Appendix: Rudiments of group theory

In this appendix we provide some basic techniques in group theory that
we will need to be familiar with. Useful references are [1, 2] and the more
formal [3, 4].

1 Groups and representations

1.1 Group
A group G is a set on which there exists a multiplication, satisfying
e Closure: Forany g, h€ G, g-he G

e Identity element: there exists an element e € G such thate-g = g-e=g

for any g € G

e Inverse: For any g € G there exists an element ¢! such that g- ¢! =

g -g=e
e Associativity: (g-h)-k=g-(h-k) for any g, h, k € G

Notice that commutativity g - h = h - g is not required to be a group. If any

pair of elements commute, the group is called abelian.

1.2 Representation

A representation R of a group is a mapping that, to each element of G asso-
ciates a linear operator R(g) acting on a vector space V, in a way compatible

with the group multiplication, namely

R(g)R(h) = R(g-h) Vg,heG (1)



Hence a representation is a homomorphism between G and the set of lin-
ear operators on V. If it is an isomorphism (injective and onto), then the
representation is called faithful.

The vector space V is called the representation space, and vectors in
V' are said to form the representation R of G. The group G is said to acto
on V (or on vectors of V') in the representation R.

If the dimension of V' is n, and we fix a basis |e;), any linear operator can

be regarded as an n X n matrix via

R(9)ij = (ei R(9) |e;) (2)

So a representation can be defined also as a homomorphism between G
and the set of n x n matrices. We call these matrix representations of G.

Notice that the explicit matrix that represents an element g € G in a ma-
trix representation, depends on the basis. Hence, it makes sense to define an
equivalence relation of matrix representations. Two matrix representations
R and R’ are equivalent if there exist a similarity transformation S (n x n

invertible matrix) such that
R'(9) = SR(g)S™" Vged (3)

Namely the matrices R(g) and R'(g) are related by a (g-independent) change

of basis in V.

OBS: Often, one find a group acting on a physical system in a particular
representation. It is however important to distinguish between the abstract

group and its different representations.



1.3 Reducibility

A representation R is reducible if it has a matrix version equivalent to a

representation with block diagonal matrices

Ri(9) 0
R(g):< 0 R2(9)> vea @

Hence V splits into V5 and V3, which are acted on, but not mixed, by R;(g)
and Rs(g), respectively.

An irreducible representation (irrep for short) is one which is not re-
ducible.

1.4 Examples

e The trivial representation, which exists for any group GG. To every element,

it associates the 1 x 1 matrix 1.
R(g)=1 VYgeG (5)

It is clearly a homomorphism, but not an isomorphism. It is not a faithful
representation

o Irreps of Z3. The group Zs has three elements, 1, g and g2, with the
group multiplication law g¢* - ¢' = ¢**!, ¢ = 1.

It has three inequivalent irresps, which are all 1-dimensional. One of them

is the trivial
1=1 ; g—=1 ; ¢2—1 (6)

There are two faithful representations

R, : 1—-1 ; g— e?mi/3 7> — et/
R, : 151 ; g—e™3 g2 il (7)
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In fact, it is easy to show that for an abelian group all irreducible repre-
sentations are necessarily 1-dimensional.

e Group of symmetries of the square. This group is generated by two
elements: «, a rotation or 90 degrees around the center of the square, and S,
a flip around a vertical axis. Any other element can be obtained by taking

products of these. A simple 2-dimensional faithful irrep of this group is

(80 om0

and the corresponding product matrix for other elements.

1.5 Operations with representations

It is useful to define them in terms of matrix representation. Let Ry, Ry be
representations of a group G on vector spaces Vi, V5, on which we specify a
basis |e;), | fm), of dimensions n;, ns respectively.

e Sum of representations We define the sum representation R; & R,

acting on V; @ V; as

Ri(g) 0 )
0 Ra(g)

It has dimension n; + ny, and is clearly reducible.

o) = ( )

e Tensor product of representations. We define the product repre-
sention R = R; ® Ry, acting on V; x V5 (which has basis |e;) ® |fm)) as

(R(9))im,in = (R1(9))ij (R2(9))mn (10)

It has dimension nyny and is in general reducible. The decomposition of ten-
sor product representations as sum or irreps is a canonical question in group

theory, which can be systematically solved using Clebsch-Gordan techniques.



2 Lie groups and Lie algebras

2.1 Lie groups

A Lie group G is a group where the elements are labeled by a set of continu-
ous real parameters, £, a = 1,..., N, with the multiplication law depending

smoothly on the latter. Namely

9(8) - 9(&) = 9(£(£,¢)) (11)

with f*(&,€') a continuous (usually also C'*°) function of &, &'

OBS: The Lie group is a differentiable manifold, and the £ are coordi-
nates. Usually we define the parameters such that g(§ = 0) = e, the identity
element of G. The number of parameters N is called the dimension of the
group.

We will be interested in compact Lie groups (which are compact as man-
ifolds), although there exist very important non-compact Lie groups, for
instance, the Lorentz group (where the boost parameters correspond to non-
compact directions).

Lie groups also have representations. As usual, to each element g(§) € G
they associate a linear operator R(g(£)) on a vector space V, compatibly
with the group law. The dimension of V' is unrelated to N the dimension of
the group. For short we denote R(g(£)) by R(&).

2.2 Lie algebra A(G)

Formally, it is the tangent space to the manifold G at the point corresponding
to the identity element, see fig 1. Since the geometry of G is so constrained by
the group law, its structure is almost completely encoded just in the tangent

space.



Figure 1: The Lie algebra is in a very precise sense the tangent space to the Lie

group at the point corresponding to the identity element.

Recall the differential geometry definition of tangent space of a manifold
M at a point P. It is the vector space generated by the objects 0,, a =
1,...,dim M; the latter are vectors, formally defined as mappings from the

space of functions on M, F(M) to the real numbers

Op: FM)— R
flz) = Ou f(z)lp (12)

In Lie groups, the natural functions of G are matrix valued functions
compatible with the group law, namely representations. Hence we define the
vectors T, as mappings from the space of representations of G, R(G) to the

space of matrices Mat

To: R(M)— Mat
R(9(€)) = =10 R(9(E))le=o0 (13)

This formal definition is used to emphasize that the properties of the 7, are
properties of the group and not of any particular representation. In this
sense, this can be formally written as ‘T, = —id,g|.’. However, it is often

useful to discuss properties etc in terms of representations.



For a fixed representation R, we call —id, R(£)|£ = 0 the representation
of T, in the representation R, and call it t®. It is interesting to note that
changes of coordinates in G induce linear transformations on the T,’s, as

follows

, _ 0g
Ti = 5ga T (14)

We can form linear combinations and multiply the 7,’s, as induced from
sum and product of matrices. Roughly speaking the Lie algebra is the algebra
generated by the 7,’s with this sum and product. The linear combinations
> a AT are called generators of the group/algebra (often, just the 7, are

called generators of the algebra).

2.3 Exponential map

Generators provide infinitesimal transformations
g(0,...,88%...,0) = e + 0,96&* = e + 1T, 0&° (15)

In fact, they are associated to whole one-parameter subgroups of G (which

are said to be generated by 7,). In any representation R

R(0,..., 69+ 6¢,...,0) = R(0,...,6¢%...,0)R(0,...,£%,...,0) =
= (14 0, R|¢=00¢%) R(O, ..., &%, ...,0) (16)

On the other hand
R(0,...,&*+6£%...,0) = R(0,...,&%...,0) + O R|e=00&" (17)
So we get

0,R(0,...,€%...,0) = it? R(0,...,¢£%...,0) (18)
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Hence

R(0,...,€%...,0) = ¢%¢ (no sum) (19)
In the abstract group/algebra

g(0,...,€%...,0) = T+  (no sum) (20)

In fact, any element of the group ¢g(§) continously connected to the identity

can be written as
g(f) = ¢ LaTn€ (21)

for a suitable generator ), £%T, in the algebra, see figure 2. So the whole

group can be recovered from the structure of the algebra !

2.4 Commutation relations

The generators T, satisfy simple commutation relations
[Ta: Tb] = ifabcTc (22)

where fu. are called the structure constants of the group/algebra.
i) They are determined by the group multiplication law. To see this,
consider the group element g(A) defined by

gab()\) — ei)\Tb ei)\Ta efi/\Tb efi)\Ta (23)

'In fact, some global information on the group may not be recovered from the algebra.

There are groups which are globally different yet have the same Lie algebra. They are
typically quotients of each other, so they differ in their homotopy groups. The group
recovered from the algebra is the so-called universal cover group, which is the only simply
connected group with that algebra. This subtle issue is what makes SU(2) and SO(3)
have the same Lie algebra although SU(2) is simply connected and SO(3) = SU(2)/Z2.



Figure 2: Any element in the group (in the component continuously connected to
the identity) can be obtained from a generator in the Lie algebra by the exponential

map.

Expanding around A = 0, we have
J(A) =1+ XN [T,,Ty] +... (24)

Since g(\) is a group element, infinitesimally close to the identity, it also has

the expansion as identity plus some element in the algebra
ga(N) = 1+ X faeTe (25)
c

By comparing, we get the commutation relations (22)
ii) They determine the group multiplication law, at least for elements

connected to the identity. To see that, consider two group elements e***7a

;s Q . . 5 . . .
and e““Te_ their product is some element e**"?a. The Lie algebra information

is enough to find the p® in terms of the \°, ¢¢. By expansion of the relation
N Ta gio*Ta _ ip"Ta (26)
we get

1
p“:/\a+0“—§fabcAboc+... (27)
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this verifies our claim.

The commutation relations satisfy the Jacobi identities
[Taa [TbaTc]] + [Tw [TaaTb” + [Tba [TCaTa]] =0 (28)

(as in any representation they are simply matrices which obviously satisfy this
relation). This can be easily translated into a relation among the structure

constants.

A representation R of the Lie algebra is a mapping that to each Tj it
associates a linear operator t (acting on a space V of some dimension n,
independent of the dimension N of the group), consistently with linear com-

binations and with the commutation relations, namely
[ta's t5] = i fabel: (29)

Clearly the structure constants are a property of the group/algebra and not
of the representation.

Clearly, given a representation of the group we can build a representa-
tion of the algebra (by taking representations of group elements close to
the identity t® = —id,R(£)), and viceversa (by the exponential mapping
R(¢) = e'a¢").

The structure constants depend on the choice of basis in the Lie algebra,
so it is convenient to fix a canonical choice. To fix it, consider the quantity
tr (¢tE¢8) in any representation R; it is a real and symmetric matrix, which
can be diagonalized by a change of basis in the Lie algebra. Once we are in
such basis tr (t£¢f) = krd,, and we obtain the structure constants as

Fute = —ﬁ tr ([¢F, ¢F)17) (30)

and are completely antisymmetric.
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Since this can be played for any representation R, it shows that there
exists a basis in the abstract Lie algebra where (22) hold with completely

antisymmetric structure constants.

In the remaining of this lecture we will center on compact Lie groups, for
which any representation is equivalent to a unitary representation. In such
representation all generators are hermitian and the structure constants are

real.

2.5 Some useful representations

There is a very useful representation which is canonically built in the struc-
ture of the Lie algebra. It is the adjoint representation, which is N-dimensional
(same dimension as the group). Consider an N-dimensional vector space,
with a set of basis vectors labeled by the generators of the algebra |T),
a=1,...,N. And represent T, by the linear operator t24 defined by

tﬁdj|Tb> = |[TaaTb]> = ifabc|Tc> (31)

Namely we have the matrix elements (tA4),. = —i f,p..
R

Given any representation R, with generators represented by ¢,

we can
build another representation R*, called the conjugate representation, with
generators represented by —(t£)”. Tt is a simple exercise to check that it also

provides a representation of the algebra.

3 SU©2)

To warm up before the study of more general Lie algebras, we study the
construction of representations for SU(2), the simplest non-abelian group.

The Lie algebra is given by
[Jas Jb] = €abe e (32)
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A familiar representation is provided by the Pauli matrices J, = 0,/2,

with
/01y (0 =\ (1 0 -
=\ 0) 0 PTG o) 0 2T\ 4

In this representation, elements of the group correspond to 2 X 2 unitary
matrices. This particular representation arises as the action of the 3d rotation
group on spin 1/2 particles. We will be interested in constructing more

general representations in a more systematic way.

3.1 Roots

We first put the Lie algebra in Cartan-Weyl form. To do that, the first
step is to choose a maximal set of mutually commuting generators (this is
the so-called Cartan subalgebra, whose dimension is called the rank of the
group/algebra). For SU(2) any pair of generators is non-commuting, there
is at most one such generator, say Js.

Next, se take the remaining generators are form linear combinations

+_ 1 ,
Jr = \/i(JlilJQ) (34)

such that they have simple commutation relations with the Cartan generator
J3

[J3, JY]=J" 5 [J,JT]=—J (35)

In intuitive terms, this tells us the charges of J* with respect to the U(1)
subgroup generated by the Cartan Js;. In the adjoint representation, we have
the relation J3|J*) = £|J*); upon exponentiation, g(£)|J* = e*¥%3|J*),
namely |J* tranform with charges + under the U(1) generated by .J;. By

abuse of language we use the same language for J* themselves.

12
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Figure 3: Fig. a) shows the root diagram for the SU(2) Lie algebra; Fig b) shows

the general structure of the weights for irreducible representations of this algebra.

We also have
[Jg, J3] = 0 5 [J+, J_] = J3 (36)

This are the commutation relations for the algebra written in the Cartan-
Weyl form. The charges of the different generators with respect to the U(1)
generated by the Cartan J; are called the roots of the algebra. In our case
we have the roots —1, 0, +1 for J—, J;, JT respectively.

The roots of an algebra are drawn in a root diagram, as in figure 3a).

Such picture encodes all the information about the algebra.

3.2 Weights

Let us now discuss the construction of irreps. The representation space is a
vector space spanned by a set of basis vectors. It is natural to take a basis
where the representative of J3 is diagonal, and then it is natural to label each

vector in the basis by its J; eigenvalue, |u). Hence we have by construction

J3|p) = plp) (37)

The eigenvalues p are in principle real numbers, which give us the charge of
the corresponding eigenstate with respect to the U(1) generated by J;. Such
charges are called weights of the representation. The irrep is essentially

defined by giving the set of weights for all basis vector in the representation
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space, and it is usual to draw the weights in a weight diagram (see below)
that encodes all information about the representation.

We define the highest weight as the highest of all eigenvalues, and call
it j. Soon we will see that the complete irrep is defined just in terms of its
highest weight.

An important fact is that weights in an irrep differ by roots. Starting
with a state of weight |u), we can build the states J*|u), which are eigenstates

of J3 with eigenvalues p + 1
JaJ |y = ([Js, J5] + T5Ts) ) = (£J5 + pJ5)|p) = (p£1)J%|u) (38)

So the states J=|x) must be either zero or they are part of our basis vectors.
Hence there should exist weigths which are equal to p 4 1, namely weights
differ by roots.

Since by definition g = j was the highest weight, the structure of the

basis vectors is

7, i =1, 17-2) - (39)

On the other hand, the representations we are interested in are finite
dimensional, so the representation should end. To compute when, we must

realize that J~|y) ~ |u — 1) up to a normalization factor. Namely, one has

7w = Nuylp—1)
JFu) = Nulp+1) (40)

and the coefficent can be computed to be

1
N,=—\(J+ —pu+1 41
u \/5\/ G+m—p+1) (41)
which means that the representation is finite-dimensional if some p = —j
J7[=j)=0 (42)
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Since p’s differ by integers, j and —j must differ by an integers, which implies
the constraint that j must be integer or half odd.

Hence irreps of SU(2) are characterized by a highest weight, which must
be an integer of half-odd number. The representation space is spanned by

the basis vectors

) i =115=2) ... [ =J) (43)

which is (2j + 1)-dimensional. The matrices representing generators in this
space are easy to obtain from the actions of J*, J5 on the basis vectors. All
the information of the irrep with highest weight j is encoded in a weight

diagram as in figure 3b.

4 Roots and weights for general Lie algebras

The idea is to generalize to any Lie algebra the procedure introduced for
SU(2).

4.1 Roots

First we put the Lie algebra in the Cartan-Weyl form. The first step is to
pick a maximal set of mutually commuting hermitian ? generators, which we
call H;, = 1...,r. The number of such generators is called the rank r of
the group; they generate the Cartan subalgebra of the Lie algebra. Upon
exponentiation, they generate a U(1)" subgroup of the Lie group.

The second step is to take linear combinations of the remaining operators

so that they have easy commutators with the H;. To do that, we go to the

2By abuse of language we talk about a hermitian generator in the abstract alge-
bra, as a generator which is represented by a hermitian operator/matrix in any unitary

representation.
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adjoint representation, with basis vectors |7,), and construct the matrix
My = (T|Hi|Ty) (44)

Diagonalizing simultaneously the matrices M® (they commute since they
represent the Cartan generators, which commute in the abstract algebra),
we get a new basis of vectors | E, ), which are eigenstates of the H; (better, of
their representatives in the adjoint representation). We label each such state

by its r eigenvalues «; with respect to H;.
Hi|Ea> = a’i‘Eo) (45)

At the level of the abstract algebra, this induces some linear combinations
of the original generators 7, into some generators E, with commutation

relations
[Hi, Ea] = aiEa (46)

These are not hermitian, rather Ef = E_,

Using the Jacobi identity it is also possible to show that

[Eaa Efa] - Z aiHi
[Eo, Egl = FEaip if a+ fis root
=0 otherwise (47)

The r-dimensional vectors « are called the roots of the Lie algebra,
and they provide the charges of the E, with respect to the U(1)" generated
by the Cartan subalgebra.

4.2 Weights

To describe irreps, we choose a basis of the representation space where all

matrices representing the Cartan generators are diagonal, and we label the
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vectors in the basis (eigenstates of the matrix representing H;) by the cor-
responding eigenvalues. By abuse of language, we denote H; the matrix

representing the abstract H; in the representation. We have

Hilp) = pilp) — i=1,...,r (48)

The r-dimensional vectors p are called weights of the representation.
The set of weights of a representation characterize the representation.

OBS: Notice that the weights are a property of the representation, while
the roots are a property of the algebra. Notice also that the weights of the
adjoint representation are the roots of the Lie algebra (this is beacuse the
adjoint is a very canonical representation, built into the structure of the
algebra itself).

OBS: Notice that in an irreducible representation there may be different
states with the same weight vectors. One (special) example is the states
|H;) in the adjoint representation, which all have weight equal to zero. One
must be careful in dealing with situations where different vectors have same

weights.

In a given representation, weights are not arbitrary. Rather, as in SU(2),
weights differ by roots. Namely, starting with an state |u) we can con-
struct Fi,|p) which is an eigenstate of the H;, with eigenvalue p; + «;, as

follows
HiE o) = (0FEsq + EvoH;) 1) = (i £ ou)Eva|p) (49)

So there must in principle exist a weight in the representation given by the
vectors p + «, and a corresponding state |y + «). In fact, as in SU(2) we

have a relation modulo a coeflicient
E:I:a|.ul) = Nu,:l:a|:u’ + O!) (50)
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and for some p we will have N, 1, = 0, which ensures that representations are
finite-dimensional, and impose some additional constraints on the possible
values of the weights u. The sets of allowed irreps and the corresponding
weights is difficult to analyze in general, and we leave their discussion for

specific examples, see sections 6.

It is worth pointing out that the analogy with SU(2) is quite precise. In
fact, for any non-zero root «, the generators Ei,, >; o;H; form an SU(2)
subalgebra of the Lie algebra. Defining E* = ﬁEia, E; = # > o H; we

have the commutators
By, B4 = B ; [EY,E) = E (51)

which is an SU(2) algebra in the Cartan-Weyl form. This means that for
any 4 the states |u + ka) form an irrep of this SU(2).

For future convenience, we use this a bit further. This irrep will contain
some highest and lowest SU(2) weight states |j) and | — j), namely there

exist integers p, ¢ such that

RN
Eolp—gqa)y=0 ; —j= g ¢ (52)
o 1

o = —5(p — ¢). This is the master formula extensively used in

the classification of Lie algebras, see section 5.

so we get

The basic strategy to build irreps is therefore as follows. We need to
introduce the concept of a highest weight. To do so, we define a positive
vector in the r-dimensional space of roots/weights/charges, v > 0 if v; > 0;
if v1 = 0 we say that v > 0 if vy > 0; etc. We say that one vector v is higher
than other vector w, v > w, if v — w > 0. This allows to define the highest
weight py of a representation the weight such that py > p for any other
weight p.
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The concept of positivity allows to split the set of non-zero roots into the
set of positive roots and of negative roots. For a > 0 the E, are raising
operators and the E , are lowering operators. The highest weight vector is
characterized by the fact that it is annihilated by the raising operators (if
not, we would get states |uo + «) with weight higher than |ug), which was
defined as the highest!).

The representation is build by applying lowering operators to the highest
weight state, in all possible inequivalent ways, until we exhaust the repre-
sentation (namely, until we start finding zeroes upon application of lowering
operators). That this happens is guaranteed because states form represen-
tations of the SU(2)’s associated to each «, and such representations are

finite-dimensional from our experience with SU(2)

4.3 SU(3) and some pictures

Instead of giving the commutation relations of the SU(3) algebra, all the
relevant information is provided by the root diagram of the algebra, shown
in figure 4. Namely, the rank is two; the Cartan subalgebra is spanned by
two generators H;, H,, which are mutually commuting. The remaining eight
generators are labelled E,, E_, for a = (1,0), (1/2,v/3/2), (1/2,—3/2),

and have commutation relations
[Hi, Eio] = £ Ex, (53)

Notice the SU(2) subalgebras along the different o’s, which graphically
correspond to lines along which the roots reproduce the root diagram of
SU(2).

Some representations

Instead of writing the explicit matrices providing a particular representa-

tion of the SU(3) algebra, we can instead provide the weight diagram of the
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Figure 4: The root system of the SU(3) Lie algebra. The positive roots are
a = (1,0), ao = (1/2,1/(2V/3), a3 = (1/2,—1/(2v/3). The two roots at (0,0)

correspond to the Cartan generators.

corresponding representation.

A familiar representation is the fundamental representation, which is 3-
dimensional, and on which the generators are represented as 3 X 3 hermitian
matrices (the Gell-Mann matrices). Upon exponentiation, the group ele-
ments are represented as 3 X 3 unitary matrices.

This representation can be equivalentely described by the weights in pic-
ture 5a. The action of the Cartans on the states |u = (£1/2,1/(2V/3)),

(0,—1/V3) is
Hilp) = palpe) (54)
The action of non-zero root generators E, is
Eo|p) = Nyalp+ @) (55)

Notice that the states form representations under the SU(2) subalgebras of
the non-zero roots. That is, weights along lines parallel to the root diagram

of the corresponding SU(2) subgroup differ by the corresponding root.
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Figure 5: The weight diagram for the fundamental (a) and antifundamental rep-
resentations of SU(3).

The construction of the irrep is as follows. The highest weight is |(1/2,1/(2v/3)),
so this is annihilated by the positive roots a; = (1,0), ay = (1/2,1/(2v/3),
a3 = (1/2,—1/(2v/3). The remaining states are obtained as

oo l(1/2,1/2V3)) = [(=1/2,1/(2V3))
Eal(1/2,1/(2v/3)) = (0, ~1//3))
(56)

The conjugate representation, the antifundamental, which is obtained by
minus the transposed GellMann matrices, has weights opposite to those of

the fundamental. Namely, conjugation of the representation flips the charges
of objects. The weights are shown in figure 5b
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5 Dynkin diagrams and classification of sim-
ple groups

The discussion in this section will be very sketchy. For more information,
see chapter VIII of [1]. However, the discussion is not too relevant, one can
jump to the results directly.

The information we have obtained is also useful in yielding information
that can be used to classify all possible Lie algebras. In fact in the study
of representations we obtained some interesting constraints. For instance,
recall the master formula that for any representation, the fact that |u + ko

for a representation of SU(2), implied that the weights satisfy

—5 =—50P—-9 (57)

In particular we may apply this to the adjoint representation, where the
weight  is a root. Requiring that the states |3 + ka) form a representation
of SU(2),, and that the states |a + k/3) form a representation of SU(2)4, we
get

a-f 1 B-a 1

— . . !
We obtain a constraint on the relative angle of the roots
2 (a-B)° mm/
Oup = = 99
T JaplaE T i

The angle is constrained to be 0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

5.1 Simple roots

We now define a simple root as a positive root which cannot be written

as a sum of positive roots with positive coefficients. Simple roots have nice
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properties, in particular the set of simple roots of an algebra is linearly in-
dependent, and there are r simple roots; so simple roots provide a basis of
root space.

Moreover, the angles between simple roots are more constrained. To see
this, notice that if o and /3 are simple roots, then o — 3 is not a root 3. Now
going to the adjoint representation, E_, must annihilate Es (since otherwise
it would create a state |Eg_,), but 8 — « is not a root!), so |Ejg) is the lower
weight state | — j) for the subalgebra SU(2)s, and we get

a-f
2 af = P P z* (60)

Hence the quantities 2% are non-positive integers for simple roots. Using

a- 5 . a- B _ /
2 e =-pP ; 2W =D (61)
we get cosl, g = —% pp', and this forces the angles between simple roots to

be 90, 120, 135 or 150 degrees.

5.2 Cartan classification

The only invariants of the set of simple roots are the relative lengths and
angles of the simple roots. Use of this information is enough to recover
the complete system of roots, since simple roots provide a basis. Hence the
problem of classification of Lie algebras is the problem of classifying sets of r
linearly independent vectors in r-dimensional space with non-positive integer
values of 2 - 8/|a/?.

In the classification it is important to note the following. Two r;- resp

ro-dimensional systems of simple roots, satisfying the above properties, can

3If it were, it would be positive or negative; if it is positive then @ = 8 + (a — )
contradicts the fact that « is simple; if it is negative, then 8 = a + (8 — a) contradicts

that g is simple
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always be combined into a new (r; + r9)-dimensional simple root system, by
simply joining orthogonally the two initial systems. Clearly we are interested
in root systems which cannot be split into orthogonal subsystems.

This is related to the concept of invariant subalgebra. Given and algebra
A, an invariant subalgebra B is a subalgebra such that the commutator of
any element in B with any element in A is still in A. Upon exponentiation,
Lie algebras with invariant subalgebras lead to non-simple groups, namely
groups which split as product of groups, G = G; X Gs.

So one is in principle interested in classifying simple groups (as any other
is obtained by taking products) and Lie algebras without invariant subalge-
bras (simple Lie algebras). Lie algebras with invariant subalgebras manifest
as root systems which split into two orthgonal subsystems. Hence we are
interested in classifying simple root systems without such subsystems. Any
other can be obtained by simple adjunction.

The problem of classifying simple root systems of this kind has been
solved. The result, called the Cartan classification can be recast is giving the
relative lengths and angles between the simple roots. This is conveniently
codified in a picture called the Dynkin diagram. The classification of Dynkin
diagrams for simple Lie algebras is given in figure 6. The rules to obtain
the simple root system from the diagram are as follows.

e Each node corresponds to a simple root (hence the number of nodes is
the rank of the Lie algebra/group)

e The number of lines joining two nodes gives us the angle between the
two simple roots: no line means 90°, one line means 120°, two lines means
135°, three lines means 150°.

e Dark nodes correspond to shorter roots (the relative lengths can be
found from (59)

Clearly, Dynking diagrams corresponding to non-simple algebras are ob-
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Figure 6: Dynkin diagrams for simple Lie algebras. There are four infinite series
(labeled by a positive integer r giving the number of nodes), and some exceptional
algebras. Notice that for small rank some algebras are isomorphic and have the
same Dynking diagram (e.g. As = D3, namely SU(4) ~ SO(6). The groups
arising from the A, B, C, and D series were known in classical mathematics before
Cartan and are known as classical Lie groups, they are listed to the right of the

corresponding diagram.

tained by adjoining in a disconnected way Dynkin diagrams for simple alge-

bras (so that we adjoin orthogonally the two subsystems of simple roots).

6 Some examples of useful roots and weights

There are some systems of roots and weights that we will encounter in our
study of string theory. In this section we list some of them. A more complete
reference, which includes a systematic discussion of tensor products or irreps,

and decomposition of representations under subgroups, is the appendices of

[5].
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Figure 7: The root system of SU(3) described as a set of vectors lying in a 2-plane

in 3-dimensional space.

6.1 Comments on SU(k)

Roots

Although SU (k) (or its algebra Ag_;) has rank £ —1, it is convenient and
easier to describe its roots as k-dimensional vectors, which lie on an (k — 1)-
plane. Besides the £ — 1 zero roots associated to the Cartan generators, the

non-zero roots are given by the k-dimensional vectors
(+,—,0,...,0) (62)

where +, — denote +1, —1, and where underlining means permutation,
namely the + and — can be located in any (non-coincident) positions. Note
that all roots satisfy one relation 7 ; v; = 0, so they live in a (kK — 1)-plane
IT in R™. There are a total of k% — 1 roots, which is the number of generators
of SU(k).

Fixing a basis within the (k — 1)-plane it is straightforward to read out
the roots as (k — 1)-dimensional vectors. The picture of the root system of

SU(3) in this language is given in figure 7.
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The extra direction in the diagram can be regarded as associated to the
extra U(1) generator in U(k) = SU(k)xU(1). Hence, SU (k) weight diagrams
embedded in (k — 1)-planes parallel to II but not passing through the origin
are associated to states which, in addition to being in a representation of

SU(k), also carry some charge under the additional U(1).
Weights

A familiar representation is the fundamental representation. The corre-
sponding weights, given as k-dimensional vectors but inside the (k — 1)-plane
IT are,

%(n—l,—l,...,—l) (63)

Notice that weights differ by roots, so application of generators associated to
non-zero roots relate states with different weights (or give zero if they take
us out of the representation).

In situations where the gauge group is U(k) so there is an additional U(1)
generator, the fundamentals of SU (k) may carry some charge, so the weights
satisfy the relation 7' ; v; = ¢ for some non-zero constant ¢ giving (up to
normalization) the charge under the additional U(1). Very often one finds

fundamentals from weights of the form
(+,0,...,0) (64)
or
S = o) (65)
Notice that the weights (63) can be written as
(+,0,...,0) — (1/n,...,—1/n) (66)

where the second term removes the piece corresponding to the additional

U(1) charge. By abuse of language, we will often use things expressions like
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(64) or (65) to denote the fundamental even in situations where there is no

additional U (1), removing implicitly the piece corresponding to this charge.

The weights for the antifundamental representation are the opposite to

those for the fundamental, namely
(—,0,...,0) (67)

By this, we mean

%(—(n— 0,1,..,1) (68)

or any other shifted version, with the understanding that the additional U(1)

charge should be removed.

Other representations can be obtained by taking tensor products of the
fundamental (using the techniques of Yound tableaux, not discussed in this
lecture, see [1] for discussion). The corresponding weights are obtained by
adding the weights of the fundamental representation.

For instance, the two-index antisymmetric representation has k(k — 1)/2

weights
(+,+,0,...,0) (69)
while the two-index symmetric representation has k(k + 1)/2 weights
(+,+,0,...,0) ; (£2,0,...,0) (70)

They are obtained by adding two times weights of the fundamental represen-
tation in a way consisten with antisymmetry or symmetry of the representa-
tion.

It is straightforward to derive familiar facts like the equivalence of the
antifundamental representation and the (k — 1)-index antisymmetric repre-

sentation. They have the same weights.
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Figure 8: Root diagram for SO(4). In fact it splits as two orthogonal SU(2) root

systems.

6.2 Comments on SO(2r)

Roots
Besides the n zero roots, the non-zero roots for the D, Lie algebra are

given by the r-dimensional vectors
(+,+,0,...,0) (71)

Meaning that the + and - can be choses arbitrarily in any non-coincident
position. The total number of roots is 2r(2r — 1) /2.

The root system of SO(4) is shown in figure 8. The fact that there are
two subsets of orthogonal roots means that there are invariant subalgebras.
In fact, SO(4) ~ SU(2) x SU(2)', with non-zero roots of the latter being
given by

SU2) : (+4),(==) 3 SUQR) : (+-),(—+) (72)

Notice also that the Dynkin diagram for Dy are two disconnected nodes, so
is the same as two A; Dynkin diagrams.

It is important to notice that the root system of SO(2r) contains the
roots of SU(r), so by exponentiation the group SO(2r) contains a subgroup
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SU(r).
Weights

An important representation is the vector representation, which is

2r-dimensional and has weights
(+,0,...,0) (73)

Notice that it is a real representation, since its conjugate has opposite weights,
but the representation (as a whole) is invariant under such change.

When the group is regarded as the group of rotational isometries of a 2r
dimensional euclidean space, the vector representation in which vectors of
this space transform.

More representations can be obtained by taking tensor products of the
vector representation. These are the respresentations under which tensors in

the euclidean space transform under rotations.

There are some additional representations which cannot be obtained from
tensor products of the vector representation. These are the spinor represen-
tations. For D, there are two inequivalent irreducible spinor representations,

both with dimension 2"~!, and weights

1 1
spinor : (i§"“’i§) , ##— = even
1 1
spinor’ : (ﬂ:§, ey ii) , #— = odd (74)

These spinor representations are said to have different chirality *.

Spinor representations and Clifford algebras

4Clearly there discussion of spinors under the Lorentz group in even dimensional space
can be recovered from the group theory of spinor representations of SO(2r) (with a few
subtleties arising from the non-compactness of the Lorentz group). A nice discussion of

Lorentz spinors can be found in the appendices of [6].
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There is a canonical and very useful way to describe the spinor representa-
tions of SO(2r), related to representations of Clifford algebras. We briefly
review this here, since it will appear in our construction of string spectra.

Consider the algebra of objects I'', i = 1, ..., 2r, satisfying
{TV 17} = 26, (75)

It is called a Clifford algebra. It is important to remark that this is not a Lie
algebra! In particular it is not defined in terms or commutators.
The important point is that this algebra is invariant under the group of

transformations
" = R;- I (76)

where R is a 2r x 2r orthogonal matrix. This group is precisely SO(2r), and
we have found it acting on the set of I'" in the fundamental representation.

The fact that the Clifford algebra (75) has an SO(2r) invariance menas
that any representation of the Clifford algebra must also form a represen-
tation of SO(2r). In fact, given a hermitian matrix representation for the
I, the hermitian matrices J¥ = —[I'", ] can be seen to form a (possibly

reducible) hermitian matrix representation of the SO(2r) algebra, which is
[T, JH) = j (57 i 4 g ik _ gl ik _ 5ik iy (77)

So our purpose is to build a representation of the Clifford algebra, and
the resulting representations of SO(2r). The standard technique to build a
representation of the Clifford algebra is to form linear combinations of the
I'* which can act as raising and lowering operators. We define

1 1
Aa = %(an + iFQa—l) 3 AL == %(Fga - iFQa_l) y a = 1,,7‘(78)

They satisfy the relations
{AL A} = {40, 4} =0 {A], A} = 0w (79)
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So they behave as fermionic oscillator ladder operators. Notice that in this
language only an SU(r) invariance is manifest, with the Al A, transforming
in the fundamental resp. antifundamental representations.

To build a representation of the Clifford algebra, we introduce a ‘ground-

state’ for the harmonic oscillator
Aal0) =0 (80)

The representation is built by applying raising operators to this ‘groundstate’

in all possible inequivalent ways. We have

states number
0) 1
Allo) T

ATATIO)  r(r—1)/2

T
s (7)
Al Aoy 1 (81)

r
The bunch of " states arising from applying k operators to the ground-

state clearly forms a k-index completely antisymmetric tensor representation
of the SU(r) invariance group.
The total number of states is 2. Constructing the Lorentz generators, it

is possible to check that the weights are of the form

%,...,il) (82)

2

Moreover, it is easy to realize that the weights among the above with has

(+

k +1/2’s correspond to the weights of a k-index completely antisymmetric

tensor representation of SU(r), in agreement with our above statement.
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The above weights therefore define a representation of the SO(2r) group
(although only SU(r) invariance was manifest in intermediate steps). Now
this representation is reducible. REcalling that the SO(2r) generators are
constructed with products of two I'*’s, it is clear that they are unable to
relate states (81) with even number of I'’s to states with odd number of I'’s.
More formally, one can introduce the chirality operator I' = I'* ... '?" which
commutes with all SO(2r) generators (and anticommutes with the I'), and
can be used to distinguish the two subsets of states.

This means that the 2"-dimensional representation is reducible into two
27~L_dimensional irreducible representations, with weights given in (74), called

the chiral spinor representations.

6.3 Comments on SO(2r + 1)

We will not say much about SO(2r + 1), since most of the relevant facts
about its representations can be obtained by noticing that it is a subroup of
SO(2r + 1) and that it contains an SO(2r) subgroup.

Let us simply say that it has an (2r+1)-dimensional vector representation,
out of which other tensor representations can be obtained by tensor produce.
It also has a unique spinor representation, of dimension 2" which is irreducible
5.

The tensor product of representations and decomposition under sub-

groups can be found in standard tables, like the appendices in [5].

5This underlies the fact that there are no chiral spinors in euclidean spaces of odd

dimension.
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6.4 Comments on USp(2n)

We will not say much about these, since these groups rarely appear in particle
physics or in string theory. Moreover, most of its properties can be derived
from the trick that it can be constructed from U(2n) by keeping the subset
of roots invariant under an involution. We will see more of this as we need
it.

6.5 Comments on exceptional groups

The most interesting one is FEjg, since it appears automatically in the con-
struction of the heterotic superstring. Moreover, properties of Eg, E7 etc are
easy to derive since they are subgroups of Es. For details we refer to the
properties listed in tables like the appendices in [5].

For the moment, the only data we need is the root system of Eg. This

has rank 8 and dimension 248, and the 240 non-zero roots are of the form
(£,+,0,0,0,0,0,0)
(£3,+3,+5, 45, +5,+2,£5,+1)  , #— =even (83)

Notice that there is a nice subset of SO(16) roots, given by the first line
of non-zero roots (along with the 8 Cartan generators). With respect to
this SO(16) subalgebra, the states associated with the vectors in the second
line are transforming in a 28~ '-dimensional chiral spinor representation of
SO(16).

We will find good application of these facts for instance in the identifica-

tion of the spectrum of the heterotic theory.
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