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Figure 1: Two pictures representing the Klein bottle. In b) we construct it as
a rectangle with vertical sides identified with the same orientation and horizontal

sides glued with the reversed orientation, as suggested by the arrow.

Type I superstring

1 Unoriented closed strings

1.1 Generalities

Consider a closed oriented string theory which is left-right symmetric, e.g.
closed bosonic string theory or type IIB theory. Consider modding it out,
quotienting, by the operation €2, worldsheet parity, that exchanges left and
right movers. Namely, construct the quotient theory, where states related by

left-right exchange are considered equivalent
@) @ |b)r  |a)r @ [b)R (1)

This operation is called orientifolding the theory by €2 (this is also called
gauging the global symmetry ().
The genus expansion in the quotient theory is drastically different from

the original one. Consider for instance 1-loop vacuum diagrams. As usual we
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Figure 2: Several examples of non-orientable surfaces constructed by glueing cross-

caps to a sphere.

have the torus, which corresponds to closed string states Ay, x Bg which evolve
and are glued back to the original state. In theories where states related by €2
are considered equivalent, there is a new diagram. It corresponds to starting
with a closed string state Ay, X Bg letting it evolve and glueing it back to the
original up to the action of 2. This is shown graphically in figure 1 where we
can see the worldsheet is a non-orientable surface, a Klein bottle. The result
generalizes to other amplitudes as the statement that the genus expansion of
unoriented theories contains non-orientable worldsheets.

A general worldsheet (including oriented and unoriented ones) can be
described as a sphere with an arbitrary number of handles and crosscaps. A
crosscap can be described as cutting a small disk in the surface and identifying
antipodal points in the resulting boundary to close back the surface. Several
non-orientable surfaces are shown in figure 2. In theories with open string
sectors (see later) the genus expansion contains worldsheets with boundaries.
Recalling the discussion in the review lectures, an amplitude mediated by a
worldsheet with g handles, n. crosscaps and n; boundaries is weighted by a
factor of e~¢?, where ¢ is the dilaton vev and & = 2 — 29 — n, — n, is the

Euler characteristic of the worldsheet.



The spectrum of the unoriented theory is obtained from the spectrum of
the ‘parent’ oriented theory very simply. Namely, one takes the original spec-
trum and keeps only the € invariant states (or linear combinations of states).
The same result is obtained from our description of the genus expansion: One
way to obtain the spectrum of a theory is to see what states contribute in
the one-loop vacuum amplitude. The sum over the two contributions, the
torus and the Klein bottle, can be written in terms of the original Hilbert

space of states as

tr Horiented ( ° ) + tr Horiented (' ° T Q)’ =
= tr Horiented [ ot %(1 + Q)] (2)

the piece %(1 + 2) is a projector that only keeps 2 invariant states, so that
only the later contribute to the amplitude. For non-invariant states, the
contributions from the torus and Moebius strip cancel each other; the sum

over topologies projects out those states.

1.2 Unoriented closed bosonic string

Let us obtain the precise action of {2 on closed string states in a systematic
way (to be used in other cases as well). The action of 2 on the 2d bosonic
field X (o, ) is to transform it into a field X" = QX?Q~! such that

!

X"(0,t) = X*(L - o,t) (3)

Introducing the oscillator expansion

) ) ) ! i ) s )
XZ(O_’ t) = 2+ p_+ t+i % Z [% e—2mn(a+t)£ + % ean(a—t)é + (4)
D O n

we obtain



which corresponds to an exchange of the left and right movers, as expected.
The quotient theory is obtained by taking the vacuum of the original
theory

all0y=0 ; a&.0)=0 VYn>0 (6)

and applying left and right oscillators forming €2 invariant states. The space-

time mass of these states is given by the original formula
a'm2/2:N3+N3—2 (7)

The lightest modes are

State a'm?/2  Lorentz rep
10) —2 scalar
0491 54]21 |0) 0 graviton
;o @h0) 0 dilaton

We see that the 2-form of the original theory is odd under €2 and is
projected out. The complete spectrum is easily obtained.

This concludes the construction of our theory, which can be checked to
be completely consistent. In the following sections we try to construct an

unoriented version of the (type IIB) superstring.

1.3 TUnoriented closed superstring theory IIB/Q

The worldsheet theory is in this case described by the 2d bosonic and fermionic
fields X(o,t), 1¥*(0,t). The bosonic fields are discussed exactly as above. On

the fermionic fields, the action of €2 is such that

V(o) = ¥ —0,1) (8)



Using the oscillator expansion

Wi t) = i \/g > [ i, e ORI | i o (r+u)(a—t)/£] ()

r€Z

where v =1/2,0 for NS and R fermions, we obtain

'f"-l-u, = ~'f"+u ) ~7z;+ul = i+u ) (10)
We can now obtain the spectrum of the unoriented theory, which is simply
obtained by taking the 2 invariant states of the original theory. There is an
interesting subtlety in the action of {2 on RR states; since the left and right
moving pieces in this sector are spacetime spinors, they anticommute, so that
a state Ay X B is mapped by Q to Ag x By, = —Bj, X Agr. The Q invariant
states are therefore of the form A; x Br — B, x Ag. Notice also that states
in the NS-R sector must combine with states in the R-NS sector to form
invariant combinations.

The light spectrum is given by

Sector State SO(8) Field
NS-NS w(fl/2|0> ® wi)l/2|0) 1+ 35, dilaton, graviton
NS-R+R-NS ¢, ,|0) ® 8¢ + 8c ® YL, /5[0) 565+ 8s gravitinos
R-R [8c ® 8¢] 28¢ 2-form

This spectrum corresponds to the gravity multiplet of 10d N' = 1 super-
gravity. Notice in particular that the orientifold projection kills one linear

combination of the two gravitinos of the original N’ = 2 supersymmetric type
IIB theory.

This theory as it stands is clearly not consistent. A theory whose spec-

trum is just the gravity multiplet of 10d /' =1 theory has 10d gravitational
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Figure 3: Crosscap diagram leading to a tadpole term for some closed string mode.

chiral anomalies. Clearly we have missed an important consistency condition
in the construction of the theory.

The consistency condition is RR tadpole cancellation. Unoriented theo-
ries contain a diagram, given by a crosscap with an infinite tube attached to
it (see fig. 3), which leads to a tadpole for certain massless fields. In partic-
ular there is a tadpole for a RR field, which due to 10d Poincare invariance,
must be the non-propagating 10-form Cyy (which can be seen to survive the
orientifold projection). This RR tadpole renders the theory inconsistent.

The fact that the problem in constructing a theory of just unoriented
closed strings is very similar to the problem of constructing a theory of open
strings coupled to type IIB theory leads to the following suggestion. One
can attempt to construct a theory free of RR tadpoles by considering the (2
orientifold of type IIB coupled to a sector of open strings. Namely, we can
attempt to construct a theory where the RR tadpoles for Cyq arising from
open string sectors (disk diagrams) and unorientability (crosscap diagrams)
cancel each other. This is the so-called type I superstring theory.

In other words, the equation of motion from the action for the 10-form

SCm = (chosscap +Qrmdisks) / CIO (11)



Figure 4: Cancellation of RR tadpoles from crosscap and disk diagrams.

would be satisfied

chosscap + Qdisk =0 (12)

This is pictorially shown in figure 4. Open string sectors coupling to un-
oriented closed string must be unoriented as well. Hence if one is able to
construct such a theory, it would be a theory of unoriented open and closed
strings. Hence we need to know a bit about unoriented open strings before

the final construction.

2 Unoriented open strings

2.1 Action of (2 on open string sectors

As mentioned in previous lectures, the local structure on the 2d worldsheet
for open strings should be the same as for the corresponding closed sector.

Hence, the action on the bosonic coordinates is such that

X"(0,t) = X*'({ — 0,1) (13)



Using the oscillator expansion for open strings,

) . % ! i '
Xz(d, t) =1 + p—+t + 4 % Z %COS WZO- e—mint/t (14)
p wn
we obtain
' =a 5 pl=p a = (1)} (15)

The action on fermions is such that

V! (0,t) = ¢ (£ - 0,1) (16)
Using the expansion

al

H(0,8) = iy T 3 [t ™I (1) g e (1)

reZ

with v =1/2,0 for NS and R fermions, resp, we obtain

1/]“7"4—1/ = (_1)T+V7/]r+v (18)

It should be pointed out at this stage that there is a non-trivial action of €2

on the open string NS groundstate, namely
Q0)ns = e"™?|0)ns (19)

Finally, we also need to specify the action of €2 on the Chan-Paton indices
in cases where they are present. Clearly ) exchanges the order of the labels
ab, since it reverses the orientation of the open string.

A general state with fixed operator structure may be written as a linear
combination of the corresponding state in the different open string sectors,
of the form Ag|ab). The N x N matrix Ay is known as the Chan-Paton
wavefunction of the state. The action of 2 on Chan-Paton labels can be

encoded into an action on A
A =5 A Tyg! (20)

8



where 7 is an N X N unitary matrix or order two. There are two canonical

choices, distinguished by the symmetry of vq

i) 7 =1y
0 ilygp
i = 21
=, ) @1
The first option i) is also often described as
0 1 !
Yo = (1 (N/2) for N =even; vq = 0 1n_1y2 | for N =odd (22)
N/2

Iv-np 0

A more transparent interpretation of these actions on Chan-Paton labels
is as follows (we take N even for simplicity). Consider splitting the set of
labels into two sets, running from 0 to N/2 and from N/2+1 to N, and label
them by indices a, and o’. Denoting the Chan Paton index part of a state

by e.g. |ab), the actions above are
laby — |V'd') la'b") — |ba)

lab'y — +[ba') ; la'b) — +|ba') (23)

with +, — signs for symmetric or antisymmetric vq.

2.2 Spectrum

It is now easy to obtain the spectrum of the unoriented open string sector, by
simply keeping the states of the original theory invariant under the combined
action of €2 on the oscillator operators, the vacuum and the Chan Paton
labels. We center on the massless sector.

In the NS sector, the states Ay’ ,|0) transform as

)\¢31/2 10) 4 - VQAT'Ys_zl wil/Z |0) (24)

9



Invariant states correspond to components of the matrix A surviving the

projection
A==\ (25)

In case i), we obtain A = —A” so there are N(N — 1)/2 surviving gauge
bosons. This number, and the relation with antisymmetric matrices as gen-
erators, suggest that the gauge bosons fill out a gauge group SO(N).

T
)

In case ii), writing A\ = (C’ D)’ the projection imposes A = —D
B = B”, C = C". There are N(N + 1)/2 gauge bosons, and this suggests
that the gauge group is USp(N).

In the R sector, the GSO projection selects the groundstate transforming
as 8¢. The action of €2 turns out to introduce a minus sign on it, so the

projection condition on A is again
A==\ (26)

Hence in cases i) and ii) we get 10d fermions in the adjoint representation
of SO(N) and USp(N) respectively. The NS and R sectors altogether give
an SO(N) or USp(N) vector multiplet of 10d N/ = 1 supersymmetry. So
the open string sector preserves the same amount of supersymmetry as the

unoriented closed string sector.

3 Type I superstring

As discussed above, the idea in the construction of type I superstring is to
add (unoriented) open string sectors to the unoriented closed string theory
in section 1, in such a way that the contribution of disks and crosscaps to
the 10-form RR tadpole cancels.

10
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Figure 5: Disk and crosscap tadpoles can be recovered in the factorization limit
of certain one-loop amplitudes, namely the annulus (a), the Moebius strip (b) and
the Klein bottle (c).

3.1 Computation of RR tadpoles

The idea

Instead of computing directly the disk and crosscap diagrams with in-
sertions of the massless RR field, there is an indirect but standard way of
computing them. In particular it is useful in making sure the disk and cross-
caps come out with the same normalization (which is clearly crucial to have
correct cancellation).

The idea is that since we are interested in computing e.g. the disk with
insertion of a massless field, this can be recovered from an annulus amplitude
with no insertions, in the limit in which it factorizes in the closed string
channel. this is shown in figure 5a). Similarly, the amplitude for a crosscap
with insertion of massless fields can be recovered from the factorization limit
of diagrams in figure 5b,c. These diagrams, as we discuss later on, correspond
to a Moebius strip and a Klein bottle.

Indeed computing a sum of these diagrams of closed strings propagating
for some time 7'¢ between disks and crosscaps, as shown in figure 6a), and

taking the factorization limit 7" — oo one recovers the expression for the

11



Figure 6: The sum of four amplitudes factorizes as the square of the total disk

plus crosscap tadpole.

square of the total RR tadpole. This is pictorially shown in fig 6, and holds
very precisely in the explicit computation to be discussed later on.

These diagrams are most easily computed in the dual channel, where
they reduce to traces over Hilbert spaces. The channel in figure 6 is recov-
ered by performing a modular transformation, after which we may take the

factorization limit. Let us consider the different surfaces

The annulus

The diagram with two disks is our old friend the annulus. It can be easily
computed as an ampiltude for an open string to travel for some time 27/ and
glue back to itself. Taking into account the trace over Chan-Paton indices,

it reads
oo dT
Zy = N? o7 T Hopen e~ 2 tHopen (27)

The trace is over open oriented string states (since it is the sum over worl-
sheets that implements the orientifold projection, we do not have to impose

it explicitly). We have

tr mom.e_ZFQITZi p? == (87T2(IIT) -

12



T bos. € 2T NBEG) = p(¢T)78

1
trysasoe TNTE) = 2 (tr nsq“ T 4+ tr s (g (—)F) -

. 0 4 0 4
L] o]

| =

1
tr p.gso e~ 2rT(Np—Ef) 5 (tquNerE{ + trR(qNFJ’Eg (_)F) _
121 121
L
= v - 28
2" l 0 } [1/2] .
In total
0] 01" 121
1
Z(T) = = (87%a'r) ™ *n 8 n™* [0 - - + 9
(T) = 5 ( 2) T 0 12 0

As shown in figure 7, in going to the dual channel we find a closed string

propagating between two disks during a time 7"¢ with 7" = % We should

1

777 in the above expression. To make the formula look like

then replace T' =
an amplitude in the dual channel we should perform a modular transforma-
tion. Leaving the details for a second version of these notes, the amplitude

will read

oo dT" -
L4 = — 72T 30
A= o A(2T") (30)

In this amplitude it is easy to identify the propagation of RR modes (upper

characteristic of the theta function is 1/2). Taking the limit 7" — oo in this

piece leads to
Zy— N? (31)

This is proportional to the square of the RR disk tadpole.

Klein bottle

13

1/2
1/2

] (29)



. ]

Figure 7: An open string propagating a time 27/ is geometrically the same as a

closed string propagating a time 7"¢ with 7" = 1/(2T).

The Klein bottle amplitude corresponds to a closed string that propagates
for a time 7'/ and is glued back to itself up to the action of €2, see figure 1.
The measure is obtained from that of the torus noticing that 2 does not

allow for the 71 parameter. The amplitude hence reads

o
dT —-T¢H closed

ZK = E tr Helosed €

0

(32)

The sum is over the Hilbert space of closed oriented strings. However, states
non-invariant under €2 can be written as a sum over an {2-even and an Omega-

odd state
4) = S(14) +014)) + £(14) — 9]4)+ (33)

which have the same energy and different 2 eigenvalue. Hence their con-
tributions cancel in the trace. Consequently, only states direcly mapped to
themselves by €2 can contribute. Since this states are exactly left-right sym-
metric, we can simply sum over left-moving states and double the energy of

each state. We obtain

_ 7 2 _ _mB
ZK(T) = ftr mom.€ e Tzi Pi tr bos. € ZWT(NB EO ) X

—2rT(Np—EF) 727rT(NF7E0F)) (34)

X (tl" NS,GSO € — trggsoe

14



The result is

0 0

Z(T):%(472a’T)4n8(2iT)n4 0!0] —ﬂ[ 0 ] —19!1/2] +19!

1/2

The Klein bottle is topologically the same surface as a closed string prop-
agating between two crosscaps. This is shown in fig 8. In this dual closed
channel the closed string propagates for a time 7'/ with 7' = ﬁ. Replacing
T in the amplitude and perform a modular transformation (for details, see a

forthcoming second version of these notes), the amplitude will read

odl! .
o Zx(2T) (36)

K =
Extracting the contribution from RR modes and taking 7" — oo in leads to
Zx — (32)? (37)

This is proportional to the square of the RR crosscap tadpole, with same

proportionality as in (31).

Moebius strip
The Moebius strip corresponds to an aa open string propagating from
a time 277 and glueing back to itself up to the action of €2. This kind of

diagram does not exist for ab states with a # b. The amplitude reads
o dT —2T¢Hopen
Zy = N /0 o Wty (770 Q) (38)

The sign is given by the action of {2 on aa states, it can also be written
tr (7' 7&) and is +, — for cases i), ii) above.

The trace is over open oriented string states. However, in analogy with
the Klein bottle, only states directly invariant under {2 contribute to the

trace.

15
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Figure 8: Take a Klein bottle as a rectangle with sides identified; cut it in two
pieces keeping track of how they were glued; then glue explicitly some of the
original identified sides. The result is the same surface now displayed as a surface

with two crosscaps.

The explicit evaluation of this amplitude is easy, but involves slightly
more complicated combinations of theta functions than the previous ones.
We leave the details for a second version of these notes, and proceed the
discussion in a qualitative way.

As shown in figure 9, the Moebius strip is topologically the same surface
as a closed string propagating between a disk and a crosscaps. In this dual
closed channel the closed string propagates for a time 7'/ with T' = SLT.
Replacing T in the amplitude and perform a modular transformation, the
amplitude will read

1
[ Zu(aT) (39)

Extracting the contribution from RR modes and taking 7" — oo in leads to

ZM:

Zx — F32N (40)

with —, 4 corresponding to the cases i), ii) above. This is proportional to
the product of the RR disk and crosscap tadpoles, with same proportionality
as in (31).

16
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Figure 9: Take a Moebius strip as a rectangle with sides identified; cut it in
two pieces keeping track of how they were glued; then glue explicitly some of the
original identified sides. The result is the same surface now displayed as a surface

with one boundary and one crosscap.

RR tadpole cancellation

The sum of the four amplitudes in fig 6a in the factorization limit is hence
proportional to (N — 32)2. This implies that to obtain a consistent theory of
unoriented open and closed strings, we need the Chan-Paton indices to run

over 32 possible values
N = 32 (41)

and the {2 action on them, ~vq, to be a symmetric matrix. This is type I
superstring theory.

The spectrum of this theory is obtained straightforwardly. At the mass-
less level the closed string sector corresponds to the 10d N' = 1 supergravity
multiplet, and the open string sector corresponds to 10d N' = 1 vector mul-

tiplets with gauge group SO(32).

17



Sector Sector SO(8) Field
Closed NS-NS 1+ 35y dilaton, graviton

NS-R+R-NS 8s + 564 gravitino
R-R 28¢ 2-form
Open NS 8y SO(32) gauge boson
R 8¢ gauginos

Notice that this spectrum if free of gravitational and gauge anomalies. For
this to be true, it is crucial that the gauge group is SO(32), as we already
saw in the discussion of anomalies in the heterotic theories. (interestingly
enough, the massless spectrum of the SO(32) and the type I string theories
are the same).

In the cancellation of mixed gauge - gravitational anomalies, it is crucial
the existence of a Green-Schwarz mechanism. Although at the level of the
effective action the description for type I is similar to the one for heterotic
(with the difference that the 2-form mediating the interaction is the RR one
in type I theory), the string theory origin of the relevant couplings is different.
In particular, both the BF? and BF* terms in type I string theory arise from
disk diagrams with open string state insertions (powers of F) and a closed

string B-field insertion, see figure 10.

4 Final comments

Just as with the other superstrings, there exist non-supersymmetric versions
of type I superstring. One posibility is to construct orientifold quotients of
the type 0 superstrings. We will not discuss these theories in our lectures.
Another possibility [?] is to perform a modified Q projection of type IIB

theory which breaks the supersymmetries. We may discuss this theory later

18
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Figure 10: Limits of the annulus leading to anomalies in type I theory; a) cor-

D

responds to the familiar planar hexagon contribution to irreducible anomalies in
field theory, while b) corresponds to a non-planar hexagon field theory contribu-
tion anomalies. c) corresponds to a Green-Schwarz diagram exchanging the closed

string 2-form field, and which contributes to reducible anomalies.
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Figure 11: .

on in these lectures, since it will be easier to describe it once we learn about

D-branes, orientifold planes and antibranes.

This concludes our discussion of the 10d superstring theories. At the
moment the picture of string theory that we have is shown in fig 11. Five
different (spacetime supersymmetric) superstring theories, constructed in dif-

ferent ways and with different features. All of them provide theories which
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describe gravitational (plus other) interactions in a quantum mechanically
consistent way. However this multiplicity is unappealing: we would like to
have a more unified description of how to construct consistent theories of
gravitational interactions.

In the following lectures we will see that this picture will be drasti-
cally modified once we learn about compactification, T-duality and non-
perturbative dualities. It turns out that the seemingly different string theo-
ries are intimately related, and seem to be just different limits of a unique
underlying theory.

It would be very nice if the non supersymmetric strings would also fit
into this unified picture. Although there are some ideas in the market, it is

much more difficult to find evidence for this proposal.

References

20



