

1
m2 = _,(NB+NF+E0) +
(07

Thus massless states correspond to £ = 0 and reproduce the zero modes of the
KK reduction of the 10d massless fields. Namely SO(32) gauge bosons, one
real scalar in the adjoint representation, and fermion superpartners. States
with non-zero k£ are the KK replicas of these zero modes. Again, there are

no special values of R at which new states become massless.

4.2 T-duality

In this section we study the T-dual of the type I theory, also called type I’
theory.

Closed string sector

Again, the closed string sector presents an infinite tower of states (with
k = 0 and arbitrary w) which become light as R — 0. This suggests the
existence of a T-dual theory, which becomes decompactified in this limit. In

this section we find out the structure of this T-dual theory, which is related

to the original one by

32



Original T-dual

R R =d'/R
k, w E=w,w =k
X1, Y1 X1, Yr

XR’ dJR letg = _XRa dJ}% = ¢R

(the action is only on the coordinate along the compact direction 9, on
which we are T-dualizing).

In the closed string sector, the dual theory described by (X', ') cor-
responds to type IIA theory (since T-duality flips the right moving GSO
projection) compactified on a circle of radius R’ = ¢/ /R, and modded out by
an orientifold projection. The orientifold action on X’ can be obtained by

reading the 2 action on left and right movers

XYo+t)=Xg(—o—1t) ; Xglo—t)=X(—0+1) ; (58)
and constructing X% = X — X% and X' = X; — Xg. We obtain
XYo,t) = X (o +1t) — Xg(o —t) = Xp(—0,t) — Xp(—0 + 1) = —X'(—0,t)(59)

Hence the T-dual is type ITA theory on a circle modde out by an orientifold
action QR, where R is a geometric action 2° — —z°. It is easy to verify that
the action (59) on the mode expansion is to flip the momentum and leave
winding invariant, as should be the case for the T-dual of €.

Recalling our lecture on unoriented strings, recall that we claimed that
one can mod out a theory by Q only if it is left-right symmetry (i.e. IIB
theory). Here we are modding by QR and this can be done only if the theory
is left-right symmetric up to a GSO shift (i.e. ITA theory).

Notice that R has fixed points at two diametrically opposite point in
the dual circle, see figure 3. These are regions where the orientation of a

string can flip. They are 9-dimensional subpaces of 10d space, and are called
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Figure 3: O8-planes in type I’ theory.

orientifold 8-planes, O8-planes for short (they involve 8 spatial plus one time
direction).

The existence of these special points implies that the compactification
violates translation invariance. This is not strange, since staes in the original
model did not have winding as a good quantum number; hence in the T-
dual, momentum is not a good quantum number, so there are violations of
translation invariance in the internal coordinate.

Finally, let us mention that states are in general linear combinations of
states of the original theory in sectors of opposite internal momentum. In the
k = 0 sector this implies the usual projection, and that only Q2R even states
arise. However, in sectors of £ # 0 there exist momentum excitations of fields
which are QR odd in the 10d theory. This has the interesting consequence
that such 10d fields are not identically vanishing in the model, but rather
propagate in the ‘bulk’, away form the orientifold planes. The orientifold
projection impose the boundary condition that 10d 2R odd fields vanish at
the O8-plane location, and so lead to no zero modes. Hence, in the bulk the

theory is still locally type ITA theory, and it is the O8-planes that project
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out part of the zero modes (although KK excitations survive).

Open string sector

We now study the open string sector in the T-dual version. The local 2d
dynamics of the T-dual open string sector should be that of an (orientifold
version of) type ITA theory. In particular, it implies that the interior of open
string worldsheets propagates in 10d. However, since the original open string
sector does not have winding number in z°, the T-dual open string sector
has no momentum in z°. This implies that such fields propagate only in 9d.

The resolution to this seeming paradox can be understood by finding out
the boundary conditions for the open strings in the T-dual. In the original

theory we have Neumann boundary conditions at the open string endpoints

0, X (0, )] —0.¢ = 0
aaAXvL (G + t)'a:O,Z + aaXR(G - t)‘a:O,l =0 (60)

This can be written as
O XL(0 + 1)]o=0,0 — OXr(0 — t)]p=0,6 =0 (61)
Namely, in terms of the T-dual coordinate X = X, — Xp
0, X' (0,t)]|5=0e = 0 (62)

These are Dirichlet boundary conditions (the corresponding open strings are
said to have DD boundary conditions in z°). They imply that the open string
endpoints cannot move from a fixed value of the coordinate z°, so the open
string states are forced to move in 9d only. However the inside of the open
string can still move in 10d. See figure 4.

One may question whether this is consistent. For instance, the open
string sector is not translational invariance in 2°, but neither is the under-

lying closed string sector, so this is not worrisome. Another issue is that we
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Figure 4: Open strings in type I’ have endpoints at a fixed position in z°, although

their ‘inside’ can still move in 10d.

obtained Neumann boundary conditions as some correct boundary conditions
to recover the familiar equations of motion for the 2d theory in the inside of
the open string worldsheet. In fact, we can check that Dirichlet boundary
conditions do the job as well. Recall that the variation of the Polyakov action

1s

1
5Sp = - / P26 g9, XPO,0 X P =
2ma! Jx
= L T e (gsxra,X, )02 + [ d€6X, 90,0, X683

Dirichlet boundary conditions in z° imply that §X° = 0 at o = 0,£. Hence
DD boundary conditions on z° and NN boundary conditions on the remaining
coordinates ensure that the first term in the second line vanishes and we

recover the correct 2d dynamics in the interior of the open strings.

It is interesting to notice that the mode expansion for the T-dual coordi-
nate X'(o,t) contains a winding term and no momentum

2 R!

X'(o,t) = J

w'o + osc. (64)
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which is indeed allowed by DD boundary conditions. Pictorially, existence of
winding for open strings with endpoints stuck at points in z° is manifest in
figure 4. Notice that the endpoints of all open strings are necessarily located

at the same point in S'. This can be seen directly from the above
X'(c=4,t) — X'(c =0,t) =27Rw' (65)

so the open strings stretch whole periods of z%, such that endpoints always
lie at 2% = 0. This is true regardless of the Chan-Paton indices carried by
the string. The presence of wilson lines in the original picture will modify
this last fact, as we show later on.

A very intuitive picture, which becomes even more useful in more com-
plicated situations (like with non-trivial Wilson lines in the original picture),
is to consider that the model contains some objects, spanning the 9d hyper-
plane at 2% = 0, called D8-branes, and on which open strings are forced to
end. In fact, the precise picture is that there exist one such D8-brane for
each possible value of the Chan-Paton index (32 D8-branes for the T-dual of
type I). An open string endpoint with Chan-Paton index ¢ must end on the
a'® D8-brane. In the present situation, all 32 D8-branes are sitting at the
same location in z°.

The open string spectrum is easy to recover in this language. In the
massless sector, we have open strings with all possible combinations of Chan-
Paton factors (i.e. ending on the 32 D8-branes in all possible ways). This
would lead to a 9d U(32) vector multiplet with respect to the 16 unbroken
supersymmetries. Since the open strings are sitting on top of an orientifold
plane, we have to keep QR invariant states, leading to a 9d SO(32) vector
multiplet with respect to the 16 unbroken supersymmetries.

Notice that this gauge sector propagates in a 9d subspace of spacetime,
while gravity and other fields still propagate in 10d. The possibility of con-
structing models of this kind has led to the brane-world idea, the proposal
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that perhaps the Standard Model that we observe is embedded in a brane
which spans a subpace in a full higher dimensional spacetime. This would
lead to the existence of extra dimensions which are detectable only using
gravitational experiments. We will learn more about branes, and model

building with them in later lectures.

4.3 Toroidal compactification and T-duality in type I

with Wilson lines

As in heterotic theories, upon compactification there exist 9d scalars tran-
forming in the adjoint representations of the gauge group. Their vevs parametrize
the possibility of turning on constant backgrounds for the internal compo-
nents of the gauge fields. In this section we study the modifications they
introduce for type I.

Clearly the closed string sector is insensitive to the presence of Wilson
lines, since it contains states neutral under the gauge symmetry. The only
modifications occur in the open string sector. To describe them, we need to
couple the gauge background to the 2d theory. This is easily done by recalling
the rule that an open string endpoint with Chan-Paton a has charge +1 under
the U(1) gauge boson arising in the sector of aa open strings. This implies

that the worlsheet action must be modified by a boundary term
AS = / dt — ig, A% 8,X" (66)

Before the orientifold projection, there are 32 U(1) gauge bosons, which are
paired by the orientifold action. In terms of this parent U(32) original theory,

the most general wilson line consistent with the €2 action is

1
(Ag) = ﬁ(ﬁl,ﬁz,...,ﬁm;—01,—92,—...,016) (67)
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After the orientifold action, the surviving Cartans are linear combinations of
the above; in terms of the U(1)'® Cartan subalgebra of SO(32) the wilson
line is described by

1

Al =
( Z) 27TR

(01,0a,...,0) (68)

Although the latter expression is more correct, it is sometimes more intuitive
to use (67) to display the Chan-Patons and their orientifold images explicitly.

The Wilson line has the only effect of shifting the internal momentum, as
discussed above in field theory terms. Namely, for an open string in the ab
Chan-Paton sector (and so, with charges (+1,—1) under U(1), x U(1)s, we

have

kE 6,—0,
=g a 69
P=®* R (69)
here we are using the notation (67), so 6,116 = —0,. The spacetime mass
formula for these states is
kK 0,— 6, 1
2 _ (R a 2 , L _

For generic R and 6,, the gauge group is broken to U(1)®, since only aa
states are able to lead to massles modes. When several, say N eigenvalues
6, coincide and are not zero or m, then there are additional massless fields,
leading to U (V) gauge bosons and superpartners. Finally, when n eigenvalues
vanish or are equal to 7, the gauge symmetry is SO(2n).

The moduli space of compactifications is difficult to obtain, and there is
no analog of the Narain lattice. Hence, without further ado, we turn to the

discussion of T-duality.

T-duality
The T-dual closed string sector in still given by type ITA theory on a circle,
modded out by Q2R. The T-dual of the open strings is slightly modified by
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the Wilson lines. By simply mapping the mode expansion of the original
into the mode expansion of the T-dual, we find that the dual coordinate has

shifted winding

2w R’ 2r R’ —
mh w'o + L CY Hb)a + osc. (71)

' —
X'(o,t) = const. + 7 7 o=

This implies that the open string endpoints of ab strings are at different

locations in z*

X'(o=0t)—X'(0=0,t) = 2rR'w' + 6,R' — 6,R' (72)

The mass formula for ab strings is

R 0(1 9() 1
mQZJ(w—}—%—%)Q-FE(NB-FNF—EO) (73)

In more intuitive terms, recall our description of an endpoint with Chan-
Paton a as ending on the a'® D8-brane. What we have found is that 6, R’ is
the location in z? of the a' D8-brane. The ab open strings start on the a'?
and end on the b D8-brane, so their length is §, R — 6, R, modulo the period
2m R. This stretching contributes to the mass of the corresponding state. See
figure 5.

The D8-brane picture makes the gauge symmetry enhancements clear.
Generically the D8-branes are located at different positions, so the generic
gauge symmetry is U(1)'® (since only aa strings have zero stretching). When
several, say N 6,’s coincide, several D8-branes overlap, and the corresponding
ab strings are massless, leading to U (V) gauge symmetries. Finally, if N 6,
are zero or m, D8-branes and their orientifold images coincide on top of an
O8-plane, leading to SO(2N) gauge symmetry.

It is interesting to re-interpret the RR tadpole cancellation conditions in
the T-dual language. In this case, the crosscap diagrams are located on top

of the O8-planes, and in a sense compute the RR charge of these objects (the
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Figure 5: Open string endpoints in the T-dual of type I with Wilson lines are fixed
on D8-branes at different positions in the circle. Their stretching is determined by

the location of the D8-branes.

strength of their coupling to the RR 9-form (dual to the original 10-form).
The disk diagrams are located on top of the D8-branes, and compute the
RR charge of these objects. RR tadpole cancellation condition corresponds
to the requirement that the fluxlines of the RR 9-form have nowhere to go
in the internal space, which is compact, so the total charge must vanish (see
fig6). This is Gauss law in a compact space ® . It is possible to compute
these tadpoles as we did for type I, and obtain that each O8-plane has —16
times the charge of a D8-brane. Hence we have 2 x (—16) + 32 x 1 = 0.

We conclude with some relevant observations

e The generalization of this idea to further T-dualities is clear. In the

closed string sector the orientifold action acquires an additional geometric

3Equivalentely, one can check that the KK reduction of the 9-form has a zero mode,
which corresponds to a 9-form in 9d, which has no kinetic term. RR tadpole cancellation
can be recovered as the consistency condition for its equations of motion. This description

is more analogous (T-dual) to the one used in type I
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Figure 6: Schematic picture of the interpretation of RR tadpole cancellation as

charge cancellation in a compact space.

piece inverting the T-dualized coordinate. Hence, in general we will find
theories obtained from toroidal compactification of type ITA/B modded out
by €2g, where g is a geometric action flipping r coordinates, with r even/odd
for IIB/IIA. This introduces 2" O(9 — r)-planes, which can be seen to carry
32/2" units of RR charge. In order to cancel the RR tadpoles, we introduce
32 D(9 — r)-branes, which can be at arbitrary locations, but respecting the
Z, symmetry imposed by g.

e The original type I theory also admits a description in terms of O-planes
and D-branes. The Q2 projection can be said to introduce an O9-plane (which
fills spacetime completely), and the open strings (which can end anywhere in
10d space) can be said to end on D9-branes (which fill spacetime completely).

We should not worry too much about understanding all the details of
D-branes at this point. Such objects will reappear in a different way in
subsequent section. In fact they correspond to new non-perturbative states
in type II string theory. This can be understood already in our picture:
recalling that the bulk of spacetime is described by type IIA theory, if one
takes the decompactification limit in which the O8-planes go off to infinity,
keeping the D8-branes in the middle of the interval, we are roughly left with
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Figure 7: The decompactification limit of type I’ keeping the D8-branes at finite
distance produces type IIA theory with a topological defect (domain wall) given
by the D-brane.

non-compact type IIA theory in the presence of D8-branes, see figure 7. This
shows that there exist states in type IIA string theory which are not obtained
as perturbative excitations of the type ITA string. Rather, this states should
be regarded as a non-perturbative state, analogous in many respects to a

soliton. We will come back to these states in later lectures.

5 Final comments

Let us summarize this lecture by emphasizing that we have shown an ex-
tremely intimate relation between the different string theories, once we start
compactifying them. See figure 8.

This is all very nice, but we should recall that we started out studying
string theory as a theory with the potential to unify the interactions we
observe in Nature. The theories we have obtained have too much super-
symmetry to allow for chirality, so they are quite hopeless as theories of our
world. Therefore, we will turn to the study of other compactifications in

subsequent lectures.
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