Open strings

In this lecture we discuss open strings. The motivation is clear: they are
strings of a kind very different from the ones we have studied up to now, so
it is interesting to analyze their main features. Moreover, it is essential to
have some familiarity with open strings to construct the type I superstring

(see next lecture) since it contains sectors of open strings.

1 Generalities

Open strings are string with endpoints; they are described by worldsheets
with boundaries, see figure 1

The basic interaction between open strings is that two endpoints glue
together; the basic interaction vertex corresponds to two open strings joining
into a single one, figure ??a). Notice that the endpoints that glue together
may belong to the same open string, so that this basic interaction also im-
plies the existence of a vertex of two open strings joining into a closed one,
figure ??b). This has the remarkable consequence that theories with open
strings necessarily contain closed strings (notice that we know that
there exist theories of closed strings with no open strings; i.e. closed strings
may be consistent by themselves, but open string theories necessarily must
be coupled to closed string theories).

The worldsheet geometry forces us to include two sectors (open strings
and closed strings) in the theory. The total spectrum of spacetime particles
is given by the spectrum of oscillation modes of the closed string plus the
spectrum of oscillation modes of the open string.

Any amplitude is obtained by summing over geometries of 2d surfaces
interpolating between in and out states. This genus expansion contains con-

tributions from surfaces with handles and boundaries, which is weighted by



Figure 1: Open strings have endpoints. As open strings move in time they sweep

out a worldsheet with boundaries.

OO0 0=

sphere torus annulus/ etc
cylinder

Figure 2: .

a factor of g; X where xy = 2 — 2g — n;, with g, n, the number of handles and
boundaries. Some examples are given in fig 2.

Finally, we would like to make the following important remark. The fact
that open strings couple to closed strings implies that the local structure of
the worldsheet of open strings is the same as that of closed strings. This im-
plies that the local 2d dynamics for open and closed strings must be the same
(with the only differences arising, as we will see, from boundary conditions
on the 2d fields).

A related issue is that there exist diagrams which admit two different



interpretations, regarded as open string diagrama or closed string diagramas.
Namely, the annulus can be regarded as vacuum diagram of open string states
running in a loop, or as a tree level diagram of closed string appearing from
and disappearing into the vacuum. Both interpretations are possible because
the local structure of the worldsheet is the same for open and closed strings.
Both interpretations are related by a relabeling of the worldsheet coordinates
o, t. The requirement that a single geometry can receive both interpretations

is a strong consisntency condition known as open/closed duality.

2 Open bosonic string

For this analysis we follow section 1.3 of [1]. This is an open string whose
local worldsheet dynamics is described by 26 2d bosons X*(o,t) and a 2d
metric gqp(0o,t), with the Polyakov action

1
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The corresponding closed string sector is therefore the closed bosonic string.

Sp =

Here we center on the quantization of the open string sector, that is quan-
tization of the above 2d field theory living on the interval (with boundary

conditions to be specified below).

2.1 Light-cone gauge

The gauge freedom of the 2d theory is fixed in the same way as we did for
the closed bosonic string. Again we have several steps

1. Reparametrization of ¢

Fix the t reparametrization freedom by setting the so-called light-cone

condition

Xt(o,t) =t (2)
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2. Reparametrization of ¢
For slices of constant ¢, define a new spatial coordinate ¢’ for each point
of the slice, as the (diffeomorphism and Weyl) invariant distance to one of

the endpoints

o' = et) / " f(o,t) do (3)

where

f(0) = (=9)7 9o (0, 1) (4)
and c(t) is a o independent coefficient used to impose that the total length
of the string is fixed, a constant in ¢ which we call £. Notice that, in contrast
with closed string, there is a preferred reference line (so we do not impose
level matching constraints to get physical states). In what follows o’ will be
denoted simply o.

3. Weyl invariance

Now we use Weyl invariance to impose that
g=-—1 Vo,t (5)
The gauge fixing conditions imply, just like for the closed bosonic string, that
0o 9os =0 (6)

The quantization is very similar to quantization of the closed bosonic
string, and the result is exactly the same local dynamics (e.g. hamiltonian).

The reader satisfied with this explanation is welcome to jump to eq. (17).

2.2 Boundary conditions

It is now convenient to obtain what kind of boundary conditions we need to

impose at 0 = 0, £. To obtain them let us vary the action (1)

1
5Sp = — / d%€ g 8, X" 8,X,, =
2o Jx
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The second term is the variation that leads to the equations of motion for
the 2d fields just like in the closed string. To recover them, we need the first

term to vanish. If §X* is unconstrained ! , we then need
970 X"(0,1) ;2 =0 (8)
Using this for Xt = ¢, we get
9ot =0 at 0 =0,¢ 9)
For the transverse coordinates X' we get
9770, X"(0,1) [75 = 0 (10)

We cannot satisfy this equation by requiring ¢g,, = 0 at o = 0, ¢, since (6)
would then imply ¢,, = 0 is non-dynamical, in contrast with the situation

in closed bosonic strings. Therefore we have to impose
0 X" |,_00 =0 (11)

These are Neumann boundary conditions on both open string endpoints, so

this kind of open strings are also called Neumann-Neumann or NN.

2.3 Hamiltonian
The lagrangian in light-cone gauge is

L =— ffdo [-2¢"9,X*0,X™ +¢"9,X 0, X" — 2¢°0,XT 0, X~ +

dra!

1 This is not the case for open string sectors describing lower-dimensional D-branes (to

be studied in later lectures).



+297" 0, X" 0, X" +¢7° 9,X'9,X"'] =
= g o 40 (900 QOX" ~0XT0X7) — 2950 (0,X~ — 8, X" 0,X7) +
g;; (1 - gg't) aO'XZ ao'Xz] (12)

Defining the center of mass and relative coordinates 2~ (t), Y~ (o, t)

() = %/OK do X~ (0, )
X~(0,t) = o (t) + Y (0.1) (13)

we obtain
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Y4 . .
L = — g 02 (t) — /d—,mXZXZ
27Tcu’g i@ (t) Al Jo o1~ 90s HXTOX" +

—2¢7(0,Y — 0, X" 0, X") + g5}t (1 —¢2) 0, X" 0,X"] (14)

The Y~ (o,t) acts as a Lagrange multiplier imposing

8Jga,t(0a t) = 0 VO',t (15)
From (9) we get
9ot(0,t) =0 Vo,t (16)
The lagrangian becomes
/¢ _ 1 ¢ i i 1 i i
L = _ﬁ Joo 3t3: (t) -+ . /0 dO'[go—o— atX 3tX — Y50 (9UX aaX ]

exactly as for closed strings. Following the computations there, the hamilto-
nian then reads

1
2o/

¢ g o
H = / o/ T T, X9, X 1
Tnaip™ Jo do [27a + 0, X" 0,X"] (17)



2.4 Oscillator expansions

From the above hamiltonian, the equations of motion for the 2d fields X*(o, t)

read

0l X" = 92X" (18)
where we have again set £ = 2ra’p™. Again, the general solution will be a
superposition of left- and right-moving waves X¢(o +t), X4(o — t). These

have the general oscillator expansion

) i . ! 2 )
XE(O’ +t) — % + 21;1 (t—+— 0') + g % %e—mu(a—kt)/ﬁ
. i . ! ~ )
X;z(a — t) — % + QZ:_ (t _ 0') + 3 % Z %emu(a—t)/é (19)

with v a modding to be fixed by the boundary conditions. Notice that for
convenience the exponents we use differ from those in closed strings in a
factor of two.

Now we have to impose the boundary conditions
0, Xt +0,X5 =0 at 0=0,¢ (20)

We compute

. . I ) . . . .
0, X} + 0, Xy = iy 5 5 2 [aje O 4 Gl 0] (21

Imposing the boundary condition at ¢ = 0 we obtain
o, = dl, (22)

The boundary conditions for open strings relate the left and right movers,

which are no longer independent. This alos means that the Hilbert space



of an open string will be exactly like one of the sides (say the left-moving
sector) of a closed string (the right-moving one not being an independent
one). Notice that this also means that open strings can couple only left-right
symmetric closed string sectors; for instance, there are no heterotic open
strings.

Imposing the boundary condition at ¢ = ¢ we obtain
ol sinTy = 0 (23)

Which implies v € Z

The hamiltonian in terms of the oscillator modes reads

DiDi 1 .
H = — L) E 24

with Ey = 24 x (—1/24) = —1. This is exactly the hamiltonian for the left-

moving sector of the closed bosonic string, except for a factor of two arising

from that in the oscillator expansion.

2.5 Spectrum

The spectrum is obtained just like the left-moving sector of the closed string

theory. The spacetime mass formula is
o'm® = Ng — 1 with Ng = > o' ,d}, (25)
n>0

We define the vacuum by o |0), = 0 for n > 0, and construct the Hilbert
space by applying creation oscillators to it. The lightest modes are
State a'm? SO(24)
0 -1 1
o 0), O 24



(Notice that we get the right Lorentz little group for the massless parti-
cles). We obtain a 26d U(1) massless gauge boson and a neutral tachyonic
26d scalar.

To the open string states we have to add the closed string states. Recall
thay are given by

State a'm?  SO(24)
10)e —4 1
ol @0y, 0 24x24
where |0), is the closed string vacuum. This leads to the 26d closed string

tachyon and the massless 26d graviton, 2-form and dilaton.

We would like to briefly mention that, in contrast with the closed string
tachyon, there is a general consensus on the meaning of the open string
tachyon. It signals an instability because we are expanding the theory around
a maximum of the potential for this field. In order to correct this, we should
look for a minimum of the tachyon potential and expand the theory around
it. The potential indeed has a minimum, and very surprisingly the proposal
is that the theory sitting at this minimum is just the closed bosonic string
theory, with no open string sector.

The intuition underlying this proposal by A.Sen (and which is a bit ad-
vanced for this lecture) is that the open string sector is associated to an
underlying objetc which is filling spacetime (a D25-brane). The open string
tachyon signals an instability of this object, which decays and disappears.
The theory left over is just closed string theory with no open string sector.

Although open string sectors of the bosonic theory are ‘unstable’ in this
sense, it is useful to study them to learn more about string theory, and
as background material for other open string sectors without this kind of

tachyons.



Figure 3: The annulus diagram regarded in the open and in the closed string

channel.

2.6 Open-closed duality

In this section we would like to study how theories with open strings deal
with ultraviolet regimes. Consider the simplest 1-loop open string diagram,
namely the vacuum to vacuum amplitude given by the annulus. This cor-
responds to an open string evolving for some time 274 and glueing back to
itself, see figure 3a.

This can be computed easily as a trace over the open string Hilbert space.
An important difference with respect to the torus in the closed bosonic string
is that now we have a fixed reference line, we cannot glue back the open string
with a shift in o; hence we do not have the analog of 71. One could imagine to
glue back the strin up to an exchange of the roles of the two string endpoints,
but this would lead to a worldsheet with the topology of the Moebius string,
rather than an annulus. Such worldsheets exist for unoriented open strings,
which couple to unoriented closed string. Since the closed string theories we
have studied are oriented, so are our open strings, and we will not consider
Moebius strips. In next lecture, type I superstring is an unoriented string
theory and will contain such diagrams.

Let us evaluate the annulus amplitude. It is given by a sum over all
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possible annulus geometries, namely integrating over the parameter 1 we

have
o dT
7 = — Z(T 26
[~ 2D (26)
with
Z(T) = try, e 2TtHor (27)
Recalling
Zz’p'Z 1
H,, = ! N —1 28
b = S+ s (Vo) (28)
we have
Z(T) = tI‘mom. e_QWO/TZip? tr osc. 6_27FT(N_1) (29)
2mi(iT)

Defining ¢ = e the traces will organize in modular functions with

parameter 7 = ¢T. Computing the traces in a by now familiar way we have
© dT

7= [ Sn (T T) 2y (ir) (30)
o 2T

Open-closed duality is the fact that the annulus diagram can be regarded,
in a dual channel, as a diagram where closed strings appear from and disap-
pear into the vacuum, at tree level, see figure 3b). Notice that the ultraviolet
regime in the open string channel corresponds to the infrared in the closed
string channel, see figure 4. Hence the ultraviolet regime is mapped to an
infrared regime due to the appearance of a dual channel once stringy energies
are reached.

In order to see more manifestly how the amplitude (30) can be regarded
as a closed string one, notice that in exchanging the roles of o and ¢ in the
annulus there is a redefinition of the new o to bring it back to the light-

cone convention (total length equal to ¢ for closed strings) and hence the
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Figure 4: Open-closed duality. An open string propagating a time 27/ is geomet-
rically the same as a closed string propagating a time 7"¢ with T = 1/(2T).

closed string propagates for a time 7"¢ with 7" = 1/(27T). Using the modular

transformation properties

n(i/(2T")) = (2T)"7 n(2T") (31)
we can write
7 = /0 ” ;l;: (87%a/) "2 p(2iT") ™ (32)

The same amplitude now has the structure of a sum over closed string states
with some peculiarities: there is not power-like dependence on 7”7, meaning
that the closed states are created out of the vacuum with zero momentum
(due to momentum conservation); also, there is no analog of 71 since the
closed string does not come back to itself; finally, due to the absence of
integration over 7, (because there is no 1) the level matching on closed states
has to be imposed explicitly, this leads to the argument of the oscillator n

functions to be doubled.

12



Figure 5: Open string interaction vertex with Chan-Paton factors.

3 Chan-Paton factors

We now turn to the discussion of an essentially new feature of open strings.
It is consistent to have more than one kind of open string sector in a string
theory. The most general possibility is to introduce a discrete degree of
freedom, in one out of N possible states, at each string endpoint. Hence,
each open string is characterized by two indices, a, b, with a,b = 1,..., N,
denoted Chan-Paton indices, specifying in which states the endpoints are.
Notice that the labels are ordered for oriented open strings.

These degrees of freedom are non-dynamical, so the label of an endpoint
simply propagates unchanged along the endpoint worldline. The rules for
interactions are clear, there is one label per boundary, and one should sum
over all possible labels in internal boundaries. The basic interaction vertex
is shown in figure 5.

The quantization of open strings with Chan-Paton factors is straightfor-
ward. Since Chan-Paton indices are non-dynamical, they do not enter in
the hamiltonian, and the quantization of each ab sector proceeds as for a
single open string without Chan-Paton factors. The existence of the indices

only implies that there are N? states of each kind. The lightest states are as
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Figure 6: Interactions between open string with Chan-Paton factors.

follows
State  o'm? S0O(24)
0)ap -1 1
o 110)ap 0 24

where [0),, denotes the groundstate of the ab open string. Hence we
obtain N? gauge bosons and N? scalar tachyons. The N? gauge bosons Ag
can be seen to correspond to a gauge group U(N). This can be seen by
analyzing their interactions as follows, see fig 6.

e The gauge bosons A,,, Ay for a # b do not interact among themselves,
since they do not have common indices, fig 6a. This means that the corre-
sponding generators of the gauge group commute. In fact, they generate a
U(1)Y Cartan subalgebra.

e The gauge boson Ay, interacts with, i.e. is charged under A,,, A, as
shown in figures 6b,c. The orientations of the boundary are inherited from
the orientation on whe worldsheet. The orientations imply that 6b, c differ
by a sign. Fixing a convention, we say that A, carries charge +1 and —1
under Agq,, Ap.

Since charge under Cartan generators correspond to weights, and since

weights in the adjoint representation (in which gauge bosons must transform)
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are roots, we obtain that the gauge group has N? — N non-zero roots of the

form
(+,—,0,...,0) (33)

Going back to the lecture on group theory, we see that these are the non-zero
roots of U(N).

Performing a similar discussion it is easy to see that all states in the open
string tower transform in the adjoint representation of U(N).

An alternative way to understand the appearance of U(N) is to consider

general states, linear combinations of the basic states | )

) =2 as| Jab (34)

where the matrix of coefficients A is hermitian. These hermitian matrices are
providing an N-dimensional representation of the U(NN) generators. Notice
that a single Chan-Paton index a can be thought of as transforming in the
fundamental or antifundamental representation of the U(N) group, depend-
ing on whether it sits at the endpoint where the string starts from or ends

at.

It is very remarkable that the simple non-dynamical Chan-Paton degrees
of freedom lead to the rich dynamics of non-abelian gauge symmetry from the
viewpoint of spacetime. Also very remarkably, we have uncovered a brand
new way to obtain non-abelian gauge symmetries in string theory.

As a final comment, it is easy to see that open-closed duality is satisfied
for any choice of the Chan-Paton rank N. The annulus amplitude is exactly
as the above up to a multiplicity factor of N2. Upon going to the closed
channel, this implies there is an additional factor of N on the disk diagrams

creating or annihilating the closed string from or into the vacuum.
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Notice finally that the number of open string tachyons increases with N.
Hence the more open string sectors the theory has, the more unstable it
is in this sense. As with the single open string case, condensation of these
tachyons leads to the disappearance of the open string sectors, leaving behind

just the closed bosonic string theory.

4 Open superstrings

Let us try to consider describing open superstrings. We know that they
will couple to some closed superstring, which must be of the kind studied in
previous lectures. Since the local 2d worldsheet must be left-right symmetric,
the natural possibility to be considered is open string theories coupling to
type IIB closed string sectors.

At the end of this section we will see that in superstrings there is an
additional consistency condition, called RR tadpole cancellation condition,
which is not satisfied by the models we are about to construct. Nevertheless,
the material we cover will turn out to be useful for the construction of type

I theory, which is consistent, in next lecture.

4.1 Hamiltonian quantization

In the light-cone gauge the dynamical 2d fields are Xt (o +t), ¥% (0 + t),
Xb(oc —t), Yia(o —t), with 4 = 2,...,9. The quantization of the bosonic
piece works exactly like in the open bosonic string, and will not be reviewed
here.

Centering on the 2d fermions, let us simply state, without entering into

details, that there are two possible boundary conditions which lead to the
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correct equations of motion locally on the worldsheet. The possibilities are
Y= Pyl at 0 =0
pio= Mgt at o=14 (35)

with p, p' = 0,1/2. Redefining 1% (0 —t) — e~2™ 4% (0 —t) we can trivialize
the condition at o = £, hence we are left with two possible sectors, which we
call NS and R

NS ¢t =—o% ato=0 R ¢, =9% ato=0
U =y ato={¢ YL =9 ato={(

The mode expansion in both cases reads
. o' . .
1/)2(0_ +t) = 3 5 Z wlz} e—mu(a—l—t)/é
i o 71 miv(o—t)/L
Yo —1) = i/ S X dle (36)

For NS boundary conditions, we have

o=0 W +d)e ™ =0 = ¢, =1

v

. . 1
o=/ Sl cosmve ™M =0 - veZ+ 2 (37)
For R boundary conditions, we have

o=0 W)™ =0 > U, =1,

v

o=/ S i sinmve ™ =0 — veZ (38)

So left and right movers are linked together. NS fermions are half-integer
modded and R fermions have integer moddings. Everything behaves as with

the left moving sector of a superstring.
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4.2 Spectrum for NS and R sectors

Being careful with the factor of 2 from the different exponent in the oscillator
expansions, the hamiltonian and mass formula are similar to the left moving

ones in a superstring. They are given by

Eip'2 1
H = : Ng + Np + E
2pt * 2a'pt (No + N+ Fo)
om® = N+ Np + Eg (39)

with Ey = —1/2,0 for NS, R sectors.
In the NS sector, we take the groundstate annihilated by positive modding

operators
an‘0> =0 , wn—1/2|0> =0 , forn >0 (40)

and build the Hilbert space by applying negative modding oscillators to it.
The lightest states are
State  o'm%/2 SO(8)
|0) -1/2 1

¢i1/2|0> 0 8v
In the R sector, we define the groundstates as annihilated by positive

modding operators
an0) =0 , ,]0)=0 , forn>0 (41)

The groundstate is degenerate due to fermion zero modes, and hence forms
a representation of the Cliffor algebra generated by them. Introducing the
operators AX = 12® 4 1p2*™1 and the state |0) annihilated by the raising

operator, the groundstates are

0) Az, 10)
ALALI0) A ALAG0)
Al A3 A3 A{[0) (42)
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The two columns correspond to the two chiral irreps of SO(8), 85 and 8¢
respectively. Finally the spectrum is obtained by applying negative modding

oscillators to these groundatates. The lightest modes are the groundstates

themselves
State a'm? /2 SO(8)
R (£ +,+,+) #— =even 0 8s
s(£, £, +,+) #—=odd 0 8c

4.3 GSO projection

A natural question is now how (or whether) to combine NS and R sectors in
constructing the open string spectrum (as was required by modular invariance
in closed superstrings). Clearly, the fact that the open strings we want to
construct couple to type IIB closed string imposes a constraint on the physical
spectrum of the open string. Indeed, the physical spectrum of the closed
sector had a GSO projection; if no constraint is imposed on the open string
spectrum, it would be possible to create unphysical closed string states (with
the wrong GSO behaviour) by scattering open string states.

In other words, open/closed duality (the fact that the open 1-loop annulus
diagram can be regarded as a closed string amplitude (with only GSO pro-
jected states propagating) requires the open string sector to have a specific
mixture of NS and R boundary condition, i.e. a GSO projection.

Indeed, it turns out that the GSO projection in the open string sector
is exactly that on one of the sides in a type Il superstring. Namely, it
eliminates the NS groundstate, and the 85 R groundstate. Hence the open
string tachyon disappears, and the only massless states are a 10d U(1) gauge
boson and a 10d chiral fermion. They fill out a vector multiplet of 10d N' =1
supersymmetry.

The complete spectrum is given by this open string spectrum, plus the
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closed type IIB string spectrum, which at the massless level is 10d N/ = 2
supersymmetry. This supersymmetry in the closed sector is not a symmetry
of the full theory, and it would be broken to N' = 1 by interactions with open
strings.

Let us finish by mentioning that addition of Chan-Paton indices is straight-
forward and leads to the same result as for bosonic open strings, namely
the gauge group becomes non-abelian U(/N) and all states transform in the
adjoint representation. This leads to a new situation, very different from
heterotic, with non-abelian gauge symmetries and charged fermions. So it in
principle provides an interesting starting point for model building of theories

similar to the Standard Model (see future lectures on D-branes worlds).

4.4 Open-closed duality

Let us verify that the annulus constructed in the open string channel indeed
reproduces a GSO projected closed string amplitude in the dual channel.

The annulus amplitude is

o dT
7 = — Z(T 43
(= S 7(T) (13)
with
Z(T) = o, e 700 = trpome T 2P tr g, e 2TTNEE) x
X (tr NS,GSO e—sz(NF—Eg) — tr paso e—QWT(NF—Eg)) (44)
We have
T mom.e 2" T 2P = (87°/T)™*
e, e #TO0 ) = i)
1
tr ys,gso e 2T NEED) = 3 (tl" ns@“FHEC 4+ tr s (NP (_)F) =
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1, 0] 0 1"
MU R

1
tr p,aso 67271'T(Np7Eé’1) — § (tr RqNF—kEé’ + trR(qNF+E0 ( )F) _
1 1/2 ! 1/2 !
—nt |9 - 45
57 0 12 (45)
In total
1 0 ! 0 ! 1/2 !
Z(T) = = (87%a'm) A8 n~* [ ¥ -9 - +9
(T) 5 ( 2) TN 0 12 0

It is clear that replacing 7' = 1/(27") and using the modular properties
of the eta and theta functions we recover a correctly GSO projected closed

string amplitude.

4.5 RR tadpole cancellation condition

Although everything looks fine, clearly there must be something wrong in
the above construction. In previous lectures we mentioned that the field
content of type IIB theory is free of gravitational anomalies in a very intricate
and miraculous manner. Here we are seemingly constructing a bunch of
theories which include the anomaly free type IIB field content, plus a bunch
of additional chiral fields arising from the open string sectors.

The additional sets of fields in these theories are anomalous, so it is not
possible that these theories with open string sectors are consistent.

Indeed we are going to learn that in theories with open superstrings there
is a consistency condition which we had not satisfied, and which renders
inconsistent all the above theories unless N = 0, namely unless open string

sectors are absent.
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Figure 7: Disk diagram leading to a tadpole term for some closed string mode.

Let us discuss the physical idea, since the computations will be done in
some more detail in the lecture on type I superstrings. The key idea is that
the theory contains tadpole interactions due to disk diagrams of the kind
shown in figure 7. From the spacetime viewpoint, these are terms in the

effective action, which are linear in the closed sector field, schematically

Q [ dzp(a) (47)

with @ the coefficient of the disk tadpole, and ¢ the corresponding closed
string field.

It is possible to compute explicitly in string theory which closed string
fields get this kind of tadpoles, but much can learnt from simple considera-
tions. First, the terms should be Poincare invariant in order to appear in the
effective action. In the RR sector, massless fields are p-forms in spacetime,
for all possible even p degrees. The only p-form for which the tadpole term
is Poincare invariant is the 10-form C7y. This field is very peculiar, since its
field strength would be an 11-form which is identically zero in a 10d space-
time. Hence, and although it has a vertex operator in string theory, it has

not kinetic term. The only place where it appears in the spacetime action is
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in fact the tadpole term. Hence we have

S%:QA[QO (48)

The equation of motion for this field is therefore

Q=0 (49)

Namely, rather than a condition on the field, it is a consistency condition on
the theory. It requires that the RR tadpole is absent from the theory. This
is the RR tadpole cancellation condition.

It is possible to check that the coefficient of the tadpole diagram is non-
zero if there are open string sectors. Indeed, the standard way to compute
the disk (see lecture on type I) is to compute the annulus and take the
infinite 7" limit in the closed string channel, where the amplitude factorizes
as the square of the disk. Recalling that with N Chan-Paton factors, the
annulus goes like N2, the disk and hence the tadpole is proportional to N.
Consequently (??) requires N = (0, namely no open string sectors.

This is our result. The derivation was a bit crude, in particular since it
involved spacetime considerations. Nevertheless the result is robust and has
been derived (in a very technical way) purely from worldsheet consideration
[?].

We would like to conclude with two comments. In addition to the RR
tadpole, there is also a tadpole for NSNS fields. This tadpole is not a dan-
gerous one, since all fields in the NSNS sector have kinetic terms, hence
their equations of motion impose conditions on the fields and not consis-

tency conditions on the theory 2. This is analogous to open bosonic strings,

2In any event, supersymmetry relates NSNS and RR tadpoles, so that often in imposing
RR tadpole cancellation conditions one obtains NSNS tadpole cancellation, although the

latter is not required for consistency.
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where disk tadpoles exist for fields with kinetic terms, hence do not signal
inconsistencies.

Finally, let us mention what theories are affected by the inconsistency.
The precise statement is that it is not possible to couple open strings to type
IIB closed string in a 10d Poincare invariant way. In further lectures we
will encounter consistnte situations with open superstrings, which avoid the
above problem: either because the open strings are unoriented and couple to
an unoriented version of type IIB theory (but not to just type IIB theory);
or beacuse the open string sectors do not preserve 10d Poincare invariance

(see lecture on D-branes).
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