Rudiments of differential
geometry/topology

Useful references for this lecture are [1] and sections 12, 14 and 15 of [2].

1 Differential manifolds; Homology and co-

homology

1.1 Differential manifolds

An n-dimensional differential manifold M is a topological space, together
with an atlas, that is a collection of charts (Us, Z(o)) Where U, are open sets
of M and z(,) is a one to one map between U, and an open set in R", such
that

i) M is covered by the U,, that is U, U, = M.

ii) If U, N Up is non-empty, the map

x(ﬂ)ox@ : l‘(a)(Uang) eR" — X(g)(UaﬂUg) e R" (1)

is differentiable.

Namely, the charts attach coordinates to the points in the U,, such that
on intersections Ua Uy the z(g) are smooth functions of the z(,). This is
illustrated in figure 1. Namely, a differential manifold is a space that at each
point looks locally like R™ (with respect to differential structures).

By abuse of notation, we will often refer to a point P € M by its co-
ordinates z (in some chart). Also, we will denote the map z() o 95(3 as
2(5)(%())-

We refer to any introductory book on differential geometry for examples
of the description of familiar manifolds (like the n-sphere S™ or the n-torus

T™ in the above language).



Figure 1: Charts in a differential manifold.

In this lecture we will center on orientable manifolds. An orientable
manifold is such that the sign of the determinant of the jacobian matrix

Jij = ax{m /8:6’@ is the same in all intersections U, N Us.

In a differential manifold we can introduce the concept of a differentiable

(or smooth) function. A function f: M — R is differentiable if the functions
fox(;% : .’L’(a)(Ua) eR" - R (2)

are differentiable. And similarly for functions taking values in R®, C, C",
etc.
We denote by F the set of smooth (real) functions over M. By abuse of

language we often write f(x) to denote f o x(;%.

1.2 Tangent and cotangent space

A tangent vector to M at a point P € U, is a linear mapping from the
set of smooth functions F to R. A basis of tangent vectors is the set {0;},

1 =1,...,n, which act as



of

a .
Tla)

fr—

(3)

P
The tangent space to M at P, denoted Tp(M), is the vector space generated

by linear combinations of the 0;, acting as
V=V : F>R
- of
vVt ——
e,

T

(4)

P
A vector field is a set of tangent vectors, one per point of M, smoothly

varying with P. Namely, a set of linear combinations with coefficients given

by functions, defined on the U,
Via) = Vo (2(0))0; (5)

with the conditions that they agree on intersections U, N Ug, namely

i 0% (a1 /i
Vi (T() = or, Vs () (6)

We will define analogously the concept of field for other vector spaces below.
In section 2.1 we will see that they are simply sections of the corresponding
fiber bundle.

The cotangent space Tp(M)* of M at P is the vector space dual to Tp(M).
Namely it is the vector space of linear mappings from 7p(M) to R. We can
understand this better by introducing a basis for Tp(M)*, which is given by
the set {dz'}, which act as

d' : Tp(M) - R
8; — 6. (7)
A general linear combination u = u;dz’ is hence defined by
u : Tp(M) - R

8]- — Uj (8)
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The element of Tp(M)* are also called 1-forms, see below.
A tensor of type (k, 1) is a linear mapping from (Tp(M)*)*¥ x Tp(M)! to

R. It is the vector space of linear combinations

T = Ttk i ®...Q dz’ ® 0y, ®®8,k (9)

J1--- 01

with the obvious definition of the elements of the basis.
A simple examples is given by the metric, which is a tensor field of type
0,2), g = gijdxi ® da?, or gij = 9(0;, 0;).

1.3 Differential forms

A differential p-form is a tensor of type (0, p), which has completely antisym-
metric component (this statement is true in any coordinates). So they are of

the form
Ap) = Aiyiy Az @ ... Q dx™ (10)

with completely antisymmetric A;, . ;, .
Equivalently, it is the vector space of linear combinations of the basis

elements
. . 1 . .
dx'* A ... ANdx"™ = —'ez-l___ipdx“ Q...dx"™ (11)
p!
(with 41 < ... < ip), namely
A(p) = Ai1---ip dl‘il AN dafip (12)

The vector space of p-forms is denoted AP(M). We define p-form fields as
usual, which will be denoted p-forms by abuse of language.

We define the wedge product of a p-form A, and a g-form B, to be the
(p + ¢)-form

1

Ap) N By = gl

Ay iy B g, dz™ A A dz Ada A LA daie (13)



Notice the property Apy A By = (—1)PB(g) A Ap). Often, wedge products
are assumed and not explicitly displayed.

We define the exterior derivative d as a mapping from p-form fields to
(p + 1)-form fields. For a p-form (field) A its exterior derivative (dA)p41)
is defined by

dA = 0;, A, i, dz™ Nda™ A ... Adz™ (14)
Notice the property
(A, A Bg)) = dA) A Big) + (=1)"Ag) A dBy) (15)
However, the main property of exterior differentiation for this lecture is
d>=0 (16)

in the sense that for any p-form A, d(dA) = 0. This follows easily from
the symmetry of double partial derivation 0;0; = 0;0;.

We refer to introductory books on differential forms to check that d re-
produces the familiar formulae for the gradient, divergence and curl of 3d

vector calculus.

1.4 Cohomology

A p-form field A,y is said to be closed if dA = 0. A p-form A, is said to be
exact if there exists a (p — 1)-form B,_; (globally defined on M, see below)
such that A, = dB(_1). Clearly, because d?> = 0 every exact form is also a

closed form.
A(p) = dB(p_l) — dA=ddB =0 (17)

It is natural to ask to what extent the reverse is true. In general, it is not.
There exist manifolds where there are closed forms which are not exact. We

will see one example below.



However, there is one important case where the reverse is true, and every
closed form is also exact:

Poincare lemma: In R"”, any closed p-form, p > 0, is also exact.

(since there are no (—1)-forms, clearly 0-forms can never be exact). A
simple example is provided by 1-forms in R. Any 1-form A = f(z)dz in R

can be written as A = dF, where F' is the 0-form (i.e. function)

F)= [ ) dy (18)

This is very important, and can be exploited to define a topological invari-
ant for any differentiable manifold M, the cohomology of M. The argument
is as follows.

Recall that M is a bunch of open sets U, isomorphic to R", glued in some
way (specified by the transition functions z(g)(2(q))). A p-form (field) A, is
a bunch of p-forms Aa,) defined on the U,’s, which agree on the intersections
UaNUp
_ Oapy Ol

1ol

Ao

11...0p

= D251 "'8:13(5)jp i (19)
A closed p-form satisfies dA = 0 globally, hence dA® = 0 on every U,. Since
each U, is essentially R", Poincare ensures that there always exists some
(p — 1)-form B® in U, such that A* = dB“. However, there is no guarantee
that the B* glue in the right way at intersections to define a global (p — 1)-
form B satisfying A = dB globally. If this is not the case then A is closed
but not exact.

In this argument, the local structure of M is not relevant, only the global
structure, defined by how the U, patch together, is relevant. Therefore, the
existence of closed forms which are not exact is an statement which depends

only on the global topology of M, and not on its local properties.



a) b)

X'=x-1 X'=x+1

x'==1 x'=1

Figure 2: Covering the circle with two charts.

To give a simple example, consider the circle S, described using two
charts with local coordinates x, 2/, as shown in figure 2, running in (—1,1),
each covering S! except the norht and south poles repectively. The inter-
section is disjoint, and on its two disconneted pieces the transition functions
are ' = x + 1 and xX’=x-1. Let us construct a global 1-form A, by glueing
together the 1-form dx on U and dz’ on U’; note they glue nicely with the
above transition functions. The global 1-form is closed, and on U and U’
is is locally exact, it reduces to dz or dz’. However, it is not possible to
patch together x and z' to form a 0-form f such that A = df globally (this
would be as much as finding a coordinate valid globally on S, which is not
possible). By a strong and misleading abuse of language, the global 1-form
is often referred to as dz, although we know that x is not a global 0O-form.

The natural object which can be defined from these observations, and
which depends only on the global structre of M is the de Rahm cohomology
groups. Let ZP be the set of closed p-form on M

2P ={Ag) |dAE) =0} (20)
and B, the set of exact p-forms on M
BP = {A(p) |A(p) = dBy_1) for some B(p_l)} (21)

7



Since BP C ZP, we can define the quotient

HP(M,R) = g (22)

known at p* de Rahm cohomology group of M. It is the set of closed forms

of M modulo the equivalence relation
Ap) = Ap) +dBp-y (23)

Namely, two closed p-forms define the same equivalence class in cohomology
if they differ by an exact form. Notice that exact forms are also closed, they
correspond to the zero (or trivial) class in cohomology (the class correspond-
ing to an identically vanishing form). We denote by [A] the cohomology class
of a closed form A.

The sets H?(M,R) have the structure of finite-dimensional vector spaces
(so in particular they are groups with respect to addition). Their structure
depens only on the topology of M. Their dimensions, denoted b, and known

as Bettin numbers of M, are the simplest topological invariants of manifolds.

1.5 Homology

We now aim at defining a related class of topological quantities. To define
them we need some additional concepts.

An m-dimensional submanifold N of M (m < n) is a subset of M which
has the structure of an m-dimensional differential manifold. We will be inter-
ested in allowing for submanifolds with boundary, so we define the concept
of boundary of a manifold.

A manifold M with boundary is a topological set together with an atlas
with two kinds of charts: the familiar (Uy, (o) and charts (V3,z(s)), where

Vp is isomorphic to an open set in 'half’ R". As before, the charts cover M,



Figure 3: Manifolds with boundary are described by two kinds of charts.

and the z(y), () define differentiable transition functions. By ’half’ R" we

mean the set of point

R? = {(x',...,x")x" > 0} (24)

The boundary OM of M is the set of points which are anti-images of the
points z' = 0 in the maps z(g). See figure 3. It is important, although we do
not discuss it in detail, to notice that the orientation in a manifold induces
a natural orientation on its boundary.

A p-chain qa,) is a formal linear combination (with real coefficients) of
p-dimensional submanifolds Ny, (possibly with boundary) of M, namely a =
¢, N.

The operation of taking the boundary, which we call 0, can be regarded

as a linear operator mapping a p-chain to a (p — 1)-chain, by
dap) = ¢ ONy (25)
An essential property of 0, which is geometrically obvious is that
0’ =0 (26)
In the sense that for any p-chain, 9(da) = 0 is empty.
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Figure 4: Non-trivial 1-cycles in a two-torus.

A p-chain a(,) without boundary is called a p-cycle, da,) = 0. A p-chain
is called trivial if it is the boundary of a (p+ 1)-chain, namely a(,) = 0bgy41)-

Clearly, because 0% = 0 any trivial p-chain is a p-cycle.
ap) = 6b(,,+1) — Oa = 826 =0 (27)

It is natural to wonder to what extent the reverse is true. In general it is
not: there exist manifolds M where there are p-cycles which are not trivial.
An example of non-trivial 1-cycles is shown in figure 4.

However, there is an important n-dimensional manifold where any p-cycle
(p < n) is trivial . This is the case for R", see figure 5. Again, this implies
that the existence of non-trivial p-cycles on a manifold M is determined
by the global structure of M, how it is patched together. It is ia features
insensitive to the local structure of M, since locally it looks like R™, where
all p-cycles are trivial.

We are now ready to define the p™ homology group H,(M,R). Let Z,
be the set of p-cycles

2, = {a(p)|8a(p) = 0} (28)

1Since there are no (n + 1)-cycles in an n-dimensional space, n-chains cannot be trivial.
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______________________

Figure 5: All cycles in R™ are boundaries of some higher dimensional chain.

and let B, be the set of trivial p-chains

B, = {ap)lap) = b1} (29)

Since B, C Z,, we can define the quotient

Z
H,(M,R) =2 (30)
By
known as the p* homology group of M. It is formed by the set of p-cycles

modulo the equivalence
agp) = a(p) + O (31)

namely two p-cycles define the same homology class if they differ by a bound-
ary. Trivial p-cycles correspond to the zero class in homology. We denote by
[a] the homology class of a cycle a. The spaces H,(M, R) have the structure
of vector spaces, and their structure depends only on the topology of M. The
dimension of H,(M,R) will be seen to be equal to b,, i.e. the dimension of
HP(M,R).

Examples of non-trivial 1-homology classes on T? are shown in figure 4.

It is important to point out that homology is not the same as homotopy.
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Figure 6: A homologically trivial 1-cycles which is not homotopically trivial.

In particular, homotopically trivial cycles (contractible cycles) are always
homologically trivial (boundaries), but homologically trivial cycles may not

be homotopically trivial. One example is shown in figure 6.

1.6 de Rahm duality

We can notice a close analogy between the construction of cohomology and

homology groups, as follows

closed form cycle
exact form trivial chain
d 0

H?(M > R) H,(M,R)

Indeed this is not accidental. There is a duality between the vector spaces
H?(M,R) and H,(M,R) which explains the analogies in their construction.
The duality is obtained via the operation of integration of forms over chains.

We define the integral of a p-form Ag,) over a p-dimensional submani-
fold N of M, by splitting A into pieces A® in the U,, and integrating the

12



components of A over the U, in the usual calculus sense

/N Ay = zaj /U At e (32)

In fact, we should define this more carefully so as to make sure that we do
not overcount the points of M, because of overlapping of the patches U,.
Each point in M should count only once in the integral. This can be done
by using partitions of unity (see e.g. [3], but we will not enter into this
detail, hoping the idea is clear. Note that on the overlaps it does not matter
which coordinates we use, since the integrand is invariant under coordinate
transformations (the change of the form component is an inverse jacobien
which cancels agains the change of the differential calculus measure).

One can now define the integral of a p-form A, over a p-chain a(,) =
2k ek Nk by

Ap) = ch N Ap) (33)
k k

A(p)

An important property is Stokes theorem, which states that for any (p —
1)-form B(,_;y and p-chain ),

By = [ By (34)
a(p) dap)

A simple example is provided by O-forms (functions) and the 1-chain [0, 1]

(or other similar chains of closed sets in R)

[ La-sor-ro-o-[ 1 o

[0,1] O a[0,1

(since the natural definition of an integral of a O-form f over a 0d space
(point) is simply evaluation of f at the point; the sign is due to opposite

induced orientations).
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Very interestingly, the integral of a closed p-form A, over a p-cycle a,)
depends only of their cohomology and homology classes, [A] and [a], respec-
tively. Namely, the integral is unchanged if we take a different closed p-form

!

A’(p) and a different p-cycle a(,) in the same class A’(p) = Ap) + dBg-_1),

!

Ay = Up) + Obpt1).

/GA’ - /aA+/adB:/aA+/aaB:/aA
/aIA _ /(LA+/abA:/tLA+/de:/(LA (36)

This is often called the period of [A] over [a].

This implies that integration is well defined for cohomology and homol-
ogy classes, since it does not depend on the particular representatives cho-
sen. Thus integration define a linear mapping H?(M,R) x Hy,(M,R) — R.
Equivalently, this shows that H? (M, R) is the vector space dual to H,(M,R),
and vice versa. Namely, a p-cohomology class [A(y)] can be regarded as a lin-

ear mapping
[A(p)] : HP(M, R) — R
o]  — Ap) (37)

a(p)
This implies the promised result that the dimensions of the p** cohomology
and homology groups are the same.
Notice that the duality implies that it is always possible to choose basis
of cycles {a;} and forms {A;} such that [, [A;] = d;. An example in T?
is given by the 1-forms dzx, dy on the two independent circles, and the non-

trivial 1-cycles.

1.7 Hodge structures

Now consider that M is a Riemannian manifold, i.e. it is endowed with a

metric g of euclidean signature. The previous structures are topological and
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independent of the metric (they were constructed without any metric at all).
In the presence of a metric, we can define some additional structures which
are important, but not topologically invariant.

We define the Hodge operation * as the map between p-forms and (n—p)-

forms defined by the action on the basis

*(dz" AL ANda') = n—p) vdet gg"?t g e i e AT A LA d2?™(38)
It has the property that for a p-form A, * * Ay = (—l)p(”_p)A(p).

The Hodge operator defines an positive-definite inner product betwen

p)>

p-forms

(Ap), Bw) = /M Ap) N *B) (39)

Notice that this is not topological (however it is very important in physics,

since it corresponds to
(Aw), Bp) = /M det gAz'l.._ipBil"'i”dxl ...da? (40)

which is used to define the kinetic term of (p — 1)-form gauge fields C,_1)
by taking Ay = By = dC(,_1) the gauge invariant field strength).

It is natural to define the adjoint d' of d with respect to this inner product,
i.e. it is defined by

(A@), dBy-1)) = (d'Ag), By 1) (41)

Hence d' maps p-forms to (p — 1)-forms. One can check that df = xdx for n
even and df = (—1)? * dx for n odd.
There is a theorem that ensures that any p-form A,y has a unique de-

componsition (known as Hodge decomposition) as
Aw) = B + dCp-1) + d' D) (42)
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with By a harmonic form, namely obeys dBgy = 0, d* By = 0.
For closed p-forms, dAg) = 0 implies dd'D(,1) = 0. Taking the inner
product with D1y,

(D(p+1), ddTD(m_l)) =0— (dTD(p_H), dTD(IH_l)) =0 (43)
the positive definiteness of the product implies dTD(pH) = 0. Then
Ap) = Bp) + dCp-) (44)

Thus in the cohomology class [A] there is a unique harmonic p-form repre-
sentative.

Namely, for each p-cohomology class, there exists a unique harmonic rep-
resentative. Namely the p* Betti number b, is the number of independent
harmonic p-forms on M. These are interesting statements: although the met-
ric determines which particular p-form in the class is the harmonic one, the
statement that there exists a unique one is independent of the metric. This
is one simple example of a result which is topological invariant, but which
is reached using additional non-topolocial structures, like a metric (there is
no paradox, the result is independent of the metric chosen). Later on we
will find more involved topological invariants which are easily defined using
additional structures, althogh they are independent of the particular choices
of these additional structures.

Harmonic p-forms will be quite useful in the study of KK compactification
on curved spaces. Namely, the harmonic forms will provide the internal part
of wavefunctions of the zero modes in the KK reduction of 10d p-form gauge

fields. See lecture on Calabi-Yau compactification.

Another useful property due to Hodge operation is Poincare duality. The
Hodge operator induces a homomorphism between H?(M,R) and H"?(M,R).

This can be seen by starting with a p-cohomology class, taking its harmonic
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Figure 7: The Poincare dual form of a cycle can be though of as a delta function

(bump form) with support on the cycle.

representative, taking its Hodge dual (which is also harmonic) and finally
taking the corresponding (n — p)-cohomology class.

This implies in particular b, = b,,_,. Again this is an statement which we
reach by using a metric, but is a topological statement.

Another consequence is that for any p-homology class [a(,)] we can define
the Poincare dual (n — p)-cohomology class [A(,p)], such that for any p-form

B

)

oy 00 = /M Bp) N Am-p) (45)
Intuitively, [An_p)] can be considered as the class of a (n — p)-form ‘delta

function” with support on the volume of any p-cycle a(, in the class [a(y)],

see figure 7.

Finally for completeness we define the intersection numbers of a p-cycle

and a@,) and an (n — p)-cycle by, p to be

#(a@), bn-p) = /M Am-p) N By) (46)

where A(,_p), By, are the Poincare dual forms. Recalling the interpretation

of Poincare dual forms as ‘delta functions’ localized on the corresponding cy-
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cles, the above number is an integer which counts the number of intersections

(weighted with signs due to orientations) of the cycles a(,) and by, _p).

2 Fiber bundles

Fiber bundles are a useful geometric concept in physics when studying fields
that transform not only with respect to spacetime coordinate changes, but

also have some particular behaviour under some internal gauge symmetries.

2.1 Fiber bundles

A vector bundle or fiber bundle E over a differential manifold M is a family
of vector spaces Vp for each P € M (all isomorphic to an m-dimensional
vector space V'), which varies smoothly with P. Vp is called the fiber of E
over the point P. The spaces M and V are referred to as the base and fiber
of the bundle.

Equivalently, E can be defined with a set of charts (Uy X V, (v(a), Z(a))),
with (Ua, #()) being charts describing M, and v, being coordinates in V/,
such that on U, N U coordinates on the base and fiber are related by

() © T(a))

v(g) = Riap) (T(a))  Va (47)

where R(qp) are (point dependent) matrices in GL(m, R), known as transition
functions. Notice that coordinate indices in V' are implicit here (o, 5 denote
the patches).

Intuitively, a bundle is locally identical to R™ x V, and different local
patches are glued on the base, and on the fiber, up to a linear transformation
on the fiber.
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A bundle FE is therefore specified by the set of patches U, x V and the
transition functions for the base and fiber, the latter satisfying the consis-
tency condition R4, Ry Rga) = 1.

The total bundle E has a natural projection 7 to the base M given by
the map defined by ‘forgetting the fiber’

™ : E— M
(P,v) — P (48)

The simplest example of bundle is a trivial bundle, which is simply a
space of the form M x V. All transition functions R = 1 in this case.

A less trivial example is given by a Moebius strip. Consider M = S1,
and V = R. To build the bundle, cover S with two patches U, U’ with
coordinates x, z', as in section 1.4 and put coordinates y, ¥’ on R, and use

the glueing conditions
¥=x+1y =y and 2’=2—-19y =—y (49)

on the two disconnected pieces of U N U’. The result is a non-trivial bundle.
This is schematically shown in figure 8.

A richer example is provided by the bundle formed by all tangent spaces
Tp(M) to a manifold M. The base is M, the fiber over P € M is Tp(M),

and the transition functions on the fiber on U, N Uy are

. 0ty .
i _ (B

Similarly one can define the cotangent bundle, the tensor bundles, the p-form

bundle, etc...

A section ¢ of a bundle F is a mapping, such that 7 oo = 1, i.e. of the

form

o : M—F
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shs D

Figure 8: Construction of the Moebius strip as a nontrivial bundle with fiber R

over S1.
P+— (P,o(P)) (51)

That is for each point P € M we pick a point (vector) in Vp.

A simple example is a vector field, which is a section of the tangent
bundle: V*(z)9; defines a tangent vector for each point x on M. Similarly
the cotangent vector fields, tensor fields, p-form fields,... are sections of the

corresponding bundles.

2.2 Principal bundles, associated bundles

It is useful to extend the notion of vector bundle to other possible fibers with
some structure.

A principal G-bundle is a bundle where the fiber is a group G 2. Namely,
on the overlaps of the patches of the base U, NUs, the fibers (which are
isomorphic to G) are glued up to an (point dependent) tranformation in G.
The elements of the fiber G in U, and Ug, denoted g,y and g(s) are related
by

98) = fap(T(2))9(a) fas(T(a)) " (52)

2We will center on compact Lie groups in this lecture.
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This kind of bundle underlies the geometric description of gauge theories.
For instance, a gauge transformation is nothing but a section of a principal
G-bundle: g(z) a group element for each point of M.

When we have a group (G, we can consider its representations R and
the representation vector spaces on which the group acts. Given a principal
G-bundle we can define the associated fiber bundles, which are vector bun-
dles with the fiber the represention space of a representation R of GG, and

transition functions on the fiber

v(g) = R(f(ap)) * V(o) (53)

In a gauge theory, fields in a representation R of the gauge group are sections
of the corresponding associated bundle. The fact that the transition funcions
for different associated bundles are simply different representations of the
same transitions function of the principal G-bundle reflects the fact that the
gauge group is unique, and we only have different fields charged differently
under it. With the above definitions, all the gauge transformation properties
of fields charged under a gauge group are recovered.

Notice that a general vector bundle can be regarded as the associated
bundle of a principal GL(m, R)-bundle (corresponding to the vector repre-
sentation of GL(m,R). (since the transition funcions are matrices, which

represent the action of the group GL(m,R) on vectors of V).

3 Connections

In physics, vector bundles usually come equipped with an additional struc-
ture, a connection. The main idea is that in a vector bundle there is in
principle no canonical way to compare two basis of the fiber at different

points. A connection is an additional structure which allows to do so.

21



In a bundle with connection, in a patch where the point P has coordinates
z*, the canonical change of a basis {e*} of Vp as P changes in the direction

1 is given by
D;e®(x) = 0;e*(x) + wiab(:v)eb(:v) (54)

where w is the connection. On overlaps U, Up the connection transforms

not just as a 1-form, but has the additional transformation
wip) = RiapywiRp) — (0iR(ap)) Riap) (55)

which ensures that for a section o of E, its covariant derivative D;o(z) trans-

forms as a section of E as well.

There are two classes of physical theories where fiber bundles with connec-
tions appear. The first is the case of gauge theories, where charged fields are
sections of bundles associated to a principal G-bundle, and carry connections
given by the representation of the connection of the principal G-bundle. For a
representation R of G, the associated bundle has connection wf , = AT (Tr)9,
where A is the connection on the principal G-bundle, m runs over the gen-
erators of the Lie algebra, and T is the representation of a generator in the
representation R.

The second situation is in theories of gravity. The introduction of a metric
¢ in a manifold M can be described in terms of fiber bundles as follows. At
each point x € M introduce a set of tangent vectors {e®(z)}, orthonormal

with respect to the metric g
gijea,ieb,j — 5ab (56)

which also implies efe, ; = g;;. All the information of the metric is encode
in the ’tetrad’ {e®}.
The tetrad is however defined up to SO(N) rotations at each point, so

this behaves as a local gauge invariance of the system. Indeed, such local
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rotations are sections of a principal SO(N)-bundle, and the tangent bundle
is an associated bundle (for the vector representation).

Clearly one can construct other associated bundles; one of the most in-
teresting ones is the spinor bundle, whose associated connection (see below)
is known as the spin connection.

The metric induces a preferred connection on the tangent bundle, namely
the Christoffel connection on vectors. One can then obtain a connection in
terms of the tetrad, from the condition

D;ef = 0;ef — Ffjez + w/ be;’- =0 (57)

which defines a connection in the principal SO(NV)-bundle. The latter then
defines connections in all associated bundles, like the spinor bundle. In fact
the tetrad formalism was originally deviced to be able to define parallel trans-

port of spinors.

Given a general connection on a fiber bundle, we define its curvature by

R b = 0wy — = 0wy + [wi, wily (58)

they behave as 2-form with respect to coordinate reparametrizations, and
transform covariantly under gauge transformations.

In gauge theories, the curvature of the connection of the principal bundle
are denoted Fj; = Fj't™, where {"™" are the Lie algebra generators. In a vector

bundle associated to a representation R, it is given by Fj, = F/7'(Tg")5.

3.1 Holonomy of a connection

We start with a vector bundle E (with fiber V over a base manifold M) with
connection. Consider a point P € M, and consider the set of closed loops

which start and end at P. It is a group under the operation of adjoining
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Figure 9: The holonomy group is given by the set of rotation R¢ suffered by a

vector under parallel transport around all possible closed loops in the manifold.

loops. Consider a vector v in the fiber Vp and parallel transport it along a
loop C' with the connection. It will come back to a vector v’ in Vp, related to
the original v by some GL(m,R) rotation Rc. The set of such rotations for
all closed loops is a group, known as the holonomy group of the connection.
See figure 9.

For a connection induced from a metric, the holonomy of the connection
is often referred to as the holonomy of the metric or of the Riemannian
manifold.

For a metric connection, the norm of the tangent vector is preserved
during parallel transport, hence the holonomy of the connection is necessarily
a subgroup of SO(n). For a principal G-bundle, and its associated bundles,
like in gauge theories, the holonomy of a connection is necessarily a subgroup
of G.

3.2 Characteristic classes

Our motivation is to construct topological quantities for fiber bundles, that

characterize non-trivial bundles. In this section we see that there are certain
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quantities, which are computed using additional structures, like metrics or
connections, but which at the end turn out to be independent of the par-
ticular metric or connection chosen. They are therefore topological. Before
constructing them, it will be useful to give a simple example of a non-trivial
fiber bundle.

The Wu-Yang magnetic monopole

Consider a U(1) gauge theory on M = S2. The underlying geometry is
a principal U(1)-bundle over the base S2. Let us classify all topologically
inequivalent non-trivial gauge bundles. To do so, we cover S? with two open
sets, U, and U_, which cover the North and South hemispheres, see figure 10.
The bundle over each patch is trivial, so all the information about the bundle
over S? is encoded in the transition function in U, N U_, which is an S, the
equator. For a principal U(1)-bundle, the transition function g(¢) takes
values on U(1) which is also a circle. Therefore the topologically different
bundles are classified by topologically different maps from the equator S to
the fiber S'. Such topologically different maps are classified by the homotopy
group I1;(S1) = Z. Namely, there exist inequivalent classes of maps labeled

by an integer. Simple representatives of these maps are

g, @ S'— st

e'? — ? (59)

Namely, the label n corresponds to how many time one goes around the
target S when going once around the origin S*.

This example is simple enough to be more explicit about the connec-
tions we can put on these bundles (that is, the gauge field configurations
corresponding to these bundles). Here we describe a simple case.

Consider polar coordinates 6, ¢, and introduce the U(1) gauge potentials
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On the intersection of Uy, namely at # = 7/2 they differ by a gauge trans-

formation
A, — A =d¢ (61)

so they define a global connection for the bundle. The curvatures on U,
agree on the intersection Fly = F'.
The above expression shows that the transition function for this bundle

is the map
¢ : St — 8!
e —s e (62)
So the bundle is non-trivial.
There is a nice general relation between the winding of the map g(¢)

and the flux of F on S2. This provides a way of characterizing non-trivial

bundles which we will generalize in next section. In a bundle defined by the
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transition function g,, the gauge potentials A, satisfy A, — A_ = nd¢ on

the equator. Hence we have

/S2F: R R :/Slndgb=27rn(63)
This example is familiar in the study of magnetic monopoles: When the S2

is taken to describe the angular part of 3d space, the gauge configuration

describes a magnetic monopole sitting at the origin or R3.

Since F is closed and its integral over S? does not vanish, it defines a
non-trivial cohomology class. Indeed, % defines an integer cohomoly class
[F/2r], which characterizes the bundle. Notice that although we used a
connection to define this quantity, it finally depends only on the transition
functions, and therefore is a topological invariant of the bundle. It is known
as first Chern class of the bundle.

Another simple example of non-trivial bundle is obtained by considering a
U(1) gauge field configuration on T?, with a constant magnetic field; abusing
of language, this can be described by a gauge potential A = kzdy.

A final example, familiar from nonabelian 4d gauge theories, is the clas-
sification of topological sectors of gauge configurations by the value of

k:# [ wrnF (64)
known as the instanton number of the configuration.

All these topological invariants are simple examples of characteristic classes.
Let us generalize the U(1) case for a general manifold M. To do that, on each
U, we introduce the local form of the connection A,, such that on overlaps
UaNUg we have

Ag = Ag + dd(ap) (65)

Then F = dA, is globally defined, and satisfies dF' = 0, hence defines a

cohomology class [F]. We know show that his class is a topological invariant
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of the bundle. Namely, although to define it we have used a connection, the
final class depends only on the transition functions of the bundle ¢4, and
is independent of the particular connection chosen.

To show that, consider a different connection defined by A/, still with the

same transition functions
Ay = Al + dd(ag) (66)

From (65) and (66), it follows that A, — A;, = Ag — A} so the differences
are patch independent and define a global 1-form B. Then F — F' = dB
globally, which implies that they define the same cohomology class [F], as
we wanted to show.

More sophisticated tools can be used to show that [F/27] is in fact an

integer cohomology class, known as first Chern class of the U(1) bundle.

The generalization to principal G-bundles with arbitrary group is analo-
gous. One simply constructs polynomials in wedge products of the curvatures
of the connection, tracing in the Lie algebra indices. The resulting form is
closed and the corresponding cohomology class is a topological invariant of
the bundle. These are known as characteristic classes.

We now give some examples appearing often for SU(N) and SO(N).
Consider the closed 2k-form

Qoe = Y (F™ A...AF™)Str(t™ .. t™) (67)

mi,...,Mg

where Str denoted the symmetrized trace of the generators. This is usually
written Qg = tr F* (with wedge products implied). The corresponding
cohomology class is a topological invariant of the corresponding bundle. For

U(N) it is known as the k" Chern class, and has the generating function
ch(E) = tr (ef'/?™) (68)
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known as the Chern character. For SO(2N), € automatically vanishes
unless k is even k = 27; the cohomology class is in this case known as r*
Pontryagin class. The Pontryagin classes also appear often in a generating
function

o 1 9
A=1+ SR+ . (69)

known as A-roof genus.

Characteristic classes are very useful in characterizing the topology of

nontrivial bundles 3. Clearly much more can be said about bundles and
their characterization. However, this will be enough for our purposes and

applications.
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