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Chapter 1

Motivation

1.1 Standard Model and beyond

1.1.1 Our Model of Elementary Particles and Interac-
tions

Our description of particles and interactions treats strong-electroweak inter-
actions and gravitational interactions in a very different way.
• Electromagnetic, weak and strong interactions are described by a quan-

tum gauge field theory. Interactions are mediated by gauge vector bosons,
associated with the gauge group

SU(3)c × SU(2)W × U(1)Y (1.1)

While matter is described by left-handed Weyl fermions in the following
representation of the gauge group

3 [ (3, 2)1/6 + (3, 1)1/3 + (3, 1)−2/3 + QL , U , D

+ (1, 2)−1/2 + (1, 1)1 ] + 3(1, 1)0 E , L , νR (1.2)

where the subscript denotes U(1)Y charge (hypercharge), and where we have
also included right-handed neutrinos (although they have not been observed
experimentally).

An important property of these fermions is their chirality (this is at the
heart of parity violation in the Standard Model). There are no left-handed
Weyl fermions with conjugate quantum numbers (if there would be, we could

3
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rewrite the pair as a left-handed and a right-handed Weyl fermion, both with
equal quantum numbers; this is called a vector-like pair, and does not violate
parity, it is non-chiral).

Our description considers all these objects to be pointlike. This assump-
tion works as far as the model has been tested experimentally, i.e. up to
energies about 1 TeV.

In order to break the electroweak symmetry SU(2)W × U(1)Y down to
the U(1) of electromagnetism, the model contains a Higgs sector, given by a
complex scalar φ with quantum numbers

(2, 1)−1/2 (1.3)

The theory contains a scale MW , which is the scale of pontaneous breaking of
the symmetry 1. It is fixed by the vacuum expectation value < φ > acquired
by the scalar, as determined by a potential of the form

V (φ) = −m2 φ∗φ + λ (φ∗φ)2 (1.4)

The electroweak scale is then

MW '< φ >' m√
λ
' 102 GeV (1.5)

Chirality of the fermions forbid writing a Dirac mass term for them. The
only way for them to get a mass is via coupling to the Higgs multiplet via
Yukawa couplings schematically of the form

QL U φ ; QLDφ∗ ; LE φ (1.6)

so the scale of fermion masses is linked to the scale of electroweak symmetry
breaking.

This theory is well defined at the quantum mechanical level, it is unitary,
renormalizable (leaving the issue of ‘triviality’ of the Higgs sector aside),
etc...

• On the other hand, the gravitational interactions are described by
the classical theory of general relativity. Interactions are encoded in the

1To be fair, there is also a further scale in the model, the QCD scale around 1 GeV,
which is understood in terms of dimensional transmutation, i.e. it is the energy at which
the SU(3) coupling constant becomes strong.



1.1. STANDARD MODEL AND BEYOND 5

spacetime metric Gµν via the principle of diffeomorphism (or coordinate
reparametrization) invariance of the physics. This leads to an action of the
form

Sgrav = M 2
P

∫

X4

R
√
−Gd4x (1.7)

with a typical scale of

MP ' 1019 GeV (1.8)

Four-dimensional Einstein theory has been tested experimentally to be good
description of the gravitational interactions down to length scales of about
10−7 m.

Since the interaction contains an explicit dimensionful coupling, it is dif-
ficult to make sense of the theory at the quantum level. They theory is
non-renormalizable, it presents loss of unitarity at loop levels, it cannot be
quantized in the usual fashion, it is not well defined in the ultraviolet.

The modern viewpoint is that Einstein theory should be regarded as an
effective field theory, which is a good approximation at energies below MP (or
some other cutoff scale at which four-dimensional classical Einstein theory
ceases to be valid). There should exist an underlying, quantum mechanically
well-defined, theory which exists for all ranges of energy, and reduces to
classical Einstein at low energies, below the cutoff scale. Such a theory
would be called an ultraviolet completion of Einstein theory (which by itself
is ill-defined in the ultraviolet).

1.1.2 Theoretical questions raised by this description

There are many such questions, and have led to a great creative effort by the
high energy physics (and general relativity) communities. To be fair, most
of them have not been successfully answered, so the quest for solutions goes
on. These are some of these questions
• The description is completely schizophrenic! We would like to make

gravitational interactions consistent at the quantum mechanical level. Can
this really be done? and how?
• Are all interactions described together in a unified setup? Or do they

remain as intrinsecally different, up to arbitrary energies? Is there a mi-
croscopic quantum theory that underlies the gravitational and the Standard
Model gauge interactions? Is there a more modest description which at least
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φ φstuff
M   scaleP

~ M P
2 φ2

Figure 1.1: Quantum corrections to the Higgs mass due to Planck scale stuff.

unifies the gauge interactions of the Standard Model (leaving for the moment
gravity aside)?

• Why are there two different scales, MW and MP ? Why are there so
widely separated? Are they related in any way, and if so, which?

•Why MW , which is fixed by the mass of the Higgs scalar, is not modified
by quantum loops of stuff related to physics at the scale MP ? Power counting
would suggest that the natural value of these corrections is of order M 2

P ,
which would then push the electroweak scale up to the Planck scale.

• Are there other scales between MW and MP ? or is there just a big
desert in energies in between? (there are some suggestions of intermediate
masses, for instance from the see-saw mechanism for neutrino masses, which
points to new physics at an energy scale of 1012 GeV).

•Why the gauge sector is precisely as it is? Why three gauge factors, why
these fermion representations, why three families? How are these features
determined from an underlying microscopic theory that includes gravity?

• Are global symmetries of the Standard Model exact symmetries of the
underlying theory? Or just accidental symmetries? Is baryon number really
conserved? Why is the proton stable, and if not what new physics mediates
its decay?

• Why are there four dimensions? Is it true that there are just four
dimensions? Does this follow from any consistency condition of the theory
supposedly underlying gauge and gravitational interactions?

• ..., ..., ... ?
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1.1.3 Some proposals for physics beyond the Standard

Model

These and other similar questions lie at the origin of many of the ideas of
physics beyond the Standard Model. Let us review some of them (keeping
in mind that they do not exclude each other, and mixed scenarios are often
the most attractive). For a review along similar lines, see e.g. [1].

Grand Unification Theories (GUTs)

See for instance [2, 3].
In this setup the Standard Model gauge group is a low-energy remnant

of a larger gauge group. This group GGUT is usually taken to be simple
(contains only one factor) like SU(5), SO(10), or E6, and so unifies all low-
energy gauge interactions into a unique kind. The GUT group is broken
spontanously by a Higgs mechanism (different form that of the Standard
Model, of course) at a large scale MGUT , of about 1016-1017 GeV.

This idea leads to a partial explanation of the fermion family gauge quan-
tum numbers, since the different fermions are also unified into a smaller num-
ber of representations of GGUT . For SU(5) a Standard Model family fits into
a representation 10+5; for SO(10) it fit within an irreducible representation,
the 16.

A disadvantage is that the breaking of GGUT down to the Standard Model
group requires a complicated scalar Higgs sector. In minimal SU(5) theories,
the GUT-Higgs belongs to a 24-dimensional representation; SO(10) is even
more involved.

Additional interesting features of these theories are
• Extra gauge interactions in GGUT mediate processes of proton decay

(violate baryon number), which are suppressed by inverse powers of MGUT .
The rough proton lifetime in these models is around 1032 years, which is close
to the experimental lower bounds. In fact, some models like minimal SU(5)
are already experimentally ruled out because they predict a too fast proton
decay.
• If we assume no new physics between MW and MGUT (desert hypoth-

esis), the Standard Model gauge couplings run with scale towards a unified
value at a scale around 1016 GeV. This may suggest that the different low-
energy interactions are unified at high energies.

Besides these nice features, it is fair to say that grand unified theories do
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not address the fundamental problem of gravity at the quantum level, or the
relation between gravity and the other interactions.

Supersymmetry (susy)

See graduate course by A. Casas, also review like e.g. [4]
Supersymmetry is a global symmetry that relates bosonic and fermionic

degrees of freedom in a theory. Infinitesimal supersymmetry transformations
are associated so (super)generators (also called supercharges), which are op-
erators whose algebra is defined in terms of anticommutation (rather than
commutation) relations (these are the so-called superalgebras, and gener-
ate supergroups). The minimal supersymmetry in four dimensions (so-called
D = 4 N = 1 supersymmetry is generated by a set of such fermionic opera-
tors Qα, which transform as a left-handed Weyl spinor under the 4d Lorentz
group. The supersymmetry algebra is

{Qα, Qβ} = (σµ)αβ Pµ (1.9)

where σµ = (12, σ
i) are Pauli matrices, and Pµ is the four-momentum oper-

ator.
A simple realization of supersymmetry transformations is: consider a

four-dimensional Weyl fermion ψα and a complex scalar φ, and realize Qα

acting as

Qαφ = ψα

Qβψα = i(σµ)αβ∂µφ (1.10)

The algebra closes on these fields, so the (super)representation (also called
supermultiplet) contains a 4d Weyl fermion and a complex scalar. Such
multiplet is known as the chiral multiplet. Another popular multiplet of N =
1 susy) is the vector multiplet, which contains a four-dimensional massless
vector boson and a 4d Weyl fermion (the latter is often re-written as a 4d
Majorana fermion).

There exist superalgebras generated by more supercharges, they are called
extended supersymmetries. The N -extended supersymmetry is generated by
supercharges Qa

α with a = 1, . . . , N . Any supersymmetry with N > 1 is
inconsistent with chiral fermions (any multiplet contains fermions with both
chiralities, i.e. is vector-like), so such theories have limited phenomenological
applications and we will skip them here.
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+
φφ φφ

ψ

= 0

ϕ

Figure 1.2: Fermionic and bosonic loop corrections to the higgs mass cancel in a
supersymmetric theory.

The reason why susy may be of phenomenological interest is that it relates
scalars (like the Higgs) with chiral fermions, and the symmetry requires them
to have equal mass. The mass of a chiral fermion is forced to be zero by
chirality, so the mass of a scalar like the Higgs is protected against getting
large O(MP ) corrections, so supersymmetry stabilizes MW against MP .

Diagrammatically, any corrections to the Higgs mass due to fermions
in the theory are cancelled against corrections to the Higgs mass due to
their boson superpartners. There is a non-renormalization theorem of certain
couplings in the lagrangian (like scalar masses) which guarantees this to any
order in perturbation theory.

SUSY commutes with gauge symmetries. So in trying to build a super-
symmetric version of the standard model the simplest possibility is to add
superpartners to all observed particles: fermion superpartners (gauginos) for
gauge bosons to promote them to vector multiplets; boson superpartners
(squarks and sleptons) for the quark and leptons, to promote them to chi-
ral multiplets; and fermion superpartner (higgssino) for the scalar Higgs (for
technical reasons, like anomaly cancellation, a second Higgs chiral multiplet
must be included). Interactions are dictated by gauge symmetry and super-
symmetry. Such model is known as the minimal supersymmetric standard
model (MSSM).

However, superpartners have not been observed in Nature, so it is clear
that they are not mass-degenerate with usual matter. Supersymmetry is not
an exact symmetry of Nature and must be broken. The most successful way
to do so, without spoiling the absence of quadratic corrections to the Higgs
mass is explicit breaking. That is, to introduce explicitly non-supersymmetric
terms of a certain kind (so-called soft terms) in the MSSM lagrangian. These
terms render superpartners more massive than standard model fields. Can-
cellation of loop contributions to the Higgs mass is not exact, but is not



10 CHAPTER 1. MOTIVATION

quadratically dependent on MP , only logarithmically. In order to retain 102

GeV as a natural scale, superpartner mass scale (supersymmetry breaking
scale in the MSSM) should be around 1 TeV or so.

The MSSM is a theoretically well motivated proposal for physics beyond
the Standard Model, it is concrete enough and experimentally accessible. It
addresses the question of the relation between MW and MP . On the other
hand, it leaves many others of our questions unanswered.

Supergravity (sugra)

See for instance [5].
It is natural to consider theories where supersymmetry is realized as a

local gauge symmetry. Given the susy algebra (1.10), this means that the
four-momentum operator Pµ, which generates global translations, is also pro-
moted to a gauge generator. Local translations are equivalent to coordinate
reparametrization (or diffeomorphism) invariance

xµ → xµ + ξ(x) (1.11)

so the resulting theories are generalizations of general relativity, and hence
contain gravity. They are called supergravities.

A very important 4d N = 1 supermultiplet is the gravity multiplet, which
contains a spin-2 graviton Gµν and its spin-3/2 superpartner (gravitino) ψµα
(also called Rarita-Schwinger field) . Other multiplets are like in global susy,
the chiral and vector multiplets. The sugra lagrangian is basically obtained
from the global susy one by adding the Einstein term for the graviton, a
kinetic term for the gravitino, and coupling the graviton to the susy theory
stress-enery tensor,and coupling the gravitino to the susy theory supercurrent
(current associated to the supersymmetry).

In applications to phenomenology, a nice feature of supergravity is that
spontaneous breaking of local supersymmetry becomes, in the limit of en-
ergies much below MP , explicit breaking of global supersymmetry by soft
terms. A popular scenario is to construct models with a MSSM sector (vis-
ible sector), a second sector (hidden sector) decoupled from the MSSM (ex-
cept by gravitational interactions) and which breaks local supersymmetry at
a scale of Mhidden = 1012 GeV. Transmission of supersymmetry breaking to
the visible sector is manifest at a lower scale Mhidden/MP of around 1 TeV,
i.e. the right superpartner mass scale.
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Supergravity is a nice and inspiring idea, which attempts to incorporate
gravity. However, it does not make gravity consistent at the quantum level,
supergravity is neither finite nor renormalizable, so it does not provide an
ultraviolet completion of Einstein theory.

Extra dimensions

There are many scenarios which propose that spacetime has more than four
dimensions, the addibional ones being unobservable because they are com-
pact and of very small size. We briefly mention two ideas, which differ by
whether the usual Standard Model matter is able to propagate in the new
dimensions or not. Again, mixed scenarios are often very popular and inter-
esting.
• Kaluza-Klein idea
Kaluza-Klein theories propose the appearance of four-dimensional gauge

bosons as components of the metric tensor in a higher-dimensional spacetime.
The prototypical example is provided by considering a 5d spacetime with
topology M4 × S1 and endowed with a 5d metric GMN , M,N = 1, . . . , 5.
From the viewpoint of the low-energy four-dimensional theory (at energies
much lower than the compactification scale Mc = 1/R, with R the circle
radius) he 5d metric decomposes as

GMN → Gµν µ, ν = 0, . . . , 3 Gµν 4d graviton

Gµ4 Aµ 4d gauge boson

G44 φ 4d scalar (modulus) (1.12)

We obtain a 4d metric tensor, a 4d massless vector boson and a 4d massless
scalar. Moreover, diffeomorphism invariance in the fifth dimension implies
gauge invariance of the interactions of the 4d vector boson (so it is a U(1)
gauge boson).

The idea generalizes to d extra dimensions. Take (4+d)-dimensional
spacetime of the form M4 × Xd. The metric in (4 + d) dimensions gives
rise to a 4d metric and to gauge bosons associated to a gauge group which
is the isometry group of Xd. Specifically, let kMa be a set of Killing vectors
in Xd; the 4d gauge bosons are obtained as Aa

µ = GµNk
N
a .

The Kaluza-Klein idea is beautiful, but it is difficult to use for phe-
nomenology. It is not easy to construct manifolds with isometry group that
of the Standard Model. Moreover, a generic difficulty first pointed out by
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brane

GMN

x4

xµ

bulk

Figure 1.3: Schematic picture of the brane-world idea.

Witten (see [16]) is how to obtain chiral 4d fermions in this setup. For this
to be possible one needs to include elementary gauge fields already in the
higher-dimensional theory, so much of the beauty of the idea is lost.

On top of that, although the idea involves gravity, it still suffers from
quantum inconsistencies, so it does not provide an ultraviolet completion of
Einstein theory, consistent at the quantum level.
• Brane-world idea
This is a recent proposal (see e.g. [106]), building on the idea of ex-

tra dimensions, but with an interesting new ingredient. It is based on the
observation that it is conceivable that extra dimensions exist, but that the
Standard Model fields do not propagate on them, and that only gravity does.
In modern jargon, the Standard Model is said to live on a ‘brane’ (general-
ization of a membrane embedded in a higher dimensional spacetime), while
gravity propagates in the ‘bulk’ of spacetime.

In such a scenario, Standard Model physics is four-dimensional up to en-
ergies around the TeV, even if the extra dimensions have sizes larger than
(TeV)−1. The best experiments able to probe the extra dimensions are mea-
surements of deviations from four-dimensional Newton’s law in Cavendish
experiments, to put a bound at the length scale at which gravity starts being
five- or higher-dimensional. The present bound implies that extra dimensions
should be smaller than 0.1 mm. This energy scale is surprisingly small, still
we do not detect these extra dimensions.

This scenario allows for an alternative interpretation of the four-dimensional
Planck scale. Starting with a fundamental Planck scale Md in the (4 + d)
dimensional theory, the 4d Planck scale is

M 2
P = (Md)

d+2VXd
(1.13)
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where VXd
is the volume of the internal manifold. The scenario allows for a

low value of the fundamental (4 + d) Planck scale, keeping a large 4d MP by
taking a large volume compactification. In usual Kaluza-Klein, such large
volumes would imply light Kaluza-Klein excitation of Standard Model fields,
in conflict with experiment. In the brane-world scenario, such fields do not
propagate in the bulk so they do not have Kaluza-Klein replicas. In certain
models, it is possible to set M4+d ' TeV, obtaining MP ' 1019 GeV as a
derived quantity, due to a choice of large volume for the internal manifold.
Is is therefore a possible alternative explanation for the hierarchy between
MW and MP .

Again, it is fair to emphasize that this setup does not provide a ultraviolet
completion of Einstain gravity, gravity is treated classically. Moreover, it is
not clear to start with that a quantum field theory on a slice of full spacetime
can be consistently defined at the quantum level.

1.1.4 String theory as a theory beyond the Standard
Model

String theory is also a proposal for physics beyond the Standard Model. It
differs from the above in that it addresses precisely the toughest of all issues:
it provides a quantum mechanically well-defined theory underlying gauge
and gravitational interactions. Hence it provides an ultraviolet completion
of Einstein theory, which is finite order by order in perturbation theory.
Einstein theory is recovered as a low-energy effective theory for energies below
a typical scale, the string scale Ms. That is the beautiful feature of string
theory.

Moreover, string theory incorporates gauge interactions, and is able to
lead to four-dimensional theories with chiral fermions. In addition, string
theory incorporates many of the ingredients of the previous proposals be-
yond the standard model, now embedded in a consistent and well-defined
framework, and leading to physical theories very similar to the Standard
Model at energies below a typical scale of the theory (the string scale Ms).

Finally, string theory contains physical phenomena which are new and
quite different from expectations from other proposals beyond the standard
model. As a theory of quantum gravity, it has the potential to give us some
insight into questions like the nature of spacetime, the black hole information
paradox. As a theory underlying gauge interactions, it has the potential
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to explain what is the origin of the number of families in theories like the
Standard Model, how do chiral fermions arise, etc...

String theory is an extremely rich structure, from the mathematical, the-
oretical and phenomenological viewpoints. It is certainly worth being studied
in a graduate course in high energy physics!



Chapter 2

Overview of string theory in
perturbation theory

To be honest, we still do not have a complete description of string theory at
the non-perturbative level (this will become clear in coming lectures). Still,
the perturbative picture is very complete, and is the best starting point to
study the theory.

2.1 Basic ideas

2.1.1 What are strings?

String theory proposes that elementary particles are not pointlike, but rather
they are small 1-dimensional extended objects (strings), of typical size Ls =
1/Ms. They can be open or closed strings, as shown in figure 2.1. At energies
well below the string scaleMs, there is not enough resolution to see the spatial
extension of the objects, so they look like point particles, and usual point
particle physics should be recovered as an effective description.

Experimentally, our description of elementary particles as pointlike works
nicely up to energies or order 1 TeV, so Ms > TeV. In many string models,
however, the string scale turns out to be related to the 4d Planck scale, so
we have Ms ' 1018 GeV. This corresponds to string of typical size of 10−33

cm, really tiny.

Strings can vibrate. Different oscillation modes of a unique kind of un-
derlying object, the string, are observed as different particles, with differ-

15
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E << MS

closed string open string point particle

Figure 2.1: According to string theory, elementary particles are 1-dimensional
extended objects (strings).

 0 

 0 
µα

vacuum

µαν
 0 

Aµ

ϕ

1st excited

2nd excited α

scalar

vector

Gµν tensor

Etc...

Figure 2.2: Different oscillation modes of unique type of string correspond to
different kinds of particles, with e.g. different Lorentz quantum numbers.

ent Lorentz (and gauge and global) symmetry quantum numbers. This is
schematically shown in figure 2.2 for closed string states.

The mass of the corresponding particle increases with the number of
oscillator modes that we are exciting. So the vibration modes of the string
give rise to an infinite tower of particles, with masses increasing in steps of
order Ms. Since Ms is so large, only the particles with masses of order zero
(to leading order) can correspond to the observed ones.

Upon explicit computation of this spectrum of particles, the massless
sector always contains a 2-index symmetric tensor Gµν. Later on we will see
that this field behaves as a graviton, so string theories automatically contain
gravity. But before we can explain interactions in string theory we need some
further ingredients.
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Σ
Σ

σt
σt

E << Ms

closed string
worldsheet worldsheet

open string

t

point particle
worldline

Figure 2.3: Worldsheets for closed and open strings. They reduce to worldlines
in the point particle (low energies) limit.

2.1.2 The worldsheet

As a string evolves in time, it sweeps out a two-dimensional surface in space-
time Σ, known as the worldsheet, and which is the analog of the worldline of
a point particle in spacetime. Closed string correspond to worldsheets with
no boundary, while open string sweep out worldsheets with boundaries. Any
point in the worldsheet is labeled by two coordinates, t the ‘time’ coordi-
nate just as for the point particle worldline, and σ, which parametrizes the
extended spatial dimension of the string at fixed t.

A classical string configuration in d-dimensional Minkowski space Md is
given by a set of functions Xµ(σ, t) with µ = 0, . . . , d− 1, which specify the
coordinates in Md of the point corresponding to the string worldsheet point
(σ, t).

This can be expressed by saying that the functions Xµ(σ, t) provide a
map from a two-dimensional surface (the abstract worldsheet), parametrized
by (σ, t) to a d-dimensional space Md (spacetime, also known as target space
of the embedding functions).

Xµ : Σ → Md

(σ, t) → Xµ(σ, t) (2.1)

This is pictorially shown in figure 2.4.
A natural definition for the classical action for a string configuration

is given by the total area spanned by the worldsheet (in analogy with the



18CHAPTER 2. OVERVIEW OF STRING THEORY IN PERTURBATION THEORY

Σ M d
X

µ

Figure 2.4: The functions Xµ(σ, t) define a map, an embedding, of a 2-dimensional
surface into the target space Md.

worldline interval length as action for a point particle).

SNG = −T
∫

Σ
dA (2.2)

where T is the string tension, related to Ms by T = M2
s . One also often

introduces the quantity α′, with dimensions of length squared, defined by
T = M2

s = 1
2πα′ .

In terms of the embedding functions Xµ(σ, t), the action (2.2) can be
written as

SNG = −T
∫

Σ
( ∂τX

µ ∂τXµ − ∂σX
µ ∂σXµ )1/2 dσ dt (2.3)

This is the so-called Nambu-Goto action. It is difficult to quantize, so quan-
tization is simpler if carried out starting with a different, but classically
equivalent action, known as the Polyakov action

SPolyakov = −T/2
∫

Σ

√−g gαβ(σ, t) ∂αXµ ∂βX
νηµν dσ dt (2.4)

where we have introduced an additional function g(σ, t). It does not have
interpretation as an embedding. The most geometrical interpretation it re-
ceives is that it is a metric in the abstract worldsheet Σ. At this point it is
useful to imagine the worldsheet as an abstract two-dimensional world which
is embedded in physical spacetime Md via the functions Xµ. But which to
some extent makes sense by itself.
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= + + + ...

Figure 2.5: The genus expansion for closed string theories .

The important fact we would like to emphasize is that this looks like
the action for a two-dimensional field theory coupled to two-dimensional
gravity. Many of the wonderful properties of string theory arise from subtle
relation between the ‘physics’ of this two-dimensional world and the physics
of spacetime.

The two-dimensional field theory has a lot of gauge and global symme-
tries, which will be studied later on. For the moment let us simply say that
after fixing the gauge the 2d action becomes

SP [X(σ, t)] = −T/2
∫

Σ
∂αX

i ∂αX
i, i = 2, . . . , d− 1 (2.5)

It is just a two-dimensional quantum field theory of d − 2 free scalar fields.
This is easy to quantize, and gives just a bunch of decoupled harmonic oscilla-
tors, which are the string oscillation modes mentioned before. It is important
to notice that the fact that the worldsheet theory is a free theory does not

imply that there are no interactions between strings in spacetime. There are
interactions, as we discuss in the following.

Before concluding, let us emphasize a crucial property of the worldsheet
field theory, its conformal invariance. This property is at the heart of the
finiteness of string theory, as we discuss below.

2.1.3 String interactions

A nice discussion is in section 3.1. of [55]

The quantum amplitudes between string configurations are obtained by
performing a path integral, namely summing over all possible worldsheets
which interpolate between the configurations, see figures 2.5, 2.6.
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Figure 2.6: The genus expansion for theories with open strings. Notice that one
must include handles and boundaries .

The sum organizes into a sum over worldsheet topologies, with increasing
number of handles and of boundaries (for theories with open strings) This
is the so-called genus expansion (the genus of a closed Riemann surface is
the number of handles. In general it is more useful to classify 2d surfaces
(possibly with boundaries) by their Euler number, defined by ξ = 2−2g−nb,
with g and nb the numbers of handles and boundaries, respectively).

Formally, the amplitude is given by

〈b|evolution|a〉 =
∑

worldsheets

∫
[DX] e−SP [X]Oa[X]Ob[X] (2.6)

where Oi[X] are the so-called vertex operators, which put in the information
about the incoming and outgoing state. They are very important in tring
theory and conformal field theory but we will not discuss them much in these
lectures.

Notice that the quantity (2.6) is basically a quantum correlation function
between two operators in the 2d field theory. However, notice the striking
fact that (2.6) is in fact a sum of such correlators for 2d field theories living
in 2d spaces with different topologies. Certainly it is a strange prescription,
a strange quantity, in the language of 2d field theory. However, it is the
prescription that arises naturally from the spacetime point of view.

The basic string interaction processes and their strengths are shown in
figure 2.7. It is important to notice that these vertices are delocalized in a
spacetime region of typical size Ls. At low energies E �Ms they reduce to
usual point particle interaction vertices.

There is also one vertex, shown in figure 2.8. It couples two open strings
with one closed string. It is important to notice that the process that turns
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Figure 2.7: Basic interaction vertices in string theory.

Figure 2.8: String vertex coupling open strings to closed strings. It implies that
theories with open strings necessarily contain closed strings.

the closed strings into a closed one corresponds locally on the worldsheet
exactly to joining two open string endpoints (twice). This coupling cannot
be forbidden in a theory of interacting open strings (since this process also
mediates the coupling of three open strings), so it implies that any theory
of interacting open strings necessarily contains closed strings. (The reverse
statement is not valid, it is possible to have interacting theories of closed
strings without open strings).

A fundamental property of string theory is that the amplitudes of the
theory are finite order by order in perturbation theory. This, along with
other nice properties of string interactions (like unitarity, etc) implies that
string theory provides a theory which is consistent at the quantum level, it
is well defined in the ultraviolet. There are several ways to understand why
string theory if free from the ultraviolet divergences of quantum field theory:

a) In quantum field theory, ultraviolet divergences occur when two in-
teraction vertices coincide at the same point in spacetime. In string theory,
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Figure 2.9: Different ultraviolet behaviours in quantum field theory and in string
theory. When high energy modes exchanged in the loop reach energies of order
Ms, long strings start being exchanged and dominate the amplitude. So at those
energies the behaviour differs from the quantum field theory divergence, which is
effectively cut-off by Ms. The ultra-high energy regime corresponds to exchange
of very long strings, which can be interpreted as the infrared regime of a ‘dual
channel diagram’. .

vertices are delocalized in a region of size Ls, so Ls acts as a cutoff for the
would-be divergences.

b) As is pictorially shown in figure 2.9, going to very high energies in some
loop, the ultraviolet behaviour starts differing from the quantum field theory
behaviour as soon as energies of order Ms are reached. This is so because
longer and longer string states start being exchanged, and this leads to a
limit which corresponds not to a ultraviolet divergence, but to an infrared
limit in a dual channel.

c) More formally, using conformal invariance on the worldsheet, any limit
in which a string diagram contains coincident or very close interaction vertices
can be mapped to a diagram with well-separated vertices and an infinitely
long dual channel. This is a formalization of the above pictorial argument.

Using the above rules for amplitudes, it is possible to compute interactions
between the massless oscillation modes of string theory. These interactions
turn out to be invariant under gauge and diffeomorphism transformations for
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spacetime fields. This means that the massless 2-index tensor Gµν contains
only two physical polarization states, and that it indeed interacts as a gravi-
ton. Also, massless vector bosons Aµ have only two physical polarizations,
and interact exactly as gauge bosons. We will not discuss these issues in the
present lectures, but a good description can be found in [9] or [55].

Hence, string theory provides a unified description of gauge and gravita-
tional interactions, which is consistent at the quantum level. It provides a
unified ultraviolet completion for these theories. This is why we love string
theory!

2.1.4 Critical dimension

Conformal invariance in the 2d worldsheet theory is a crucial property for
the consistency of the theory. However, this symmetry of the classical 2d
field theory on the worldsheet may in principle not be preserved in the 2d
quantum field theory, it may suffer what is called an anomaly (a classical
symmetry which is not preserved at the quantum level), see discussion in
chapter 3 of [55].

As is usual in quantum field theories with potential anomalies, the anomaly
disappear for very specific choices of the field content of the theory. In the
case of the conformal anomaly of the 2d worldsheet field theory, the field
content is given by d bosonic fields, the fields Xµ(σ, t). In order to cancel the
conformal anomaly, it is possible to show that the number of fields in the 2d
theory must be 26 bosonic fields, so this is the number of Xµ fields that we
need to consider to have a consistent string theory.

Notice that this is very striking, because the number of fields Xµ is pre-
cisely the number of spacetime dimensions where the string propagates. The
self-consistency of the theory forces us to admit that the spacetime for this
string theory has 26 dimensions. This is the first situation where we see that
properties of spacetime are constrained from properties of the worldsheet the-
ory. In a sense, in string perturbation theory the worldsheet theory is more
fundamental than physical spacetime, the latter being a derived concept.

Finally, let us point out that there exist other string theories where the
worldsheet theory contains other fields which are not just bosons (superstring
theories, to be studied later on). In those theories the anomaly is different
and the number of spacetime dimensions is fixed to be 10.
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2.1.5 Overview of closed bosonic string theory

In this section we review the low-lying states of the bosonic string theory
introduced above (defined by 26 bosonic degrees of freedom in the worldsheet,
with Polyakov action), and their interactions.

The lightest states in the theory are
- the string goundstate, which is a spacetime scalar field T (X), with

tachyonic mass α′M2 = −2. This tachyon indicates that bosonic string
theory is unstable, it is sitting at the top of some potential. The theory will
tend to generate a vacuum expectation value for this tachyon field and roll
down the slope of the potential. It is not know whether there is a minimum
for this potential or not; if there is, it is not know what kind of theory
corresponds to the configuration at the potential minimum. The theories
we will center on in later lectures, superstrings, do not have such tachyonic
fields, so they are under better control.

- a two-index tensor field, which can be decomposed in its symmetric
(traceless) part, its antisymmetric part, and its trace. All these fields are
massless, and correspond to a 26d graviton GMN(X), a 26d 2-form BMN(X)
and a 26d massless scalar φ(X), known as the dilaton. These fields are also
present in other string theories.

Forgetting the tachyon for the moment, it is possible to compute scatter-
ing amplitudes. It is possible to define a spacetime action for these fields,
whose tree-level amplitudes reproduce the string theory amplitudes in the
low energy limit E � Ms, usually denoted point particle limit or α′ → 0.
This action should therefore be regarded as an effective action for the dy-
namics of the theory at energies below Ms. Clearly, the theory has a cutoff
Ms where the effective theory ceases to be a good approximation. At that
scale, full-fledged string theory takes over and softens the UV behaviour of
the effective field theory.

The spacetime effective theory for the string massless modes is

Seff. =
1

2k2
0

∫
d26X (−G)1/2 e−2φ {R − 1

12
HMNP H

MNP + 4∂Mφ∂
Mφ } +O(α′)(2.7)

where M,N, P = 0, . . . , 25, and HMNP = ∂[MBNP ]. Notice that very remark-
ably this effective action is invariant under coordinate transformations in 26d,
and under the gauge invariance (with 1-form gauge parameter ΛM(X))

BMN(X)→ BMN (X) + ∂[MΛN ](X) (2.8)
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(which in the language of differential forms reads B → B + dΛ).
Notice that the coupling constant of the theory k0 can be changed if the

scalar field φ acquires a vacuum expectation value φ0. Hence, the spacetime
string coupling strength (the gc in our interaction vertices) is not an arbi-
trary external parameter, but it is a vacuum expection value for a dynamical
spacetime field of the theory. In many other situations, string models con-
tain this kind of ‘parameters’ which are actually not external parameters,
but vevs for dynamical fields of the theory. This is the familiar statement
that string theory does not contain external dimensionless parameters.

These fields, like the dilaton and others, are known as moduli, and typ-
ically have no potential in their effective action (so they can take any vev,
in principle). This also leads to phenomenological problems, because we do
not observe such kind of massless scalars in the real world, whereas they are
ubiquitous in string theory.

The above action is said to be written in the string frame (which means
that the field variables we are using are those naturally associated with the
vertex operators one constructs from the 2d conformal field theory viewpoint.
From the specetime viewpoint, it is most convenient to redefine the fields as

G̃ = eφ0−φ ; φ̃ = φ− φ0 (2.9)

to obtain the action

Seff. =
1

2k2

∫
d26X (−G̃)1/2 { R̃ +

1

12
e−φ̃/12 HMNP H

MNP − 1

6
∂M φ̃∂

M φ̃ } +O(α′)(2.10)

with indices raised by G̃. This action is said to be written in the Einstein
frame, because it contains the gravity action in the canoncial Einstein form.
Notice that the change between frames is just a relabeling of fields, not a
coordinate change or anything like that.

So we have obtained an effective action which reduces basically to Einstein
gravity (plus some additional fields). The 26d Planck mass is given by M 24

26d =
M24

s /g
2
c . This effective theory is not renormalizable, and is valid only up

to energies Ms, which is the physical cutoff of the effective theory; there is
however an underlying theory which is well defined at the quantum level, valid
at all energies (UV finite) and which reduces to the effective theory below
Ms. String theory has succeeded in providing a consistent UV completion of
Einstein theory.

It is also important to point out that this version of quantum gravity
is also consistent with gauge invariance, for instance with the gauge invari-
ance of the 2-form fields. Other string theories (with open strings, or some
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superstrings) also contain vector gauge bosons, with effective action given
by Yang-Mills. So the theory contains gauge and gravitational interactions
consistently at the quantum level.

Let us conclude by mentioning some of the not-so-nice features of the
theory at hand.

- First, it lives in 26 dimensions. We will solve this issue in subsequent
lectures by the process known as compactifications

- The theory does not contain fermions. This will be solved by introducing
a more interesting kind of string theory (by modifying the worldsheet field
content), the superstrings. These theories still live in 10 dimensions so they
need to be compactified as well

- The theory does not contatin non-abelian vector gauge bosons. Such
gauge bosons are however present in some superstring theories (heterotic and
type I, and in type II theories in the presence of topological defects).

- Other questions which remain unsolved (like supersymmetry and super-
symmetry breaking, or the moduli and vacuum degeneracy problems) will
also appear along the way.

One issue that can be addressed at this point is to obtain four-dimensional
physics (at low energies) from a theory originally with more dimensions. The
standard technique to do so is known as compactification, and can be applied
not only to reduce the closed bosonic string theory to four-dimensions, but
also to other more interesting string theories. For this reason, it is interesting
to study compactification right now. However, before that, we need to take
a small detour and learn how to formulate string theory in spacetimes more
complicated than Minkowski space.

2.1.6 String theory in curved spaces

See for instance sect. 3.7 in [55].
We have obtained an effective action for the low-lying modes of string

theory. In principle, configurations of these fields which satisfy the corre-
sponding (classical) equations of motion should correspond to classical back-
grounds where strings can propagate.

However, the worldsheet description we provided is only valid when the
background is trivial (26d Minkowski space). It is a natural question to
ask how the worldsheet theory is modified so that it describes propagation
of a string in a spacetime with non-trivial metric GMN(X), and non-trivial
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background for the two-index antisymmetric tensor field BMN(X) and the
dilaton φ.

The effect of the metric is relatively simple: The string action is still the
worldsheet area, now computed using the new metric in spacetime. Using
the Polyakov version of the worldsheet action, eq (9.1) generalizes to

S G
P [X(σ, t), g(σ, t)] =

1

4πα′

∫

Σ
dσ dt

√−gGMN [X(σ, t]] gα,β ∂αX
M(σ, t) ∂βX

N(σ, t)(2.11)

Where GMN(X) is a function(al) of X(σ, t). This action is also known as
non-linear sigma model, for historical reasons not to be discussed here.

One may wonder about the double role played that the spacetime graviton
in string theory. On one hand, we have claimed that the graviton arises as one
of the states in the string spectrum in flat space. On the other, a background
metric, made out of gravitons, appears explicitly in the worldsheet action of a
string propagating in curved space. (This issue is related to the discussion on
how to split a field configuration as a background plus a fluctuation around
it.)

This dicotomy can be understood in detail for metrics which are small
perturbations of flat space metric

GMN = ηMN + δGMN (2.12)

Replacing this into the worldsheet action (2.11), we obtain an expansion
around the flat space action. In a path integral, expanding the exponential as
well one gets that amplitudes in curved space can be regarded as amplitudes
in flat space with corrections due to graviton insertions

∫
[DX] e−S

G
P =

∫
[DX] e−S

η
P +

∫
[DX] e−S

η
P OG[X ] +

∫
[DX] e−S

η
P OG[X ]OG [X ] + . . . (2.13)

where OG[X ] is the vertex operator for the graviton, as a state in the string
spectrum. Recalling that a path integral with a vertex operator insertion
corresponds to addint an external leg, the situation is pictorially shown in
figure 2.10

Even for metrics which cannot be regarded as deformations of flat space
(for instance, if the corresponding manifolds are topologically different from
flat space), then (2.11) is the natural prescription.
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Figure 2.10: Amplitudes in curved space can be regarded as a resummation of
amplitudes of amplitudes in flat space, with increasing number of graviton inser-
tions. Hence the curved background can be regarded as built out of gravitons, in
quite an explicit way.

Since there are also other massless fields in the spectrum of the string, it is
natural to couple them to the worldsheet, so as to obtain a worldsheet action
for strings propagating on non-trivial backgrounds. The resulting action is

S G
P [X(σ, t), g(σ, t)] = 1

4πα′

∫
Σ dσ dt

√−g [GMN [X(σ, t] gαβ ∂αX
M(σ, t) ∂βX

N(σ, t) +

+BMN [X(σ, t]] εα,β ∂αX
M(σ, t) ∂βX

N(σ, t) + α′R[g]φ ](2.14)

It satisfies the criterion that for backgrounds near the trivial one it ex-
pands as resummation over insertions of the corresponding vertex operators.
Moreover, the different terms have a nice interpretation also in the form
(2.14).
• We have already explained that the piece depending on GMN is simply

the area of the worldsheet as measured with the curved spacetime metric.
That is, the natural generalization of the Nambu-Goto idea.
• The term that depends on BMN is exactly the result of interpreting

the two-index tensor as a 2-form B2 = BMNdX
M ∧ dXN in spacetime, and

integrating it over the 2-dimensional surface given by the world-sheet. In the
language of differential forms

SB =
1

4πα′

∫

Σ
B2 (2.15)

Notice that the term is purely topological in spacetime, it does not depend
on the spacetime metric.

The physical interpretation of this term is that strings are charged objects
with respect to B2, when the latter is regarded as a gauge potential (recall
the gauge invariance B2 → B2+dΛ). It is the analog of the minimal coupling
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of a point particle to a vector gauge potential A1, given by integrating A1

over the particle worldline).

• The term that depends on φ is very special. In principle it corresponds
to an Einstein term for the 2-dimensional worldsheet metric gαβ(σ, t). How-
ever, 2d gravity is very special, is almost topological. This means that in 2
dimensions, the integral of the curvature scalar over a surface is, by Gauss
theorem, just a number, determined by the topology of the surface. This
number is simply the Euler number of the surface, given by

ξ = 2− 2g − nb (2.16)

where g is the number of handles and nb is the number of boundaries.

Insertion of this term in an amplitude corresponds exactly to weighting it
by a factor e−φξ. It is possible to check that the power of e−2φ appearing in
the amplitude for a given diagram (worldsheet topology) is exactly the same
power as for the closed string coupling gc (in theories with open strings, the
same is true for powers of e−φ and of the open string coupling go (recall
gc = g2

o). This is an alternative way of rediscovering that the vev for the
dilaton plays the role of the string coupling constant.

Again we see that string theory does not contain external adimensional
parameters. All parameters are in fact vevs for dynamical fields.

It is important to realize that in the presence of non-trivial backgrounds
the worldsheet action, regarded as a 2d field theory, is no longer a free field
theory. From this viewpoint, it is natural to study it in perturbation theory
around the free theory. The expansion parameter is α′/R2, where R is the
typical length scale of variation of any spacetime field, so this is known as
the α′ expansion.

It is important to realize that string theory in a general background has
therefore a double expansion. First, there is the loop expansion in the string
coupling constant, which corresponds to the genus expansion summing over
worldsheet topologies. Second, for any given worldsheet topology, the com-
putation of the path integral over the (interacting) 2d field theory is done as
a loop expansion in the 2d world, the α′ expansion.

Both expansion are typically very involved, and most results are known
at one loop in either expansion. The issue of the α′ expansion makes it
very difficult to use string theory in regimes where very large curvatures of
spacetime are present, like black hole or big-bang singularities.
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This is a bit unfortunate, because α′ mainly encode effects which encode
the fact that the fundamental object in string theory is an extended object,
rather than a point particle. For instance, the geometry seen by string theory,
at scales around Ls, is different from the geometry a point particle would see.
This new notion of geometry (which is still vague in many formal respects)
is called stringy geometry (or quantum geometry, by B. Greene, because
it corresponds to taking into account loops in α′, in the 2d quantum field
theory).

Happily, there still exist some simple enough situations where α′ effects
are tractable, and can be seen to be spectacular. For instance, the fact the
complete equivalence of string theory on two different spacetime geometries,
once stringy effects are taken into account (T-duality).

We conclude with an important issue. We have emphasized the impor-
tance of conformal invariance of the 2d worldsheet field theory in order to
have a consistent string theory (with finite amplitudes, etc). Therefore, the
interacting 2d field theory given by (2.14) should correspond to a conformal
field theory. In general, this can be checked only order by order in the α′

expansion, and in practice the results are known at leading order (one loop
in α′). In perturbation theory in the 2d field theory, conformal invariance
means that the (one-loop in α′ beta functions for the coupling constants in
the 2d field theory lagrangian) vanish.

Notice that in a sense, the background fields play the role of these cou-
pling constants. The condition that their beta function equals zero amounts
to the constraint that the background fields obey some differential equation.
The amazing thing is that these differential equations are exactly the equa-
tions of motion that one obtains from the spacetime effective action for the
spacetime fields (6.13). That is, string propagation is consistent (2d action
is conformal field theory) exactly in background which obey the equations
of motion from the spacetime effective action (derived from scattering am-
plitudes, etc, i.e. from a different method). I regard this as an amazing
self-consistency property of string theory.

It should be pointed out that these statements remain valid for string
theories beyond the closed bosonic theory we are studying for the moment.

A final comment concerns an alternative approach to study string the-
ory beyond flat space. A whole lot is known about two-dimensional field
theory which are exactly conformal [10]. Some of them can be solved ex-
actly, namely one can give expression for any 2d correlator, exactly i.e. to
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all orders in the 2d loop expansion. One can then imagine using conformal
field theories of this kind (so-called exactly solvable conformal field theories)
to describe the string worldsheet. The question is then to identify what is
the background where the string is propagating. In several cases this can
be done and corresponds to very exotic possibilities, for instance Witten’s
black hole, compact curves spaces with very small size (or order the string
length, etc. The importance of these models is that by construction all α′

effects are included. Another motivation is that in this language it is clear
that spacetime is in a sense a derived concept in string theory, and that the
worldsheet theory is more fundamental (this view was dominant before ’95,
and is perhaps slightly changed nowadays; still it has a point).

2.1.7 Compactification

In this section we study a special and very important class of backgrounds,
which lead, in the low-energy limit, to effective theories with smaller number
of dimensions than the original one. We center on constructing models which
produce four-dimensional physics, of course (although people often study e.g.
six-dimensional models, etc).

The idea is to consider string propagation in a spacetime of the form

X26 = M4 ×Xcomp. (2.17)

where M4 is 4d Minkowski and Xcomp is a compact 22-dimensional manifold
(with Euclidean signature), called the compactification manifold, or internal
space.

The recipe to write the worldsheet action is as above. In general, it
corresponds to a nonlinear sigma model, an interacting theory, and we can
study it only in the α′ expansion (and often at leading order). From the
spacetime viewpoint, this means that we study the point particle limit, we
use the effective field theory (6.13), which is basically 26d Einstein theory
(plus other fields in this background). This approximation is good as long
as the typical size of the compactification manifold is larger than the string
scale. In this regime, our theory looks a standard Kaluza-Klein theory.

In very special cases (mainly when the compactification manifold is a
torus) the sigma model reduces to a free field theory, which is solved exactly
(in the sense of the α′ expansion). In such cases, the theory can be studied
reliably even for small sizes of the compactification manifold. When these
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Figure 2.11: Picture of compactification spacetimes; thick small lines represent
string states which are light in the corresponding configuration. When the internal
manifold has size of the order of Ls, stringy effects (which do not exist in theories
of point particles) become relevant; for instance, string winding modes (where a
closed string winds around some internal dimension) may be light and appear in
the low energy spectrum (even if they do not appear, they may modify importantly
the low-energy effective action).

sizes are of the order of the string length, stringy effects become spectacular,
and there happen things which are unconceivable in a theory of point particle.
For instance, a typical stringy effect is having closed strings wrapping around
the non-trivial curves in the internal space. For large volumes, these states
are hugely massive, and do not affect much the low-energy physics. For
stringy volumes, such states can be very light (as light as other ‘point-particle’
like modes, or even massless!) and do change the low-energy physics.

Let us first consider large volume compactifications for the moment (so we
work in the effective field theory approach) and explain why the low-energy
physics is four-dimensional. Consider first a toy model of a 5d spacetime of
the form X5 = M4 × S1, on which a 5d massless scalar field ϕ(x0, . . . , x4)
propagates with 5d action

S5dϕ =
∫

M4×S1
d5x ∂Mϕ∂

Mϕ (2.18)

Since x4 parametrizes a circle, it is periodic, and we can expand the x4

dependence in Fourier modes

ϕ(x0, . . . , x4) =
∑

k∈Z

e2πikx
4/L ϕk(x

0, . . . , x3) (2.19)
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where L is the lenght of §1.
From the 4d viewpoint, we see a bunch of 4d scalar fields φk(x

0, . . . , x4),
labeled by the integer index k, the 5d momentum. The 4d spacetime mass of
those fields increases with k2. To see that, take the 5d mass-shell condition

P 2 = 0 that is P 2
4d + p2

5 = 0 (2.20)

For the field φk, we have

P 2
4d + (k/L)2 = 0 (2.21)

which means that the 4d mass of the field φk is m 2
k = (k/L)2

At energies much lower than the compactification scale Mc = 1/L, E �
1/L, the only mode which is observable is the zero mode φ0(x

0, . . . , x3).
So we see just a single 4d field, with a 4d action, which is obtained by
replacing φ(x0, . . . , x4) in (2.18) by the only component we are able to excite
φ0(x

0, . . . , x3). The x4 dependence drops and we get

Seff =
∫

M4

d4xL ∂µϕ0∂
µϕ0 (2.22)

So we recover 4d physics at energies below Mc. This is the Kaluza-Klein
mechanism, or Kaluza-Klein reduction. The massive 4d fields φk are known
as Kaluza-Klein (KK) excitations or KK replicas of φ0.

As explained in the first lecture, the Kaluza-Klein reduction works for any
higher dimensional field. An important new feature arises when the origi-
nal higher dimensionl field has non-trivial Lorentz quantum numbers. The
procedure is then to first decompose the representation of the SO(d) higher-
dimensional Lorentz group with respect to the 4d one SO(4) (i.e. separate
different components according to their behaviour under 4d Lorentz), and
finally perform KK reduction for each piece independently. For instance, for
a 5d graviton we have the KK reduction

GMN(x0, . . . , x4)→ Gµν(x
0, . . . , x4)→ G(0)

µν (x
0, . . . , x3)

Gµ4(x
0, . . . , x4)→ G

(0)
µ4 (x0, . . . , x3)

G44(x
0, . . . , x4)→ G

(0)
44 (x0, . . . , x3) (2.23)

where the first step is just decomposition in components, and the second is
KK reduction. We therefore obtain, at the massless level, a 4d graviton, a 4d
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U(1) gauge boson, and a 4d scalar. Recall that diffeormophism invariance
in 5d implies gauge invariance of the 4d vector gauge boson. Also notice
that the vev for the scalar field is G44, which is related to the length of the
internal circle. Therefore, it is not an external parameter, but the vev of a 4d
dynamical scalar field. On the other hand, the compactification is consistent
(solves the 5d equations of motion) no matter what circle radius we choose;
this implies that in the 4d effective action there is no potential for the 4d
scalar, it parametrizes what is called a flat direction of the potential, the field
is called a modulus (and it is similar to the string theory dilaton in many
respects).

Obs: If the higher-dimensional field theory contains massive fields with
mass M , the 4d KK tower has masses m2

k = M2 + (k/L)2, so they will not
be observable at energies below M .

The lesson learned here is very general, and can be applied to compactifi-
cation of any theory on any internal manifold, and an arbitrary set of fields.
In particular, it can be applied to string theory. Massless 26-dimensional
string states will lead to massless 4d fields corresponding to the zero modes
in the KK reduction. KK replicas are not visible at energies below Mc. Mas-
sive 26-dimensional string states give massive 4d states, with masses at least
or order Ms, which is huge, and are not observable at low energies.

Let us skip the details of KK reduction in manifolds more general than
tori, and simply say that in general the role played by the momentum k in
toroidal directions is played by the eigenvalues of the laplace operator in the
internal manifold (which are also quantized in units of 1/L, where L is the
typical length of the internal space).

2.2 Superstrings and Heterotic string phenomenol-

ogy

2.2.1 Superstrings

Spacetime fermions vs worldsheet fermions

See discussion in sect 10 in [71].
In trying to connect string theory with the kind of physics observed in

Nature, we have seen that compactification is able to solve the dimension
problem of the bosonic string theory: how to get four-dimensional physics
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(at least at low energies) out of a theory which must propagate on a 26d
spacetime.

A more difficult problem is that bosonic string theory does not contain
spacetime fermions in its spectrum, and fermion fields are essential in our
understanding of the real world. This (and also the closed string tachyon,
etc) is enough to discard bosonic string theory as realized in Nature 1

Happily there exist other string theories which are not the bosonic string
theory. We are now advanced enough to understand that a string theory is
basically defined by a 2d conformal field theory which provides the worldsheet
action. What we are about to do is to construct a new kind of worldsheet
theories, with Poincare invariance in d-dimensional spacetime, and which
contain more fields than just the worldsheet scalars Xµ(σ, t). The resulting
string theories have a spectrum of spacetime particles different from that in
the bosonic string theory, and in particular they will turn out to contain
spacetime fermions.

The basic idea is to supersymmetrize the 2d worldsheet theory. That
is, we consider a 2d field theory with d worldsheet scalar fields Xµ(σ, t),
and d worldsheet fermion fields ψµ(σ, t), which are their superpartners. In
Polyakovs formulation one also has the worldsheet metric gαβ(σ, t) and now
we also introduce its superpartner (which is a worldsheet gravitino). After
gauge fixing these will disappear so we will not be very explicit about them.

String theories with worldsheet supersymmetry are called superstrings.
They are just string theories with a different structure for the worldsheet
action.

It is very important to notice that the 2d fields ψµ(σ, t) are fermions on
the worldsheet (and so have anticommutation relations, etc in the 2d quan-
tum field theory) but they transform as a vector under the d-dimensional
spacetime Lorentz group, and so they behave as spacetime bosons. This
makes sense because the Lorentz group is a global symmetry from the world-
sheet viewpoint, and it commutes with the worldsheet supersymmetry, so 2d
fields in the same supermultiplet must transform in the same way under the
global symmetry.

So, the reason why superstrings contain spacetime fermions is not au-
tomatically because they contain fermions on the worldsheet. Indeed the
connection is much more subtle and we will not study it until the detailed

1Leaving aside the speculative possibility that bosonic string theory may contain
fermions in its non-perturbative spectrum.
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lectures.
Something similar happens with spacetime supersymmetry. The fact that

superstrings have worldsheet supersymmetry does not imply that the space-
time spectrum of particles is supersymmetric. Several superstring theories
DO have a spectrum of particles which is spacetime supersymmetric, but
the way this arises is very subtle and follows from the so-called GSO pro-
jection. These are the most studied superstring theories, because they are
well-behaved, for instance do not contain tachyons in their spectrum, so are
stable. There also exist some superstrings which have a supersymmetric
worldsheet theory, but are not supersymmetric in spacetime; very often they
contain tachyons in their spectrum, so are not so much in control.

A common feature of all superstrings (and one which distinguishes them
from the bosonic theory) is that, since we have modified the content of fields
of the 2d worldsheet theory, the conformal anomaly changes, and the con-
straint on the number of dimension changes. The number of dimensions on
which superstrings consistently propagate is 10. As usual, one uses compact-
ification to construct theories with four-dimensional physics at low energies.

The different ten-dimensional superstring theories

Skipping many important details to be studied in coming lectures, here we
would like to briefly describe the structure of the five superstring theories,
which are also supersymmetric in spacetime (have a supersymmetric spec-
trum of spacetime particles).

For references on the structure of susy and sugra multiplets, see [12].

• Type IIA superstring
This is a theory of closed oriented strings.
Type IIA string theory has N = 2 (local) supersymmetry in ten dimen-

sions, i.e. it is invariant under two Majorana-Weyl supercharges (of different
chirality).

Its massless sector contains the following 10d bosonic fields: The graviton
GMN , a 2-form BMN , the dilaton scalar φ; A 1-form AM and a 3-form CMNP .
Their supersymmetric partners are basically some N = 2 D = 10 gravitinos
of opposite chirality (and spin 3/2) and two spin-1/2 fermions of opposite
chiralities.

We would like to remark that the p-form fields Cp are gauge potentials,
namely all their interactions and couplings are invariant under the gauge
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transformations with gauge parameter given by a (p− 1)-form Λp−1

Cp → Cp + dΛp−1 (2.24)

The gauge invariant field strengths are given by

Hp+1 = dCp (2.25)

The above matter content is the gravity supermultiplet of non-chiral N =
2 D = 10 supergravity. Indeed the low energy effective action of type IIA
string theory is that of non-chiral N = 2 D = 10 supergravity, and its form is
uniquely fixed by supersymmetry. It contains the Einstein term, the kinetic
term for the p-forms and the dilaton, and their supersymmetric completion
involving the fermions.

It is also useful to know that the degrees of freedom in a p-form gauge
potential Cp can be encoded in a dual (8 − p)-form Ĉ8−p by Hodge-duality
of their field strengths

Hp+1 = ∗10dĤ9−p (2.26)

So the 1-form has a 7-form dual, and the 3-form has a 5-form dual.

• Type IIB superstring
This is a theory of closed oriented strings.
Type IIB string theory has N = 2 (local) supersymmetry in ten dimen-

sions, i.e. it is invariant under two Majorana-Weyl supercharges (of SAME
chirality).

Its massless sector contains the following 10d bosonic fields: The graviton
GMN , a 2-form BMN , the dilaton scalar φ; A 0-form a, a2-form B̃MN and
a 4-form AMNPQ of self-dual field strength. Their supersymmetric partners
are basically some N = 2 D = 10 gravitinos of SAME chirality (and spin
3/2) and two spin-1/2 fermions of SAME chiralities. The p-forms are gauge
potentials.

The above matter content is the gravity supermultiplet of CHIRALN = 2
D = 10 supergravity. Indeed the low energy effective action of type IIB
string theory is that of CHIRAL N = 2 D = 10 supergravity, and its form is
uniquely fixed by supersymmetry. It contains the Einstein term, the kinetic
term for the p-forms and the dilaton, and their supersymmetric completion
involving the fermions.
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An important observation is that the theory is chiral, so in principle
it may be ill-defined at the quantum level due to gravitational anomalies
(i.e. diffeomorphism invariance of the classical theory may be violated at
the quantum level, leading to violations of unitarity, etc and rendering the
theory inconsistent). Happily a detailed computation of the anomaly shows
that it vanishes (in a very nontrivial way) [13].

• The two versions of Heterotic string theory
This is a theory of closed oriented strings.
Heterotic string theory has N = 1 (local) supersymmetry in ten dimen-

sions, i.e. it is invariant under one Majorana-Weyl supercharge.
Its massless sector contains the following 10d fields: The graviton GMN ,

a 2-form BMN , the dilaton scalar φ, plus fermion superpartners. They fill out
a graviton supermultiplet of N = 1 D = 10 supergravity. In addition there
are 496 gauge bosons Aa

M associated to generators of a gauge group, which
is either E8 × E8 or SO(32) (so there are two different versions of heterotic
string theory). These gauge bosons have fermionic partners (in the adjoint
representation of the gauge group, gauginos), filling out vector multiplets of
D = 10 N = 1 supersymmetry.

The low energy effective action is that of N = 1 D = 10 supergravity,
coupled to E8 × E8 or SO(32) gauge vector multiplets. The supersymmetry
and gauge symmetry uniquely fixed the form of the effective action. It con-
tains the Einstein term, the kinetic term for the 2-form and the dilaton, and
Yang-Mills action for gauge bosons, and their supersymmetric completion
involving the fermions.

An important observation is that the theory is chiral, so in principle
it may be ill-defined at the quantum level due to gravitational and gauge
anomalies. Happily a detailed computation of the anomaly shows that it
vanishes (in a very nontrivial way), involving a novel mechanism (previously
unknown in field theory), the so-called Green-Schwarz mechanism [14]. For
the mechanism to work it is essential that the gauge group is one of the above
mentioned.

• Type I string theory
This is a theory of closed and open unoriented strings. Unoriented means

that the genus expansion includes non-orientable surfaces, like the Klein bot-
tle or the Moebius strip, etc.

Type I string theory has N = 1 (local) supersymmetry in ten dimensions,
i.e. it is invariant under one Majorana-Weyl supercharge.
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Its massless sector contains the following 10d fields: The graviton GMN ,
a 2-form BMN , the dilaton scalar φ, plus fermion superpartners. They fill out
a graviton supermultiplet of N = 1 D = 10 supergravity. In addition there
are 496 gauge bosons Aa

M associated to generators of a gauge group, which
SO(32) (but NOT E8×E8). These gauge bosons have fermionic partners (in
the adjoint representation of the gauge group, gauginos), filling out vector
multiplets of D = 10 N = 1 supersymmetry.

The low energy effective action is that of N = 1 D = 10 supergravity,
coupled to SO(32) gauge vector multiplets. The supersymmetry and gauge
symmetry uniquely fixed the form of the effective action. It contains the
Einstein term, the kinetic term for the 2-form and the dilaton, and Yang-
Mills action for gauge bosons, and their supersymmetric completion involving
the fermions.

An important observation is that the theory is chiral, so in principle it may
be ill-defined at the quantum level due to gravitational and gauge anomalies.
Happily the anomaly cancels, also involving a version of the Green-Schwarz
mechanism [15, 15].

This clearly shows that extra dimensions and supersymmetry and super-
gravity are ideas easily accommodated in the string theory setup. That (and
the amazing self-consistency of the theory, namely the fact that it always
leads to anomaly-free low-energy field theories) is the reason why lots of
people got attracted into the study of these theories.

2.2.2 Heterotic string phenomenology

From the viewpoint of trying to reproduce the observed physics, many at-
tempts were taken in the framework of Kaluza-Klein compactification in type
II string theories. However, as discussed previously, it is difficult to repro-
duce chiral 4d fermions with the non-trivial gauge quantum numbers unless
the original 10d theory contains elementary non-abelian gauge fields [16]. For
that reason, compactification of other theories like type I or the heterotics is
more promising.

In fact, most efforts centered in the study of heterotic theory. In a sense,
if we study compactifications on curved spaces, where we use the low energy
effective action, the type I theory looks very similar to the SO(32) heterotic.
Finally, there has been a traditional preference for the E8×E8 heterotic since
it leads (in the simplest compactifications) to smaller gauge groups.
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R

Figure 2.12: The holonomy group is given by the set of rotations R relating a
vector and its image under parallel transport along a closed path, for all possible
paths.

2.2.3 The picture of our world as a heterotic string
compactification

Enough of a speculation! We would like to address what these constructions
may have to do with the real world!

So, we conclude this brief review by describing the picture of our world
as a heterotic string compactifications. This follows [61].

In order to obtain four-dimensional physics we need to take spacetime to
be of the form M4×X6. The original 10d theory has a lot of supersymmetry:
D = 10 N = 2 corresponds to 16 supercharges, the equivalent to D = 4
N = 4 supersymmetry. This amount of supersymmetry is too much to allow
for 4d chiral fermions.

If X6 is too simple, like a T 6, the supersymmetries are unbroken and we
obtain a non-chiral theory. The reason why T 6 does not break supersymmetry
is because it is flat, and has trivial holonomy group.

The holonomy group of a d-dimensional manifold (endowed with a metric)
is defined by taking a vector, parallel-transporting it along a closed path, and
finding the SO(d) rotation relating the original vector and the final one. The
set of all such roations for all possible closed paths is the holonomy group of
the manifold (with the corresponding metric). For a torus, any vector comes
back to itself (with no rotation at all) under parallel transport around any
closed path. see figure 2.12.

For manifolds with non-trivial holonomy groups, there are topological
obstructions to defining conserved supercharges globally 2, so the supersym-

2Similar to the impossibility of defining a global vector field in a 2-sphere, i.e. it is
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metry observed at low energies correspons only to the supercharges which
can be defined globally.

A generic 6-dimensional manifold has holonomy SO(6) and breaks all
supersymmetries. Manifolds with holonomy in a proper subgroup of the
generic holonomy group are known as special holonomy manifolds. They
break some supersymmetries, but preserve some.

For heterotic string theory, if X6 is chosen to have SU(3) holonomy,
(which is a subgroup of SO(6)), then the low energy theory in 4d has only
N = 1 supersymmetry. As discussed in the first lecture, this is a phenomeno-
logically desirable feature. Spaces of SU(3) holonomy are called Calabi-Yau
spaces, and compactification on them is often called Calabi-Yau compactifi-
cation.

On the other hand, the original gauge group in heterotic string theory is
very large, it has 496 generators. We should think about some way of break-
ing it. Happily there is a way of doing it in the process of compactification.

Consider that, in the same way as we consider a non-trivial background
for the internal metric (curved internal space), we consider turning on a non-
trivial background for the internal components of the gauge potentials. That
is, we turn on a nontrivial profile for the fiels Aa

i , with i polarized in the
internal directions in X6, and a associated to generators in a subgroup H of
the original group, say in E8 × E8. In fancy language, we are considering a
non-trivial gauge bundle (with structure group H) over the manifold X6.

This choice is consistent with Poincare invariance in four dimensions.
However, since it priviledges some direction in gauge space, the gauge group
observed at low energies is not the full E8 ×E8. In fact, the 4d gauge group
is given by those gauge transformations which leave the gauge background
invariant. This is the group generated by generators commuting with the
generators ofH, and is called in group theory the commutant of H in E8×E8.

Moreover, it can be seen that the consistency of a Calabi-Yau compacti-
fication requires SOME internal gauge background to be turned on. This is
interesting, because it forces the gauge group to be broken, althouth consis-
tency does not force on us any specific choice of the subroup H.

A very popular choice is the so-called standard embedding, which amounts
to choosing H = SU(3). More specifically, it corresponds to setting the in-
ternal gauge connection to be equal to the Riemannian connection on X6.
With this choice, the commutant of SU(3) in E8 × E8 is E6 × E8. This is

impossible to comb a 2-sphere without leaving hair whirlpools.
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a very exciting possibility, since E6 has been considered as a possible group
for grand unification. Taking slightly more involved choices for the gauge
background it is possible to obtain even smaller groups, like SU(5) of simply
the Standard Model group.

The last ingredient that we would need is how to obtain chiral fermions
charged under E6 (or whatever other group we get in 4d). Amazingly the
above ingredients (Calabi-Yau compactification and internal gauge bundle)
are enough to provide chiral 4d fermions in the Kaluza-Klein reduction of
the 10d gauginos. The resulting fermions transform naturally in the repre-
sentation 27 of E6 (or as 10+ 5̄ of SU(5), or standard fermion families of the
standard model group).

The number of fermion families is given in terms of topological invariants
of the internal manifold and the gauge bundle over it. For instance, for the
standard embedding, it is given by the Euler number of X6. The number
of families is roughly speaking fixed by the number of (chiral) zero modes
for a Dirac equation for the internal part of a 10d gaugino. So the different
families are associated to different resonant modes of the 10d gaugino field
in the internal X6 space. B. Green describes this in a very poethic way [18].
It is possible (although not easy, it requires strong techniques in differential
topology) to construct models where this number is 3.

The fact that the number of families is related to topological invariants
is natural. In general one expects that, given a string compactification,
the masses of light modes can vary if we make a small deformation of the
configuration, like deforming the metric or the gauge background. However,
the number of chiral families must be invariant under those deformations,
because chirality protects fermions against getting Dirac masses. Hence, the
number of chiral families is invariant under deformations of the metric or the
gauge background, i.e. it is a topological invariant, which can be related to
standard topological invariants of the manifold X6 and the gauge bundle.

2.2.4 Phenomenological features and comparison with
other proposals beyond the standard model

The lesson is that this picture, shown in figure A.2, provides four-dimensional
theories which are extremely close to the Standard Model.

Moreover, the description includes some very interesting ingredients of
physics beyond the standard model
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Figure 2.13: Schematic depiction of the compactification of heterotic string theory
on a Calabi-Yau manifold (metric background) with non-trivial internal gauge
bundle (gauge background).

• Unification: All interaction arise from E8 × E8, so at high enough
energies E ∼ Mc, when we start to be able to resolve the internal
space, the original 10d gauge symmetry is restored and all interactions
are unified. Of course, there is also unification with gravity, as in all
string theories. Heterotic string theory also predicts gauge coupling
unification at a scale ∼ Ms

• Supersymmetry: Is a basic ingredient in this construction. The issue
of supersymmetry breaking remains an open question

• Hidden sector: One attractive possibility is to break supersymmetry by
strong coupling dynamics (gaugino condensation) in the untouched E8.
This sector is decoupled from the Standard Model one, with which it
communicates only via gravitational interactions, it is a hidden sector.
So it implements the idea of supersymmetry breaking in a hidden sector.

• Extra dimensions. Also essential in the construction. Notice that
both gauge and gravitational interaction propagate in 10d, so this con-
structino cannot be used to realize the brane-world scenario (other
constructions, not based in heterotic, will be studied later on).

There also remain different open questions, whose answer is not clear for
the moment. These are the main problems in string phenomenology, to be
solved perhaps by next-generation students like you!

• How to break supersymmetry? There exist proposals like gaugino con-
densation, etc.
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• The moduli problem: Or how to get rid of the large number of mass-
less scalars which exist in many compactifications in string theory (and
whose vevs encode the parameters of the underlying geometry and
gauge bundle (like sizes of the internal manifold, etc)).

• The vaccum degeneracy problem: Or the enormous amount of consis-
tent vacua which can be constructed, out of which only one (if any
at all) is realized in the real world. Is this model preferred by some
energetic, cosmological, anthropic criterion? Or is it all just a matter
of chance?

• The cosmological constant problem, which in general is too large once
we break supersymmetry. Does string theory say anything new about
this old problem?



Chapter 3

Overview of string theory
beyond perturbation theory

3.1 The problem

The prescription we have given to compute amplitudes in string theory in
perturbation theory is well-defined and consistent. However, it is not the
complete string theory, there are indications that there is plenty of non-
perturbative structure missed by the prescription we have given.

Making an analogy with point particle physics, the perturbative prescrip-
tion we have given is equivalent to giving the propagators for the different
particles, and giving a set of interaction vertices. With both ingredients one
can build the Feynmann diagrams of the theory and recover the complete
perturbative expansion.

On the other hand, we know that in point particle physics there are plenty
of non-perturbative effects (like non-perturbative states (solitons), instanton
effects, etc) which are obtained only when we compute non-perturbatively
(e.g. using lattice methods) the path integral over spacetime field configura-
tions, using the spactime action of the theory.

Now in string theory we do NOT have a spacetime action for the space-
time fields configurations (we just have a worldsheet action, which is the ana-
log of the worldline action in point particle physics, clearly not the same as a
spacetime field action). Therefore we do not have a well-defined prescription
to compute non-perturbatively the path integral over spacetime field config-
urations, and it is very likely that we are missing plenty of non-perturbative

45
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physics.

There exists an approach to string theory, dubbed string field theory,
which introduces a string field Ψ[Xµ(σ, t)], which is a functional of the string
configuration function Xµ(σ, t). It can be thought of as the spacetime wave-
function providing the quantum amplitude for a state to correspond to a
string configuration given by Xµ(σ, t). Expanding in oscillator modes, the
string field splits as an infinite set of spacetime (point particle) fields, each
corresponding to a string oscillator mode (i.e. to a spacetime particle).

Subsequently, it is possible to build a spacetime action for the string field,
such that the perturbative expansion reproduces exactly the perturbative
string theory amplitudes computed with the above prescription.

On the other hand, one would expect that string field theory also encodes
information about string theory beyond perturbation theory. For some rea-
son, this last hope has not been quite fulfilled. String field theory is techni-
cally very involved, so not many solutions to the string field equations are
known. In particular, string field theory has been unable to provide infor-
mation about some string theory non-perturbative states found via other
indirect methods (p-branes, D-branes) 1, so it is not clear that string field
theory is the right tool to address non-perturbative dynamics in string theory
(or else, perhaps is not the tool that we know how to handle). We will not
discuss string field theory in these course.

In this lecture we discuss several other indirect methods which have un-
covered part of the non-perturbative structure of string theory (although not
to a complete microscopic definition of it).

One may wonder why, if there is no complete definition of string the-
ory beyond perturbation theory, we still claim that it is a consistent, finite,
theory of gravity at the quantum level, etc. This was only checked with
the perturbative description. A related objection is why to bother about
non-perturbative effects, and simply state that our theory is defined by the
perturbative prescription. The objections are reasonable.

The reason why we need non-perturbative effects, and why we believe
that they do not spoil (but rather improve) the good properties of string
theory, is that there exist some very special, very singular, situations where
perturbative string theory would break down, and certain computable non-
perturbative effects make the physics non-singular and well-behaved.

1Nevertheless, string field theory has led to important results in the context of open
string tachyon condensations, see [19]
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Φ(x)
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Figure 3.1: Artistic view of a soliton in a field theory.

So, our present understanding is that in smooth situations, the non-
perturbative sectors do not spoil the good properties of perturbative string
theory, they merely induce some small corrections. In other singular situ-
ations, however, the perturbative prescription would break down, and it is
precisely the non-perturbative sector that saves the situation. We will see
several examples of this phenomenon.

3.2 Non-perturbative states in string theory

A basic non-perturbative effect in string theory is the existence of states
which are not seen in perturbation theory. That is, they do not appear
in the Hilbert space of the quantized string. They are not modes of the
fundamental string, so are not stringy in nature. They are more similar to
solitons in field theories of point particles, which we now briefly review.

3.2.1 Non-perturbative states in field theory

An excellent discussion can be found in [72]. See also [73].

A soliton in a (to start with, classical) field theory is a finite energy
solution to the equations of motion which is localized in some spatial dimen-
sions, and is static in time. For instance, it the solution is localized (i.e.
vanishes or goes to the trivial vacuum solution quickly outside a sphere of
characteristic size R (the size of the soliton)) in three spatial directions in
a four-dimensional field theory, then the solition looks like a ‘fat’ particle
propagating in time. See picture 3.1.
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There are explicit examples of such solitions. The simplest is the ‘t Hooft
- Polyakov monopole [28], which we describe briefly.

The ‘t Hooft - Polyakov monopole
Consider the Georgi-Glashow model. It is an SO(3) (or SU(2)) gauge

field theory in four dimensions, with a complex scalar field (Higgs) charged

in the adjoint representation (3 of SO(3)). We denote it by ~φ, with the vector
notation refering to the internal SO(3). Let us take the scalar potential to

have a minimum at |~φ|2 = v2 2

The action is roughly speaking

SGG =
∫
d4x

1

g2
[ tr F a

µνF
µν
a + Dµ

~φ ·Dµ~φ ] + V (φ) (3.1)

with

Dµφi = ∂µφa + Aaµ (Ta)ijφj (3.2)

Different vacua |~φ|2 = v2 are related by SO(3), so we may pick ~φ =
(v, 0, 0). The gauge group is spontaneously broken to SO(2), equivalentely
U(1). This is the structure of the vacuum. Perturbative states of the the-
ory are obtained by expanding the fields around the vacuum configuration,
and contain the massive Higgs field, the massive vector bosons, etc. These
generate different states in the quantum theory.

Now there also exist some finite energy configurations, which are there-
fore states in the quantum theory, which do not correspond to the above
perturbative states. Consider a configuration where asymptotically in space
R3 the field ~φ(x) points (in the internal SO(3)) in the direction specified by
the location ~x (in the space R3 SO(3). Namely, for very large r = |~x|

φa(~x, t) → v

r
xa +O(1/r2)

Aa(~x, t) → 1

r2
xa +O(1/r2) (3.3)

This is the so-called hedgehog configuration, shown in figure B.4.

2In many situations, for instance in supersymmetric models, the scalar potential is
identically zero, and the vev for ~φ is undetermined. Any vev defines a possible vacuum
of the theory, the set of all possible vevs (up to gauge transformations) is called the
moduli space of the theory. Notice that the name ‘moduli’ is associated to fields with no
potentials, either in the string theory context (like the dilaton, or the compactficiation

radii moduli) or in the field theory context. For each vev condition |~φ|2 = v2 one may
repeat the argument below.
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Figure 3.2: Picture of the hedgehog configuration for the Higgs field in the Georgi-
Glashow model.

Since asymptotically |~φ| → v, the potential energy vanishes at infin-
ity. The kinetic energy also vanishes asymptotically because we choose a
gauge background which makes the covariant derivative vanish. Statitc solu-
tions (solitons) with those asymptotics exist, and therefore have finite energy.
They represent lumps of energy localized in the three spatial directions, i.e.
particle-like states.

Their main properties are: their mass (energy of the configuration) is of
the order of v/g2, and so they are very heavy at weak coupling, and non-
perturbative in nature. They are magnetically charged under the surviving
U(1) gauge group, i.e. taking the gauge field configuration in the soliton
background, and integrating the field strength of the U(1) part F = F aφa

around a large S2 in R3 we get

∫

S2
F = 1 (3.4)

These solitons are therefore called magnetic monopoles (in fact, mag-
netic monopoles in more realistic models, like grand unified theories, are
constructed similarly). Since the charge they carry arises from the topology
of the background (notice that the quantity (3.4) is topological, it is inde-
pendent of the spacetime metric), they are also called topological defects.

Notice that if we had started with a higher dimensional theory, say inD+1
dimensions, one can still pick a particular R3 and construct the above soliton
background. It is still localized in three dimensions, but the configuration is
now Poincare invariant under the spectator D − 2 dimensions. The soliton
now represents an extended object with D − 3 spatial dimensions. It is still
charged magnetically with respect to the unbroken U(1). The volume swept
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Figure 3.3: Picture of the zero modes of a soliton.

out by the soliton core as it moves in time is called the soliton world-volume
(generalizing the ideas of worldlines and worldsheets).

Collective coordinates
It is interesting to see what the theory looks like around the soliton back-

ground. This is done by expanding the fields as background plus fluctuations,
and substituting into the field theory action to obtain a field theory for the
fluctuation fields. An interesting subset of fluctuations are zero modes, which
correspond to fluctuations which are massless in the background of the soli-
ton. They parametrize changes in the fields which do not change the energy
of the soliton.

For instance, it is clear that applying translations φx0(x) = φ(x−x0), one
can construct solitons centered not at ~x = 0 but at any ~x = ~x0. The difference
between two configurations Y i = φ0 and φδxi is a zero mode fluctuation.
Notice tht both configurations are equal almost everywhere, so the fluctuation
is localized on the volume of the soliton 3. So, it can be roughly written as
a field depending on the p+ 1 worldvolume coordinates (for a soliton with p
spatial extended dimensions) Y i(x0, . . . , xp), with i = p + 1, . . . , D + 1. See
picture 3.3 below.

In fact, the zero mode fluctuations describe dynamics of the soliton (and
not dynamics of the underlying vacuum), they are sometimes called collective
coordinates of the configuration. Very often they are associated to symme-
tries of the vacuum which are broken by the presence of the soliton (just
like the above translational symmetries). So these massless fluctuations can

3Beyond those three translational collective coordinates, there is a fourth one associated
to gauge transformations which do not vanish at infinity and therefore related different
configurations which are not gauge equivalent. We will skip this mode in our discussion.
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Wp+1 Wp+1

Figure 3.4: A nontrivial configuration for one of the worldvolume translational
zero modes corresponds to a non-trivial embedding of the soliton worldvolume in
spacetime.

be understood as Goldstone bosons of the symmetries broken in the soliton
background.

Their vevs parametrize the possible configurations of the soliton back-
ground with the same energy; i.e. the set of soliton solutions of the same
kind, e.g. location of solition worldvolume

〈Y i(x0, . . . , xp) 〉 = ai (3.5)

The set of such vevs, the set of soliton configurations, is called the moduli
space of solitons of that particluar kind (magnetic monopole moduli space in
this case). Non-trivial configurations for these fields Y i(x0, . . . , xp) describe
excitations of the solition background; for instance a non-trivial profile for
some of the translational zero modes corresponds to a non-flat soliton world-
volume (an energetically costly configuration). See picture A.7

It is possible to write down a worldvolume effective action for these world-
volume fields, which describes the dynamics of the soliton. We will not do
so for the field theory example, but we will come back to this point when we
look at non-perturbative states in string theory.

Beyond the classical approximation, the quantum behaviour of the soliton
is obtained by expanding the classical theory around the soliton background,
and quantizing the fluctuations. Concerning the subsector of the zero modes,
this corresponds to promoting the worldvolume field theory to a quantum
field theory in p + 1 dimensions. And corresponds to quantizing the soliton
state.

Many of these properties will have analogs in non-perturbative states in
string theory, and that is why we discussed them in some detail.
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Figure 3.5: Two pictures of the p-brane as a lump of energy. The second picture
shows only the transverse directions, where the p-brane looks like point-like.

3.2.2 Non-perturbative p-brane states in string theory

In order to try to find similar non-perturbative states in string theory, the
only spacetime action that we can use to find spacetime field configurations
is the low-energy effective action for the light modes of string theory (the
graviton, dilaton, antisymmetric tensor fields, etc). It is important to realize
that this is only the low-energy approximation to string theory, and it is
questionable if any solution to its equation of motion is really a solution of
full string theory. This issue will be settled for a particular class of solutions,
as we will see below.

The approach is remarkably successful. Taking the different low-energy
effective actions for the different superstrings (which correspond to different
ten-dimensional supergravity theories), it is possible to find finite energy
solutions (which are of a special kind (1/2 BPS) see below) to the equations
of motion, which look like lumps of energy localized in some directions and
extended in p spatial directions. They are known as p-branes; they have
Poincare invariance in p+1 dimensions, and the core of the non-perturbative
lump is called the p-brane world-volume. See 14.1 for a picture

To give one example, the supergravity solution for a 3-brane (with N
units of charge) in type IIB theory is given by

ds2 = f(r)−1/2 [(dx0)2 + . . .+ (dx3)2] + f(r)1/2 [(dx4)2 + . . .+ (dx9)2]

f(r) = 1 +
4πgsα

′2N

r4
; r = [(x4)2 + . . .+ (x9)2]

F5 ' d(V ol)S5 (3.6)

where the field strength 5-form is proportional to the volume form of the
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angular 5-sphere in the transverse six-dimensional space.
The main properties of these solutions are

• For a given string theory, there exist p-brane solutions for values of p
for which there exists a (p+1)-form field in the (perturbative) massless
spectrum of the string. See table 3.1

• The energy per unit volume of these branes is of order 1/gs or 1/g2
s in

string units Ms = 1. So they are intrinsecally non-perturbative

• p-branes are charged electrically under the (p + 1)-forms; conversely,
they are charge magnetically under the dual (7− p)-forms, namely

∫

S8−p
H8−p = 1 (3.7)

where H8−p is the field strength for the (7− p)-form, and we integrate
over a (8− p)-sphere in the transverse R9−p.

• The solutions are invariant under half of the supersymmetric transfor-
mations of the vacuum theory. The solutions are said to be 1/2 BPS.
This is the key property that makes these solutions special, and reliable
beyond the supergravity approximation.

• We will not discuss these theories in detail, but the worldvolume field
theories for these p-branes are known. They contain 9 − p real scalar
fields, Goldstone bosons of the broken translational symmetries, and
some fermions, which can be understood as Goldstinos of the super-
symmetries broken by the background. These (and other) fields group
together in multiplets of the unbroken supersymmetries, and define a
supersrymmetric field theory in p+ 1 dimensions.

We turn to the issue of why the existence of these non-perturbative states
should be trusted in the full string theory. After all, we found them as
solutions of a truncated theory, the supergravity effective action describing
the α′ = 0 regime.

The key feature is that BPS states are remarkably stable under smooth
deformations of the theory (like for instance, turning on α′ i.e. including more
and more stringy corrections until we eventually reach full string theory).
The argument proceeds through various steps
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String theory Branes (p + 1)-form Tension

Type IIA F1, NS5 B2, B̂6 ' 1/g2
s

D0, D2, D4, D6, D8 C1, C3 Ĉ5, Ĉ7 ' 1/gs

Type IIB F1, NS5 B2, B̂6 ' 1/g2
s

D(-1), D1, D3, D5, D7 a, B̃2, C4, Ĉ6, Ĉ8 ' 1/gs

Heterotic F1, NS5 B2, B̂6 ' 1/g2
s

Type I D1, D5 B̃2, Ĉ6 ' 1/gs

Table 3.1: Partial list of the spectrum of p-branes in the different string theories.

i) Recall how one builds supersymmetric multiplets of states in a super-
symmetric theory. One separates the supergenerators of the theory, in two
sets (creators and annihilators), and defines the ground state of the multi-
plet as annihilated by annihilators. The rest of the multiplet is obtaine by
applying creators to the ground state and using the algebra.

A 1/2 BPS state is invariant under half of the supersymmetries, so the
ground state of the supermultiplet is annihilated by the creator operators
of the corresponding susys. This means that this kind of multiplet contains
half the number of states as a generic multiplet. Consequently, multiplets
are called short and long, according to the number of states they contain.

To give a toy description, consider four supercharges, separated as two
annihilators Q1, Q2 and their adjoints the creators Q†

1, Q
†
2. A generic mul-

tiplet, constructed form a ground state |st.|rangle satisfying Qi|st.〉 = 0, is
given by

|st.〉 , Q†
1|st.〉 , Q†

2|st.〉 , Q†
1Q

†
2|st.〉 (3.8)

A 1/2 BPS multiplet is built out of a ground state which in addition satisfies
Q†

2|st.〉, so the multiplet contains

|st.〉 , Q†
1|st.〉 (3.9)

Namely contains half the number of states.
ii) Since the number of states in short and long multiplets is different, it

is not possible that a BPS state becomes non-BPS upon a continuous change
of parameters of the system. In particular, BPS states remain BPS upon
turning on α′.
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iii) The supersymmetry algebra in the presence of p-form charges is modi-
fied by the inclusion of central charges Z(φ) (operators that commute with all
supergenerators and the hamiltonian, and appear in the susy algebra). They
are related to the charges of the configurations, and are known functions of
the moduli. The susy algebra looks like

{QA
α , Q

B
α̇ } = δAB (σµ)αα̇Pµ + ZAB

αα̇ (φ) (3.10)

Applying the algebra to the ground state of the BPS multiplet for the choice
ofQB that annihilates it, the left hand side gives zero. On the right hand side,
in the rest frame of the brane, the momentum operator looks like (M, 0, . . . , 0)
with M the mass or tension of the object, while Z gives its charge. Roughly
speaking we get a relation M = Q, namely the tension of the BPS object is
determined in terms of its charge.

iv) Since charges are quantized, they cannot change as we change param-
eters continuously. Since BPS states remain BPS upon such changes, their
tension remains determined by their charges, so it is possible to determine
them exactly even after all α′ corrections are included.

This concludes the argument. If we find a BPS state in the supergravity
approximation and compute its properties (charge, tension), there will exist
a BPS state (a stringy improved version of the original one) with the same
properties in the full string theory. The tension of the object is determine
from its charge as dictated by the central extension of the susy algebra, so
they can be reliably followed as moduli change (for instance, as the coupling
gets strong).

BPS states are a subsector of the theory which is protected by supersym-
metry, so it can be reliably studied in some simpler approximation schemes,
like low-energy effective supergravity.

3.2.3 Duality in string theory

p-brane democracy

We start this section by pointing out a remarkable fact. Some of the p-branes
that we have discussed above carry the same charges as the string, namely
they have electric coupling to the (NS-NS) 2-form in the massless sector, just
like string. In fact, the corresponding supergravity solution corresponds to
the background created by a macroscopic, infinitely extended, string. But
which is not essentially different from the basic string of the theory. For this
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reason, such 1-branes are known as fundamental string solutions and denoted
F1-branes.

The fact that the fundamental string arises, in this sense, in the same
way as other p-branes, suggests the idea that perhaps all p-brane solutions
should be treated on an equal footing. This is also suggested by the fact that
different brane solutions are often related by symmetries in supergravity,
called U-duality symmetries (a discrete subgroup of which is realized in full-
fledged string theory. This idea that different branes are on an equal footing
is called p-brane democracy [22].

Of course, we have learned that in perturbation theory the fundamental
string is more fundamental than any other object in the theory. In particular,
a large part of the spectrum of the theory is obtained by quantizing the
oscillation modes of the fundamental string. The p-brane democracy idea
proposes that this is just and artifact of the perturbative description.

The idea is that there is a unique underlying theory with a bunch of
BPS states. As one moves to a particular limit (like weak coupling) some
of these states look more fundamental than others, and the light spectrum
in that limit can be computed by quantizing these fundamental objects. In
particular, it is conceivable that there exist other limits where other BPS
states are fundamental and are more useful to describe the physics of the
system.

This is the picture underlying the proposal of string duality.

String duality

Indeed this idea is realized in many string configurations. The simplest case
is that of the ten-dimensional superstrings. There exists a perturbative limit
where the theory is described in terms of weakly interacting strings and one
recovers the perturbation theory we have described in previous lectures. As
one moves to the non-perturbative regime, the different branes look really
democratical. In the limit of infinite coupling the theory again simplifies and
becomes a weakly interacting theory, but where the fundamental degrees of
freedom correspond to originally non-perturbative states. The situation is
shown in picture 14.3. Notice that the tensions of the objects can be realiably
followed as a function of the moduli (the dilaton vev, string coupling) thanks
to the fact that these states are BPS.

Thus, roughly speaking, the strong coupling limit of a string theory can
be described as a weak coupling limit of a dual string theory (which may be or
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Figure 3.6: As a modulus (the dilaton vev) is changed, the original weakly cou-
pled string theory becomes strongly interacting, and at infinite coupling it can be
described as a weakly interacting dual theory. Perturbative and non-perturbative
states are reshuffled in this interpolation.

not of the same kind). Perturbative and non-perturbative states are reshuf-
fled as one changes the vev of the dilaton modulus to interpolate between
them. We will see explicit examples below

We now explain the dual theories describing the strong coupling regime
of the ten-dimensional superstrings. The original reference for these results
is [23]

Duality for ten-dimensional superstrings

Type IIB self-duality

The limit of strong coupling of type IIB string theory is described by a
different type IIB string theory, with weak coupling. The string couplings in
the two theories are related by

(gs)1 = 1/(gs)2 (3.11)

The basic mapping of branes are as follows

Type IIB ↔ Type IIB
F1, NS5 D1, D5

D3 D3

The mapping of massless fields is easy as well, roughly speaking
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Type IIB ↔ Type IIB
τ = a+ ie−φ −1/τ

GMN GMN

B2 B̃2

B̃2 B2

C4 C4

The transformation gs → 1/gs is a transformation that maps type IIB
string theory to itself. In particular, it is a subgroup of an exact SL(2,Z)
symmetry of type IIB theory. This symmetry group is a particular case of
U-duality, which encodes duality properties of the theories upon compactifi-
cation, and can be used to find dual description in other limits. See [24].

SO(32) heterotic - Type I duality
The strong coupling limit of the SO(32) heterotic string is described by

a dual weakly coupled type I theory, and viceversa. The mapping of branes
is

SO(32) Heterotic ↔ Type I
F1, NS5 D1, D5

The mapping of fields is: the string coupling is inverted, the 2-forms are
exchanged, the metric and the SO(32) gauge fields are invariant.

Notice that the relation implies a mapping between the low-energy su-
pergravity theories, written in terms of heterotic and type I variables. This
is possible because both sugra theories are d = 10 N = 1 sugra coupled to
SO(32) gauge multiplets.

Type IIA - M-theory duality
As the coupling constant of type IIA theory gets stronger, the strong

coupling limit is not described by a dual string theory, but rather in terms
of a far more mysterious theory called M-theory. The argument is as follows.

Type IIA theory contains non-perturbative particle-like D0-branes, with
masses given by k/gs, where k is the D0-brane charge under C1. In the strong
coupling limit, all these states are becoming massless, so the strong coupling
limit is a theory with an infinite tower of states becoming massless.

The idea is to propose that type IIA theory has a dual description as an
11d theory compactified on a circle, with radius related to the string coupling
as R = gs. The states with mass k/gs correspond in the dual picture to the
Kaluza-Klein replicas of the 11d graviton multiplet. Type IIA theory at
extreme strong coupling corresponds to the decompactification limit of this
theory.

There is a supergravity theory in 11d which under compactification on a
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circle reduces to d = 10 N = 2 non-chiral supergravity. It contains and 11d
gravition, a 3-form C3 (and its dual C̃6), plus gravitino etc superpartners. In
particular, it does not contain a dilaton field, so it does not have a coupling
constant. This theory is however ill-defined in the UV (non-renormalizable,
etc), so should be regarded as an effective description of an underlying quan-
tum theory, which for the moment is completely unknown . So the natural
proposal is that the strong coupling limit of type IIA theory corresponds to
a quantum theory, called M-theory, whose low energy limit is given by 11d
supergravity.

This is a nice result, and explains the role of 11d sugra in string theory
(previously this sugra was unrelated to string theory, in contrast with its 10d
cousins). Understanding the microscopic degrees of freedom of M-theor, the
theory underlying 11d sugra, in one of the main challenges in string theory
today.

M-theory also contains p-brane states, which are found as BPS solutions
to 11d sugra, which therefore must exist in the full theory (since they are
BPS). They correspond to a 2-brane and a 5-brane, denoted M2-, M5-branes,
resp. The mapping of fields between Type IIA and M-theory is

M-theory ↔ Type IIA
GMN → Gµν

Aµ = Gµ,10

φ = G10,10

CMNP → Bµν = Cµν,10
Cµνρ

On the other hand, Type IIA D0-branes are KK replicas of the 11d fields,
the D2-brane is an M2-brane transverse to the M-theory S1, the F1 is an
M2 wrapped on the S1, the D4 is an M5 wrapped on S1, the NS5 is an
unwrapped M5. Finally the D6-brane corresponds to a purely gravitational
background in M-theory known as Taub-NUT metric.

E8 × E8 heterotic - Horava-Witten duality
The strong coupling limit of the E8 × E8 heterotic is also not a string

theory, but is related to a compactification of M-theory. Heterotic theory
has less supersymmetry than M-theory, so we need to break some of the
supersymmetry in the compactification. The compactification is taken to
be not on a circle S1, but on the quotient of a circle by the Z2 symmetry
corresponding to reflection with respect to one of its diameters, and simul-
taneously mapping C3 to −C3. This is equivalent to compactification on
an interval, see picture B.4 This compactification of M-theory is known as
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Figure 3.7: The quotient of a circle by a reflection under a diameter is an interval
I = S

1/Z2.

Horava-Witten theory [82].
The E8×E8 heterotic at string coupling gs is proposed to be equivalent to

the compactification of M-theory on the interval of radius R = gs. Again, the
heterotic strong coupling limit corresponds to the decompactification limit.

The mapping of fields is as follows. The N = 1 d = 1 supergravity
multiplet of the heterotic theory is mapped to the sector of 11d supergravity
which is invariant under the Z2 symmetry. On the other hand, the E8 gauge
multiplets must necessarily arise at the fixed points of the Z2 action, so they
are localized at the ten-dimensional boundaries of the spacetime M10 × I.
Each E8 gauge multiplets propagates at one of the boundary points of I
times M10, and does not propagate in the M-theory direction. This is our
first example of gauge interactions localized on a submanifold of spacetime.
see figure B.5.

The duality web
As one compactifies the 10d theories, more moduli appear, associated to

the geometry of the compactification space. Then there are more limits that
can be taken, for instance, strong coupling and small radii, with fixed ratios.
In this situation more duality relations appear; These dualities involve non-
perturbative as well as perturbative dualities, like T-duality. To give just one
example, compactification of M-theory on a two-torus is dual or equivalent to
compactification of type IIB theory on a circle, etc. This can be understood
by taking M-theory reducing to IIA on a circle, then reducing on a second
circle, and T-dualizing to type IIB theory.

Different compactifications of the different superstrings and M-theory are
related by an intricate duality web. We will not describe any more dualities
in this lecture. But they suggest a nice picture that we would like to discuss
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Figure 3.8: The strong coupling description of E8 × E8 heterotic involves the
compatification of M-theory on a space with two 10d boundaries. Gravity prop-
agates in 11d, while gauge interactions are localized on the 10d subpaces at the
boundaries.
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Figure 3.9: Map of the moduli space of the underlying theory and its different
known limits.

The picture that emerges is that in a sense there is a unique theory, which
describes all kinds of extended BPS objects, and which in different limits
reduces to perturbatives string theories (where strings are the fundamental
objects) or to other more exotic theories (like M-thoery, which is not a string
theory). This picture has become popular in the pictorial representation 3.9.
By abuse of language, the underlying theory is often called M-theory as well.

Surprisingly enough, string theory is NOT just a theory of strings!! It is
a huge challenge to really understand what string theory is about, once we
are far from any perturbative regime.
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Wp+1

Figure 3.10: Fluctuations of the theory around a Dp-brane sugra solution can be
described in stringy language as open strings with ends on a (p + 1)-dimensional
surface, located at the core of the topological defect.

3.3 D-branes

We conclude this lecture with a brief review of a very simple description of
some p-brane states in type II and type I theories, the Dp-branes.

3.3.1 What are D-branes

Given a p-brane state, one is interested in the spectrum of the theory when
expanded around this state. In general, this can be computed only in the
supergravity approximation, by expanding the sugra fields in background
plus fluctuations and computing the action for fluctuations by substitution
in the sugra action. This is extremely involved, and moreover suffers from
plenty of corrections.

The remarkable insight by Polchinski [26] is that he gave a completely
stringy proposal to obtain the spectrum of fluctuations of string theory
around certain p-brane states, the Dp-branes mentioned above. In fact, it is
a stringy definition of such p-brane states.

The proposal is to replace the p-brane soliton core by a (p+1) dimensional
hypersurface in flat space. The fluctuations of the theory around the p-brane
background correspond to open strings with ends on this hypersurface. The
spectrum of fluctuations of the theory around the p-brane background can be
obtained by simply quantizing such open strings. The hyperplane is known
as Dp-brane. The situation is shown in figure 3.10.

Notice that the Dp-brane, as a state, is non-perturbative, it does not
appear as an oscillator state of the string. On the other hand, what we have
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Figure 3.11: D-branes interact with closed string modes, and in particular couple
to the bulk graviton and (p + 1)-form fields, i.e. they have tension (of order 1/gs
in string units) and carry charge. Their backreaction on the background curves
and deforms it into the p-brane solution seen in the supergravity regime.

provided is a stringy description of the spectrum of fluctuations of the theory
around the p-brane state, in terms of oscillation modes of open strings with
ends on the Dp-brane worldvolume.

Properties

This surprising proposal works. The Dp-brane interacts with closed string
via diagrams with the topology of a disk, as in figure A.4.

In particular, they can be seen to carry tension and charge, which matches
the tension and charge of the p-brane solutions in supergravity. This suggests
that the Dp-branes described as subspaces where open strings can end is a
stringy version of the fat p-brane solutions of supergravity. The back-reaction
of the Dp-brane on the flat background curves and modifies it to the full sugra
solution.

Moreover, it can be seen that the Dp-branes described in this way break
half of the supersymmetries, so they are BPS states of the theory.

It is important to notice that NOT all p-branes in string theory are Dp-
branes. For the NS5-branes and others, there is no simple stringy description
for their spectrum of fluctuations. So the study of the dynamics of these
objects is much more complicated than for D-branes.

It is also important to realize that NOT all superstring theories contain D-
branes. Namely, the p-branes in heterotic string theories are not Dp-branes,
so there are no D-branes in heterotic theories. Type IIB theory contains
D(2p+1)-branes, while IIA contains D2p-branes, and type I contains D1, D5
and D9-branes.
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3.3.2 Worldvolume theory

The quantization of open strings leads to a stringy tower of modes. The light-
est of these are massless and correspond to the zero modes of the topological
defect as introduced above. Consider a Dp-brane with (p + 1)-dimensional
worldvolume extended along the directons x0, . . . , xp, in flat 10d spacetime.
Consider an open string with both endpoints on the Dp-brane. The lightest
oscillation states of this string correspond to gauge bosons, Aµ, 9− p scalars
Y i (Goldstone bosons of the translational symmetries of the vacuum, broken
by the Dp-brane), and some fermions λa (Goldstinos of the supersymme-
tries of the vacuum which are broken by the Dp-brane). Notice that since
the open string endpoint must be on the D-brane worldvolume, these fields
are naturally localized on the D-brane worldvolume. They define a (p + 1)-
dimensional field theory, which describes the dynamics of the Dp-brane. For
instance, for a D3-brane in type IIB theory, the massless modes of an open
string with ends on the D3-brane correspond to a U(1) vector boson, six real
scalar fields, and four Majorana fermions, all neutral under the U(1) group.

An important feature of Dp-branes (and p-branes) in general, is that the
BPS property implies that several parallel Dp-branes of the same kind do
not suffer net attraction or repulsion. The equality of tension and charge for
BPS branes guarantees that the gravitational attraction is cancelled by the
repulsion due to their equal charges. So it is possible to consider configu-
rations with several parallel Dp-branes at arbitrary points in the transverse
space.

In particular, several of these Dp-branes may coincide at the same point.
This is an interesting configuration, so let us consider n coincident Dp-branes
in flat 10d space. Without going into much details, it is possible to under-
stand that now there are n2 possible open strings, depending on on which
brane the string is starting (out of the n possible ones) and on which it is
ending (out of the n possible ones). It is important to recall that we work
with oriented open strings. The situation is shown in figure 3.12. The spec-
trum in each sector is similar, so the total open string sector, for D3-branes
for instance, contains n2 4d gauge bosons, which can be seen to organize
into an U(n) gauge group, six 4d real scalars, with transform in the adjoint
representation (of dimension n2), and four 4d Majorana fermions, also in the
adjoint.

If the D-branes are slightly separated, the stretching of the open string
means that some of the fields are slightly massive, with mass given by the
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Figure 3.12: Open string stretched within a stack of 3 overlapping D-branes.
They are shown as separated for the sake of clarity.

string tension times the D-brane separations. The above modes are massless
for overlapping D-branes, and have small masses �Ms if the inter-D-brane
distance is much smaller than the string length.

The interpretation of these modes is trickier than for just one brane.
In general, we may say that the eigenvalues of the scalars vevs (which are
matrices in the adjoint) correspond to the positions of the D-branes in trans-
verse space. However, there is an intriguing underlying matrix structure,
which leads some researchers to the idea that spacetime positions, coordi-
nates, should become matrices at length scales much smaller than the string
length. This idea underlies some of the most advanced proposals to un-
derstands string theory, M-theory, and the structure of spacetime, like the
M(atrix) theory proposal [29].

The effective action for light modes of the open strings can be obtained
by computing their scattering amplitudes using the rules in the previous
sections, and cooking up an effective action reproducing them. Alternatively,
one can consider turning on a background for these fields (for instance, for the
D-brane gauge fields), writing a 2d action for the worldsheet in the presence of
these fields, and imposing that the worldsheet theory is conformally invariant.
The coupling of gauge fields to the worldsheet is described by adding to the
usual Polyakov action the boundary action

Sbdry =
∫

∂Σ
dξa∂aX

µ(σ, t)Aµ(X(σ, t)) (3.12)

where ∂Σ is the boundary of the wordsheet Σ. It amounts to taking the 1-
form A1 on the D-brane worldvolume, and integrating it along the 1d world-
sheet boundary, i.e. Sbdry =

∫
∂ΣA1. This shows that the string endpoints are
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charged with respect to the worldvolume 1-form gauge field.
By either method, one obtains a (p + 1)-dimensional effective action for

the worldvolume massless modes, which looks like (a supersymmetrization
with respect to the 16 unbroken supercharges, in type II D-branes)

SDp = TDp

∫
dp+1x [−det(G +B + α′F ) ]1/2 (3.13)

plus some topological terms (Wess-Zumino terms) which will not interest us
for the moment. This is the so called Dirac-Born-Infeld action (DBI). Here G
and B are the induced metric and 2-form induced on the worldvolume from
the 10d ones, and F is the worldvolume field strenght. The leading order
of this action is just the string tension times the worldvolume volume; next
order in F is the Yang-Mills action for the worldvolume gauge bosons 4 So
the vector bosons Aµ are indeed gauge bosons.

So this is a second situation where we find that gauge interactions can be
consistently localized to subspaces of spacetime, while gravity propagates in
full spacetime. These gauge interactions are therefore qualitatively different
from those in heterotic string theory.

A last comment is that considering a non-trivial background for the world-
volume scalar fields Y i(x0, . . . , xp) amounts to considering a curved Dp-brane
worldvolume. Dp-brane can therefore do all kinds of things, like wrap a
non-trivial cycle in a topologically non-trivial spacetime (for example, wrap
around a circle in the internal space in a M4 × T 6 compactification).

3.3.3 D-branes in string theory

Here we review some of the main applications where D-branes are important
in string theory

Theories with open strings

Some string theories, like type I, contain open strings already in their vacuum
state. D-branes have become so useful and popular, that now any theory with
open strings is rephrased in D-brane language. Using the above rules, the
space where open strings are allowed to end IS a D-brane, which is present in

4In fact the DBI action is valid just for U(1), the generalization to the non-abelian case
is not known.
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the vacuum of the theory (so in the present context should not be regarded
as a soliton-like excited state!).

For instance, type I theory contains open strings already in its vacuum,
so contains a number of D-branes in its vacuum. Since the endpoints of type
I open string can be anywhere in 10d space, the D-branes in the vacuum of
type I theory have a 10d worldvolume, which fills 10d spacetime completely,
namely they are D9-branes. The gauge bosons in type I theory can be re-
garded as the gauge bosons on the worldvolume of these D-branes. There are
32 D9-branes in type I theory, so the gauge group in the open string sector
would be U(32), but the fact that the open strings are unoriented reduces the
group to SO(32). We will construct this theory in more detail in subsequent
lectures.

Non-perturbative effects and D-branes

Effects of non-perturbative states in string theory can be very important.
Here we would like to review a situation where the perturbative description
of string theory breaks down and give singular answers for some quantities;
happily, non-perturbative effects come to the rescue precisely in this situation
and make physics of string theory smooth.

Strominger’s conifold
In the study of the compactification of type IIB theory on Calabi-Yau

spaces, one realizes that the effective action becomes singular at a point in
the moduli space of Calabi-Yau geometries. This means that the perturbative
prescription for computing amplitudes is giving some infinite answers, which
appear as a singular behaviour in the dependence of the string action on
moduli vevs.

This seemingly ill behaviour of string theory puzzled experts for many
years. The issue was solved in a beautiful paper [90], which realized there is
a non-perturbative state playing a key role in this situation.

It can be seen that the singular behaviour appears precisely at the point in
moduli space where one submanifold of the Calabi-Yau, a 3-cycle, degenerates
to zero size. The geometry of the Calabi-Yau near this 3-cycle can be locally
described by the set of points in C4 satisfying the equation

z2
1 + z2

2 + z2
3 + z2

4 = ε (3.14)

and ε is the vev of a modulus field in 4d, which controls the size of the 3-
cycle (for instance, if ε is real, the above CY contais a 3-sphere of radius
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ε1/2, obtained by restricting to real zi). This geometry is called the conifold
singularity, and is very popular in the string theory community (it is the
most generic singularity in Calabi-Yau spaces).

Strominger’s insight was to realize that there exist a non-perturbative
state which corresponds to a D3-brane wrapped on this 3-sphere, so which
looks like a particle-like state in 4d. Its mass is the D3-brane tension times
the 3-sphere volume

MD3 = TD3VS3 (3.15)

so the particle is becoming massess as ε→ 0. Therefore, the dynamics of this
state is exteremly relevant, precisely at the point at which the perturbative
effective action is becoming singular. Strominger moreover provided quanti-
tative arguments showing that including the additional light state into the
effective action makes it smooth and well behaved. And integrating it out in
the smooth effective action leads to the singularity observed using just the
perturbative prescription.

In fact, the theory has 4d N = 2 susy, so its action is completely deter-
mined once the spectrum is known. The relevant piece of the spectrum is an
N = 2 U(1) vector multiplet, whose gauge boson arises from the IIB 4-form
with three indices along the 3-cycle; and one N = 2 hypermultiplet, given by
the D3-brane state, charged under the vector multiplet. The effective action
is just an N = 2 U(1) gauge field theory with one charged hypermultiplet.
Completely standard and completely smooth!

Notice that the result is present no matter how small the string coupling
is. Here non-perturbative effects are crucial even in the perturbative regime.

Notice also that the result is amazing from the string theory perspective.
Here we have a light particle, which is not describe as an oscillation mode
of the string. It is however natural from the viewpoint of non-perturbative
string theory, where objects with different string or brane nature are on an
equal footing.

There are many other examples of this kind of behaviour. As usual,
string theory is clever enough to give finite answers even in the most singular
situations. The theory has an incredible amount of self-consistency.

Topology change
Further investigation of the conifold non-perturbative states led to a fan-

tastic effect [91]. Non-perturbative states can mediate phase transitions
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Figure 3.13: Tuning a modulus in the Calabi-Yau geometry, a 3-cycle shrinks and
the geometry develops a conifold singularity.

where the topology of the internal space (and so, of spacetime, changes). Tak-
ing a Calabi-Yau with two conifold singularities (with homologically related
S3’s), and shrinking the corresponding 3-cycles, one finds that at the singular
point in moduli space the low energy field theory is N = 2 U(1) gauge the-
ory with two charged massless hypermultiplets, Ha. This theory has a Higgs
branch, where these hypermultiplets (which have non-perturbative origin!)
acquire and expectation value along a flat direction of the scalar potential.
The flat direction is parametrized by a field with no potential, a modulus. It
has a geometric interpretation, which corresponds to parametrizing the size
of 2-spheres which resolve the conifold singularities. This is schematically
shown in fig C.3.

In the process of sending ε→ 0 and going to the Higgs branch the topol-
ogy has changed, we have replaced an S3 by and S2. The transition is codified
in a picture like C.4

This fact is remarkably important. The fact that string theory can
smoothly interpolate between compactification spaces of different topology
means that the choice of compactification manifold is in a sense dynamical,
and determined by vevs of dynamical fields of the theory. All moduli spaces of
different compactifications are connected into a huge universal moduli space.

3.3.4 D-branes as probes of spacetime

As already mentioned, vevs of worldvolume massless scalar fields correspond
to coordinates of the brane in transveser space. This means that the moduli
space of vacua of the field theory on the volume of a D-brane is the geometry
of the space transverse to the D-brane. In this sense, spacetime can be
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Figure 3.14: Topology change in the neighbourhood of a conifold singularity.
Starting with a finite size S

3 we tune a modulus to shrink it; at this stage mass-
less state appear; a vev for them parametrizes growing an S

2 out of the conifold
singualrity.

considered a concept derived from more fundamental entities, like the field
theory on the D-branes. This proposal generlizes to more general and less
supersymmetric situations (like D-branes at singularities [32]).

This idea lies at the heart of some proposals like M(atrix) theory, which
attempts at providing a microscopic definition of 11d M-theory [29]. The
fundamental concept in M(atrix) theory is the worldvolume (worldline) ac-
tion on a bunch of n type IIA D0-branes, in the limit n→∞. This is given
by the dimensional reduction to 0 + 1 dimensions of d = 10 N = 1 U(n)
super Yang-Mills.

In this approach, spacetime is obtained as the moduli space of the D0-
brane gauge theory. Moreover, it is possible to reproduce supergravity in-
teractions between objects by considering the dynamics of the 0 + 1 gauge
theory on configurations with slowly varying backgrounds for scalar fields (i.e.
wavepackets slowly moving in spacetime). The arbitrariness in the number
of D0-branes allows to explore arbitrarily high momentum in the M-theory
dimension, and to recover 11d physics of M-theory.

Other applications of D-branes as probes includes throwing D-branes to
diverse singularities of spacetime to see whether string theory can make sense
of them. This approach has been successful in some cases, and has led to the
understanding of certain naked singus in spacetime [33].
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3.3.5 D-branes and gauge field theories

It is possible to take a low-energy limit in string theory in the presence of
D-branes, which keeps all physical quantities of the worldvolume gauge field
theory finite. In this limit the dynamics reduces to a quantum gauge field
theory in p+1 dimensions, with gravity decoupled from it. Knowledge about
perturbative and non-perturbative dynamics of string theory and D-branes
can be used to explore or reproduce the dynamics of quantum gauge field
theories. There are several examples of this, let us review two prototypical
cases.

Montonen-Olive duality

One can use dualities of string theory to derive dualities in quantum gauge
field theories. For instance, consider the 4d N = 1 supersymmetric U(n)
gauge theory obtained in the low-energy limit on a stack of n overlapping
Type D3-branes. Gauge bosons and superspartners are obtained from open
strings stretched between the different D3-branes. The gauge coupling is
fixed by the string coupling (gYM)2 = gs.

Type IIB theory has a dual description in terms of another type IIB theory
with string coupling 1/gs. In the dual theory, our configuration is given by
n D3-branes, so it is a U(n) gauge theory but now with gauge coupling
g′YM = 1/gYM . The original perturbative states, open strings between the
original D3-branes, are mapped to D1-branes stretched between D3-branes;
it is possible to see that they correspond to ‘tHooft Polyakov monopoles of
the dual theory.

Hence N = 4 U(n) super Yang-Mills has a strong-weak duality relating
the theory with coupling gYM and 1/gYM , and exchanging fundamental and
solitonic degrees of freedom. This duality had been previously proposed from
purely field theoretical considerations [34], but we see here that it follows
easily from the conjectured self-duality of type IIB string theory.

AdS/CFT correspondence (Maldecena conjecture)

We have proposed two different descriptions for the same object, the Dp-
brane; one in terms of a solution to the sugra equations of motion, the other
in terms of open strings ending on a (p + 1)-dimensional hyperplane. In
principle both describe the same dynamics.

The Maldecan conjecture proposes to take a low energy limit in these two
descriptions and match the result. On one side, we recover 4d N = 4 super
Yang-Mills, decoupled from gravity; on the supergravity side, the 3-brane
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solution becomes and AdS5 × S5 geometry. So the proposal by Maldacena
[96] is that N = 4 U(n) super Yang-Mills is completely equivalent to type
IIB string theory in AdS5 × S5.

This is a striking statement, that a string theory is completely equivalent
to a gauge field theory! In fact, a subtle features makes this statement
less striking. String theory on the curved space AdS5 × S5 does not have an
exactly solvable worldsheet theory, so we can study it only in the supergravity
approximation, valid for small curvatures. This regime corresponds, in the
language of the dual field theory, to the limit of large λ = g2

YM N , this is a
strongly coupled regime; λ is known as the ’t Hooft coupling, and ’t Hooft
indeed proposed that in the large λ regime gauge field theory should be
described as a string theory [36]. Hence the tractable regime in string theory
is mapped to an untractable regime in gauge theory (because of the strong
coupling). On the other hand, the tractable regime in gauge theory (small
N) maps to string theory in spaces with string scale curvatures, which is
completely untractable. So no paradox arises in relating a gauge field theory
and a full-fledged string theory.

This conjecture has led to many important insights into gauge field theo-
ries in the large N limit, using the dual supergravity as a computational tool.
In cases with less susy than N = 4 one can show at a qualitative level some
features of strongly coupled gauge theories like confinement, chiral symmetry
breaking, etc.

3.4 Our world as a brane-world model

We conclude this discussion by mentioning what applications all these non-
perturbative objects may have in constructing phenomenological models of
our world. The main motivation is that branes provide us with a mechanism
to generate non-abelian gauge symmetries very different from that in het-
erotic theory. In particular, it is possible to localize gauge interactions in a
subspace of spacetime, while gravity is still able to feel full spacetime.

The brane world idea is that it may be possible to construct string/M
theory models where all or some of the particles of the standard model are
part of the gauge sector of some branes, and hence are unable to propagate
in some directions transverse to the brane. On the other hand, gravity would
still be able to propagate on such directions.

There are basically two scenarios where this can be realized in string
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theory.

Horava-Witten phenomenology
The first is the Horava-Witten theory, which already before compactifi-

cation has E8 gauge interactions localized on 10d subspaces in an 11d world.
In order to build a phenomenological model, one may operate in a manner

similar to that in the weakly coupled heterotic. Namely, compactify six of
the ten dimensions in a Calabi-Yau manifold, endowed with some internal
background for some of the E8 gauge bosons. This configuration leads to 4d
gravitational interactions and gauge interactions (with a gauge group deter-
mined by the internal gauge background), plus several families of charged
chiral fermions.

Most of the phenomneology is similar to that in weakly coupled heterotic
theory, except for hte choice of fundamental scale. As we discuss later on,
the existence of one direction transverse to all gauge interactions allows to
lower the fundamental scale below the 4d Planck scale. A nice choice in this
context is to take the fundamental scale (11d Planck length to be around
the gut scale 1016 GeV). This scenario was proposed in [37], and explored in
many subsequent papers.

D-brane worlds
This possibility has been considered in [106] and many subsequent papers.

It corresponds to considering compactifications of type II or type I theories
on say a Calabi-Yau manifold X6, with D-branes spanning four-dimensional
Minkowski space and wrapped on a submanifold of X6.

The simplest possibility would be to consider the standard model to be
embedded in the volume of a D3-brane sitting at a point in X6. Other
possibilities would be to consider it to be embedded in a D5-brane whose
worldovlume spans 4d Minkowski space and wraps a 2-cycle in X6. The
situation is shown in fig 3.15. In general Dp-brane leads to a 4d gauge sector
if it wraps a (p− 3)-dimensional submanifold Σ of X6.

In principle, compactification in X6 leads to 4d gravity; on the other
hand, the gauge sector on the D-brane is also compactified on Σ and leads
to 4d gauge sector. One has to work rather hard to construct configurations
of D-branes whose open string sector leads to something like the standard
model, but this has been achieved in several ways. We will skip these details
here.

This kind of construction allows to build models where the fundamental
string scale is not of the order of the 4d Planck mass, and can in fact be
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Figure 3.15: Schematic picture of a brane-world construction, with the Standard
Model localized on the volume of e.g D5-branes with worldvolume M4 × Y2, with
Y2 a compact submanifold of X6.

much lower (in order to be consistent with experiment, it cannot be lower
than a few TeV. The largeness ofMP can be generated if the compactification
manifold is very large, so that gravity gets diluted. On the other hand, we
should keep the internal directions along the brane of small to avoid too
light KK replicas of Standard Model particles (Mc ≤ TeV along directions
in Y2 in the picture). However, constraints on the size of the directions in
X6 transverse to the brane (which are felt only gravitaionaly) are very mild,
and such size can be as large as 0.1 mm.

More quantitatively, before compactification gravitational and gauge in-
teractions are described by an effective action

∫
d10x

M 8
s

g2
s

R10d +
∫
dp+1x

M p−3
s

gs
F 2

(p+1)d (3.16)

where the powers of gs follow from the Euler characteristic of the worldsheet
which produces the propagator of gravitons (sphere) and gauge bosons (disk),
while the powers of Ms are fixed by dimensional analysis.

Upon compactification, the 4d action picks us a volume factor, as we saw
in the discussion of KK compactification, and reads

∫
d4x

M 8
s VX6

g2
s

R4d +
∫
d4x

M p−3
s VΣ

gs
F 2

4d (3.17)

This allows to read off the 4d Planck mass and gauge coupling, which are
experimentally measured.

M2
P =

M 8
s VX6

g2
s

' 1019 GeV
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1/g2
YM =

M p−3
s VΣ

gs
' 0.1 (3.18)

If the geometry is factorizable, we can split VX6 = VΣVtrans, with Vtrans the
transverse volume. One therefore obtains

M2
P g

2
YM =

M11−p
s Vtrans
gs

(3.19)

This shows that it is possible to generate a large Planck mass in 4d with a
low string scale, by simply increasing the volume transverse to the brane.

This allows to rephrase the hierarchy problem in geometric terms. The
fundamental string scale could be close to the weak scale, around a few
TeV, and the 4d Planck scale could be a derived scale arising from a large
transversal volume.

It is important however, that having a low string scale is a possibility, not
a necessity, in the brane world picture. However, it is an exciting possibility
to provide new realizations of theories similar to our standard model within
the framework of string theory.

Whether it is heterotic string theory or a brane-world scenario the way
in which string theory is realized in Nature (if any of these mechanisms,
there may be other ways not known to us for the moment), it is matter
of experiment for coming generations of experiments. For the moment, we
should be happy enough with the possibility of realizing such rich theories
into a beatiful structure such as string theory.
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Chapter 4

Quantization of the closed
bosonic string

In this lecture we obtain the spectrum of oscillations of the closed bosonic
string.

4.1 Worldsheet action

For this discussion I closely follow section 1.2 of [55]

As a string evolves in time, it sweeps out a two-dimensional surface in
spacetime Σ, known as the worldsheet, and which is the analog of the world-
line of a point particle in spacetime. Closed string correspond to worldsheets
with no boundary, while open string sweep out worldsheets with boundaries.
Any point in the worldsheet is labeled by two coordinates, t the ‘time’ coor-
dinate just as for the pointparticle worldline, and σ, which parametrizes the
extended spatial dimension of the string at fixed t. We denote σ, t collectively
as ξa, a = 1, 2.

Our pupose is to write down the action for a string configuration in flat
D-dimensional Minkowski space. For the bosonic string, such configurations
are in principle described by D embedding functions Xµ(σ, t), with µ =
0, . . . , D − 1, which can be regarded as 2d fields on the worldsheet.

77
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4.1.1 The Nambu-Goto action

The natural action for a string configuration is the integral of the area element
on the worldsheet, in principle measured with the metric inherited from the
ambient metric in MD. The ambient metric is computed as follows

dsa = hab dξ
a dξb

ds2 = ηµν dX
µ dXν = ηµν

∂Xµ

∂ξa
∂Xν

∂ξb
dξa dξb (4.1)

hence

hab = ηµν
∂Xµ

∂ξa
∂Xν

∂ξb
(4.2)

The Nambu-Goto action is

SNG[X(ξ)] = − 1

2πα′

∫

Σ
d2ξ (−h)1/2 (4.3)

where h = det(hab) and α′ is related to the string tension T = 1
2πα′ .

4.1.2 The Polyakov action

The Nambu-Goto action is not very convenient for quantizing the worldsheet
theory. So we are going to replace it by another action, which is classically
equivalent, but which is much more convenient for quantization, the Polyakov
action.

To do that we introduce another degree of freedom on the worldsheet,
a worldsheet metric gab(ξ) which is in principle independent of the induced
metric hab. The natural action on the worldsheet is then

SP = − 1

4πα′

∫

Σ
d2ξ (−g)1/2 gab(σ, t) ∂aX

µ ∂bX
νηµν (4.4)

with g = det(gab)

Classical equivalence with the Nambu-Goto action follows from solving
the equations of motion for gab, namely δS/δgab = 0. Using

δg = −g gab δgab (4.5)
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one gets

δgSP = − 1

4πα′

∫

Σ
d2ξ (−g)1/2 δgab [−1

2
gab g

cd∂cX
µ ∂dXµ + ∂aX

µ ∂bXµ ] =

= − 1

4πα′

∫

Σ
d2ξ (−g)1/2 δgab [−1

2
gab g

cd hcd + hab ] (4.6)

The equations of motion read

hab =
1

2
gab g

cd hcd (4.7)

Taking determinant

(−h)1/2 =
1

2
(−g)1/2 gcd hcd (4.8)

and replacing into (9.1) we get

SP [X(ξ), gclas(ξ)] = − 1

2πα′

∫

Σ
d2ξ (−h)1/2 = SNG[X(ξ)] (4.9)

4.1.3 Symmetries of Polyakov action

The action (9.1) has some important symmetries which we now discuss

1. D-dimensional Poincaré invariance.

X ′µ(ξ) = Λµ
ν X

ν(ξ) + aµ

g′ab(ξ) = gab(ξ) (4.10)

It is a global symmetry from the worldsheet viewpoint.

2. Two-dimensional diffeomorphism invariance, namele coordinate reparametriza-
tion of the worldsheet.

ξ′a = ξ′a(ξ)

X ′µ(ξ′) = Xµ(ξ)

g′ab(ξ
′) =

∂ξc

∂ξ′a
∂ξd

∂ξ′b
gcd(ξ) (4.11)

It is a local (i.e. ξ dependent) symmetry. The 2d fields Xµ(ξ) behave
as scalars while gab(ξ) is a 2-index tensor (metric).



80CHAPTER 4. QUANTIZATION OF THE CLOSED BOSONIC STRING

3. Two-dimensional Weyl invariance

X ′µ(ξ) = Xµ(ξ)

g′ab(ξ) = Ω(ξ) gab(ξ) (4.12)

It is a local symmetry.

Weyl-related string configurations correspond to the same embedding of the
world-sheet in spacetime. So this is an extra redundancy in the Polyakov
description, not present in the Nambu-Goto description.

It is convenient to emphasize at this point that a commonly mentioned
symmetry, conformal invariance, is a subset of these symmetries. In particu-
lar, in covariant quantization one fixes the so-called conformal gauge, which
amounts to using diff and Weyl invariances to set gab = ηab. There is then
a left-over local symmetry which is the set of coordinate transformations,
whose effect on the metric can be undone with a Weyl transformation (so
that the gauge fixed flat metric is preserved). This set of transformations
is the 2d conformal group, which is extremely important in string theory.
However, we will quantize the string in a different gauge, and conformal
symmetry will not be manifest.

4.2 Light-cone quantization

For this section, we follow the computations in sections 1.3 and 1.4 of [55]. A
more detailed treatment, using the formalism of quantization of constrained
systems can be found in [39].

In quantizing the 2d field theory, we need to fix the gauge freedom. The
light-cone gauge is the simplest one, and the most convenient to obtain the
spectrum. This is because the final states will be the physical states of the
theory, and in particular spacetime gauge particles will arise in the unitary
gauge (namely, we will obtain only the two physical polarization modes of
massless gravitons or gauge particles, and no spacetime spurious gauge de-
grees of freedom).

4.2.1 Light-cone gauge fixing

Define the light-cone coordinates

X± =
1√
2

(X0 ± X1)
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+

MDΣ
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Figure 4.1: The light cone condition defines equat t slices on the worldsheet in
terms of equal X+ slices on spacetime.

X i i = 2, . . . , D − 1 (4.13)

The metric (scalar product) in MD then reads

AµBµ = −A+B− − A−B+ + AiBi (4.14)

so

A− = −A+ , A+ = −A− , Ai = Ai (4.15)

The gauge fixing proceeds through several steps

1. Reparametrization of t
Fix the t reparametrization freedom by setting the so-called light-cone

condition

X+(σ, t) = t (4.16)

see figure 4.1. So X+ will play the role of worldsheet time, and its conjugate
variable P+ = −P− will play the role of worlsheet energy (2d hamiltonian).

2. Reference line in σ
Choose a line on the worldsheet σ0(t) intersecting all constant t slices

orthogonally (w.r.t. the 2d metric g). Namely

gtσ(σ, t) = 0 at σ = σ0(t) (4.17)
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(  ,t)σ

σ=0 σ= l

Figure 4.2: The coordinate t on the worldsheet corresponds to the coordinate X+

of the spacetime point where it is embedded. The coordinate σ is defined as the
invariant distance, to a reference line σ = 0, along fixed t slices. The total string
length is fixed to be `.

Notice that this still leaves the freedom of an overall motion of the reference
line. This will be important as an additional constraint on the final spectrum
(see (4.43)).

3. Reparametrization of σ
For slices of constant t, define a new spatial coordinate σ ′ for each point

of the slice. σ′ is defined as the (diffeomorphism and Weyl) invariant distance
to the reference line along the slice

σ′ = c(t)
∫ σ

σ0

f(σ, t) dσ (4.18)

where

f(σ) = (−g)−1/2 gσσ(σ, t) (4.19)

and c(t) is a σ independent coefficient used to impose that the total length
of the string is fixed, a constant in t which we call `. The situation is shown
in figure 4.2.

In the new coordinates, f(σ′) is σ′ independent. In the following we will
only use this coordinatization, and we drop the prime. So we write

∂σf(σ, t) = 0 (4.20)

4. Weyl invariance
Now we use Weyl invariance to impose that

g = −1 ∀σ, t (4.21)
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Since f(σ) is Weyl-invariant, it still satisfies ∂σf(σ, t) = 0. Using the defini-
tion of f , we get

∂σgσσ = 0 (4.22)

This concludes the gauge fixing. The metric and inverse metric read

(gab) =
(
gσσ(t)

−1[−1 + gtσ(σ, t)
2] gtσ(σ, t)

gtσ(σ, t) gσσ(t)

)
; (gab) =

(−gσσ(t) gtσ(σ, t)
gtσ(σ, t) gσσ(t)

−1[1− gtσ(σ, t)2]

)

4.2.2 Gauge-fixed Polyakov action, Hamiltonian

The Polyakov lagrangian in light-cone coordinates reads

L = − 1
4πα′

∫ `
0 dσ [−2 gtt∂tX

+ ∂tX
− + gtt∂tX

i ∂tX
i − 2 gσt ∂tX

+ ∂σX
− +

+2 gσt ∂σX
i ∂tX

i + gσσ ∂σX
i ∂σX

i ] =

= − 1
4πα′

∫ `
0 dσ [ gσσ (2 ∂tX

− − ∂tX i ∂tX
i) − 2 gσt (∂σX

− − ∂σX i ∂tX
i) +

g−1
σσ (1− g2

σt) ∂σX
i ∂σX

i ] (4.23)

Defining the center of mass and relative coordinates x−(t), Y −(σ, t)

x−(t) =
1

`

∫ `

0
dσ X−(σ, t)

X−(σ, t) = x−(t) + Y −(σ, t) (4.24)

we obtain

L = − `

2πα′ gσσ ∂tx
−(t) − 1

4πα′

∫ `

0
dσ [− gσσ ∂tX i ∂tX

i +

− 2 gσt (∂σY
− − ∂σX i ∂tX

i) + g−1
σσ (1− g2

σt) ∂σX
i ∂σX

i ] (4.25)

The Y −(σ, t) does not have time derivatives in this lagrangian, so it acts as
a Lagrange multiplier imposing

∂σgσ,t(σ, t) = 0 ∀σ, t (4.26)

Since we have gσt(σ = 0, t) = 0 due to (4.17), we get

gσ,t(σ, t) = 0 ∀σ, t (4.27)
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The lagrangian becomes

L = − `

2πα′ gσσ ∂tx
−(t) +

1

4πα′

∫ `

0
dσ [ gσσ ∂tX

i ∂tX
i − g−1

σσ ∂σX
i ∂σX

i ]

The momentum conjugate to x−(t) is

p− = −p+ =
∂L

∂(∂tx−)
= − `

2πα′ gσσ (4.28)

so gσσ is not really an independent coordinate variable, but a momentum
variable.

The momenta conjugate to X i(σ, t) are

Πi(σ, t) =
∂L

∂(∂tX i)
=

1

2πα′ gσσ ∂tX
i(σ, t) =

p+

`
∂tX

i(σ, t) (4.29)

We can construct the Hamiltonian

H = p−∂tx
−(t) +

∫ `

0
dσΠi(σ, t) ∂tX

i(σ, t) − L =

= − `

2πα′ gσσ ∂tx
−(t) +

∫ `

0
dσ

1

2πα′ gσσ ∂tX
i(σ, t) ∂tX

i(σ, t) +

+
`

2πα′ gσσ ∂tx
−(t) − 1

4πα′

∫ `

0
dσ [ gσσ ∂tX

i ∂tX
i − g−1

σσ ∂σX
i ∂σX

i ] =

=
1

4πα′

∫ `

0
dσ [ gσσ ∂tX

i ∂tX
i + g−1

σσ ∂σX
i ∂σX

i ] = (4.30)

In terms of momenta

H =
`

4πα′p+

∫ `

0
dσ [ 2πα′ Πi Πi +

1

2πα′ ∂σX
i ∂σX

i ] (4.31)

The equations of motion for x−, p− = p+ are

∂tx
−(t) =

∂H

∂p−
= − ∂H

∂p+
=

H

p+

∂tp
+(t) = − ∂H

∂x−
= 0 (4.32)

so p+ is conserved, and x− is linear in t and has trivial dynamics.
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The equations of motion for X i, Πi are

∂tX
i(σ, t) =

δH

δΠi

= c 2πα′ Πi

∂tΠi(σ, t) = − δH
δX i

=
c

2πα′ ∂
2
σX

i (4.33)

with c = `/(2πα′p+) So we get

∂ 2
t X

i = c2 ∂ 2
σX

i (4.34)

the wave equation for two-dimensional fields X i(σ, t). Indeed, for fixed (be-
cause it is conserved) p+, we see that H is the hamiltonian for D − 2 free

bosons in 2d 1.
It is useful to set ` = 2πα′p+, and so c = 1.

4.2.3 Oscillator expansions

The general solution to the equations of motion is a superposition of left-
and right-moving waves

X i(σ, t) = X i
L(σ + t) + X i

R(σ − t) (4.35)

For closed strings, we need to impose boundary conditions, periodicity in
σ

X i(σ + `, t) = X i(σ, t) (4.36)

The general form of XL, XR with those boundary conditions is

X i
L(σ + t) =

xi

2
+

pi
2p+

(t + σ) + i

√
α′

2

∑

n∈Z−{0}

αin
n
e−2πi n (σ+t)/`

X i
R(σ − t) =

xi

2
+

pi
2p+

(t− σ) + i

√
α′

2

∑

n∈Z−{0}

α̃in
n
e2πi n (σ−t)/` (4.37)

The coefficients xi, pi denote the center of mass coordinate and momentum,
while the two infinite sets of coeffients αin, α̃

i
n denote the amplitudes of the

momentum n mode for left and right movers.

1Recalling our discussion about the α′ expansion, this means that we can quantize the
theory exactly in α′.
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Promoting the worldsheet degrees of freedom x−(t), p+, X i, Πi to oper-
ators, with canonical commutators, we obtain the commutation relations

[
x−, p+

]
= −i

[
xi, pj

]
= iδij

[
αim, α

j
n

]
=

[
α̃im, α̃

j
n

]
= mδij δm,−n

[
αim, α̃

j
n

]
= 0 (4.38)

We can obtain the hamiltonian in terms of these

H =
1

2

∫ `

0
dσ [ 2πα′ Πi Πi +

1

2πα′ ∂σX
i ∂σX

i ] =

=
pipi
2p+

+
1

α′p+

[∑

n>0

[αi−nα
i
n + α̃i−nα̃

i
n ] + E0 + Ẽ0

]
(4.39)

We get the quantum mechanics of the center of mass motion and two infinite
sets of decoupled harmonic oscillators. Here we have normal-ordered the
creation and annihilation modes and E0, Ẽ0 are the corresponding zero point
energies, to be discussed below.

The Hilbert space of string states is obtained by defining a vacuum |k〉 =
|k−, ki〉 by

p+|k〉 = k−|k〉 , pi|k〉 = ki|k〉 , αin|k〉 = α̃in|k〉 = 0 ∀n > 0 (4.40)

and acting on it with the creation ladder operators αi−n, α̃
i
−n, with n > 0, in

an arbitrary way (almost, see later for an additional constraint).

As discussed in the overview lectures, each oscillation state of the string
is observed as a particle from the spacetime viewpoint, with spacetime mass

M2 = −p2 = 2p+p− − pipi (4.41)

Notice that p− corresponds to ∂x+, which in light cone gauge is ∂t, which
corresponds to the 2d hamiltonian H, so p− = H, and M2 = 2p+H − pipi.
We have

α′M2 = N + Ñ + E0 + Ẽ0 (4.42)

with N =
∑
n>0 α

i
−nα

i
n the total left oscillator number (analogously for Ñ).

It is important to recall from the commutation relations, that a single mode
αin or α̃in contributes n to the oscillator number.
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Hence the masses of spacetime particles increase with the number of os-
cillators in the corresponding string state.

There is one further constraint we must impose on the spectrum. Recall
that after gauge fixing we still had the freedom to perform an overall trans-
lation of the reference line σ = 0 by a t independent amount. This forces
to restrict the spectrum to the subsector invariant under translations in σ.
This amounts to requiring the net 2d momentum along σ to vanish, namely
the left- and right-moving operators in a state should carry the same total
momentum. Recalling that a mode n carries momentum n, the constraint is

N = Ñ (4.43)

the so-called level matching constraint. It is an important fact that the quan-
tization procedure can be performed independently for left- and right- movers
(e.g. defining left- and right-moving hamiltonians, and mass operators, etc)
and they only talk to each other at the level of building the physical spectrum
via the constraint (4.43).

Finally, we need to compute the zero point energies E0 = Ẽ0. Formally,
for each i

Ei
0 =

1

2

∞∑

n=1

n (4.44)

This is infinite so we compute it with a regularization prescription, i.e. as
the limit ε→ 0 of the non-singular part of

Z(ε) =
1

2

∞∑

n=1

n e−nε (4.45)

After some massage

Z(ε) =
1

2

∞∑

n=1

n e−nε = −1

2

d

dε

∞∑

n=1

e−nε = −1

2

d

dε

1

1− e−ε (4.46)

Since

1

1− e−ε =
1

ε

1

1− ε/2 + ε2/6 +O(ε3)
=

1

ε
[1 + ε/2− ε2/6 + ε2/4 +O(ε3)] =

=
1

ε
+

1

2
+

1

12
ε + O(ε2) (4.47)
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we get

Z(ε) = −1

2
[− 1

ε2
+

1

12
+O(ε) ] (4.48)

Dropping the infinite part and letting ε → 0, the zero point energy for a
single 2d free boson is

Ei
0 = Ẽi

0 = − 1

24
(4.49)

So for D − 2 we have E0 = Ẽ0 = −(D − 2)/24

α′M2 = N + Ñ − 2
D − 2

24
(4.50)

Dropping the infinity amounts to redefining the vacuum energy. One
might think that this is not possible because the Polyakov action includes a
worldsheet metric (i.e. gravity). However, this is not present in our gauge
fixing and the problem is avoided. It is important to emphasize that this
infinity is not present in other gauge fixings (like the conformal gauge), so
the infinity is an artifact of our gauge fixing. However, the zero point energy
we have computed has physical consequences, like fixing the dimension of
spacetime to be 26. In the light-cone gauge, which is not manifestly Lorentz
invariant, it appears when we require the spectrum to be Lorentz invariant, as
we motivate below. In other gauges, the condition appears in other ways. For
instance, in the conformal gauge fixing, as the cancellation of the conformal
anomaly.

For D = 26 we have

α′M2 = N + Ñ − 2 (4.51)

4.2.4 Light spectrum

It is now time to obtain the lightest particles in the spectrum of the string.
The states with smallest number of oscillators that we can construct satisfy-
ing (4.43) are

N = Ñ = 0 |k〉 α′M2 = −2

N = Ñ = 1 αi−1α
j
−1|k〉 α′M2 = 0

(4.52)
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The closed string groundstate is a spacetime tachyon. This field is trouble-
some, and it is thought to signal an instability of the theory. The result of
this instability is not known.

The second states transform as a two-index tensor with respect to the
SO(D − 2) subgroup of the Lorentz group manifest in the light-cone gauge.

One should recall that in a Lorentz invariant theory in D dimensions,
physical states of fields belong to representations of the so-called little group
(subgroup of Lorentz group which leaves invariant the D-momentum of the
particle). For massive particles, the D-momentum can be brought to the
form P = (M, 0, . . . , 0) in the particle’s rest frame, so the little group is
SO(D− 1). For massless particles, the D-momentum can be brought to the
form (M,M, 0, . . .), so the little group is SO(D − 2).

Our particles in the first excited sector are clearly not enough to fill out
a representation of SO(D − 1), so to have Lorentz invariance it is crucial
that they are massless. Notice that this is so only because we have imposed
D = 26, so this is a derivation of the dimension of spacetime in which string
theory can propagate consistently. Indeed, it is possible to construct the
Lorentz generators in terms of the oscillator numbers etc and check that the
Lorentz algebra is recovered only if D = 26. We skip this computation which
can however be found in standard textbooks, like [39]

Let us also point out that massive states in the theory do fill out repre-
sentations of SO(D − 1) = SO(25), altough only SO(24) is manifest.

The massless two-index tensor can be split in irreducible representations
of SO(24), by taking its trace (which is a 26d scalar particle, the dilaton φ),
its antisymmetric part (which is a 26d 2-form field Bµν) and its symmetric
traceless part (which is a 26d symmetric tensor field Gµν).

4.2.5 Lessons

The result of light cone quantization for the bosonic string can be phrased
in terms of the following recipe, which will be valid for other string theories
as well

• The only relevant degrees of freedom left are the center of mass and
D − 2 transverse coordinates X i(σ, t), i = 2 . . . , D − 1

• For closed string theories the 2d theory splits into two sectors, left-
and right-movers, which can be quantized independently. The only
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relation between them appears at the final stage, when imposing the
level matching condition on the physical spectrum.

• The spacetime (mass)2 operator (on each sector) is given by the oscil-
lator numbers plus the zero point energy, which should be computed
using the e−εn regularization.

4.2.6 Final comments

Upon studying interactions of these 26d fields one concludes that Gµν is a
26d graviton and Bµν is a gauge potential. So 26d interactions between
these fields are invariant under 26d coordinate reparametrization and gauge
transformations for B

Bµν → Bµν + ∂[µΛν](X) (4.53)

The 26d low energy effective action for these modes was described in the
overview lessons. In the string frame

Seff. =
1

2k2

∫
d26X (−G̃)1/2 { R̃ +

1

12
e−φ̃/12HµνρH

µνρ − 1

6
∂µφ̃∂

µφ̃ } +O(α′)(4.54)

We emphasize again that the dilaton vev fixes the string interaction cou-
pling constant in the 26d theory. So the string interaction coupling constant
is not an arbitrary external parameter, but the vacuum expectation value
of a spacetime dynamical scalar field in the theory. Instead of a continuum
of different string theories, labeled by the value of the coupling constant,
we have a unique string theory with a continuous set of vacua parametrized
by the vev for a scalar field with flat potential V (φ) ≡ 0. Fields with flat
potential are called moduli, and the set of vacua is called the moduli space
of the theory.



Chapter 5

Modular invariance

5.1 Generalities

In this Section we mainly follow the line of thought of section 7.3 in [55].
Our computation is however done in the light-cone gauge.

In this lecture we discuss the simplest case where we can witness the
remarkable finiteness properties of string theory. The example is provided
by the 1-loop vacuum amplitude. It corresponds to a worldsheet diagram
for a closed string moving in a circle and closing onto itself, so it has the
topology of a two-torus with no insertions of external lines. It represents the
1-loop amplitude of the vacuum going to vacuum process (in spacetime). See
figure 5.1

We know from the overview lectures that the amplitude is obtained by
summing over all possible inequivalent worldsheet geometries with two-torus
topology.

It is crucial to incorporate all possible geometries, and not to double-
count equivalent geometries. Concerning this, it is extremely important to
realize that a given geometry can receive two different interpretations. A
diagram corresponding to a two-torus with circle lengths `1 and `2 can be
regarded as

1) A closed string of length `1 propagating over a distance `2

2) A closed string of length `2 propagating over a distance `1

The two processes, although look different, correspond to the same ge-
ometry, so should be counted only once. This will be crucial later on.

91
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Figure 5.1: One-loop diagram for the vacuum going to vacuum process.

5.2 Worldsheet coordinatization in light-cone

gauge

Recall our recipe to compute amplitudes. First we sum over geometries of
an abstract worldsheet Σ with two-torus topology. Second, for each such
geometry we sum over possible configurations of the 2d dynamical fields in
Σ (in the light cone gauge, the transverse fluctuations X i(σ, t)).

Recall that in the light cone gauge we have 1) a coordinate σ which
parametrizes a direction of fixed length `; 2) a coordinate t which is locally
orthogonal to σ at every point; 3) a Hamiltonian for the physical degrees of
freedom, generating evolution in t for the 2d system. In terms of oscillator
and center of mass momentum

H =

∑
i p

2
i

2p+
+

1

α′p+
[L0 + L̃0 ] (5.1)

with

L0 =
∑

i

[∑

n>0

αi−n α
i
n + Ei

o

]
, and Ei

0 = − 1

24
(5.2)

and similarly for L̃0.
A two-torus can be described as the two-dimensional real plane, modded

out by translations by vectors in a two-dimensional lattice, see figure 13.3
There is a more or less obvious set of worldsheet geometries which we

should consider. It is shown in figure 5.3a), and corresponds to a closed
string (of σ-length `) evolving for t = τ2` (for τ2 > 00 and closing back onto
itself.
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Figure 5.2: A two-torus can be constructed by modding out the two-dimensional
plane by translations in a two-dimensional lattice. The unit cell is a parallelogram
with sides identified. Each vector corresponds to a non-contractible cycle in the
two-torus

Denoting z = σ + i t, the two-torus is defined by the identifications z ≡
z + `, z ≡ z + τ2`.

However, there are more general possibilities, as shown in figure 5.3b),
corresponding to a closed string of length ` evolving for t = τ2`, and gluing
back to the original state up to a change in the reference line σ = 0 (given
by a translation by τ1` in the σ-direction). Since there is no preferred choice
of the reference line, as discussed in the previous lecture, this is an allowed
possibility. The geometry corresponds to a two-torus defined by the identi-
fications z ≡ z + ` and z ≡ z + τ`, with τ = τ1 + iτ2. The parameter τ is
called the complex structure of the two-torus, for reasons not very relevant
here.

5.3 The computation

5.3.1 Structure of the amplitude in operator formalism

We have to sum over all possible configurations of 2d physical fields X i(σ, t)
for a given 2d geometry. In operator formalism, this amounts to considering
the complete set of quantum 2d states at a given time (i.e. the Hilbert space
of the 2d theory), apply evolution in t for a total time of t = τ2` and glue
the resulting state to the initial one (modulo a σ-translation by τ1`). The
amplitude for two-torus geometry corresponding to τ is therefore

Z(τ) =
∑

states

〈st.| e−τ2`H eiτ1`P |st.〉 (5.3)
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a)

τ2 τ2

τ1b)

Figure 5.3: Figure a) shows an obvious class of worldsheet geometries with two-
torus geometries, a closed string of length ` evolves for some time t = τ2` and
closes back to the initial state. Figure b) shows the more general class, where the
closed string is glued back to the original state modulo a change in the reference
line in σ.

where P is the generator of translations along σ

P =
∫ `

0
dσΠi ∂σX

i =
2π

`
(L0 − L̃0) (5.4)

(namely ∂σX
i gives the amoung of X shift induced by the σ-translation, and

Πi implements the effect of the X shift on the Hilbert space).
The amplitude hence corresponds to taking a trace over the Hilbert space

Hcl. of the closed string 2d theory

Z(τ) = trHcl.

(
e−τ2`Heiτ1`P

)
=

= trHcl.

(
exp[−τ22πα′p+ [

∑
p2
i

2p+
+

1

α′p+
(L0 + L̃0) ] exp[2πiτ1(L0 − L̃0)]

)
=

= trHcl.

(
exp[−τ2πα′ ∑ p2

i ] exp[2πi(τ1 + iτ2)L0] exp[2πi(τ1 − iτ2)L̃0]
)

=

(5.5)

Defining q = e2πiτ , we have

Z(τ) = trHcl.

(
exp[−τ2πα′ ∑ p2

i ] q
L0 qL̃0

)
(5.6)

Then we should sum over geometries, i.e. integrate over τ . Notice that
when we integrate over τ1 the level-matching constraint L0 = L̃0 is automat-
ically implemented

∫
dτ1 e

2πiτ1(L0−L̃0) ' δL0,L̃0
(5.7)
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Hence, we can take the trace over the unconstrained set states constructed
by applying arbitrary numbers of all possible left and right oscillators to the
vacuum. Subsequently the sum over geometries will implement that only
physical states, satisfying the level matching constraint, propagate.

Hence the general structure of the states we are tracing over is

∏

n,i

(αi−n)
Kn,i

∏

m,j

(α̃j−m)K̃m,j |p−, pi〉 (5.8)

That is, the Hilbert space is given by a set of momentum states, on which we
apply an arbitrary number of times K, K̃ oscillator creation operators out
of an infinite set labeled by n, i,m, j.

5.3.2 The momentum piece

The trace over center of mass degrees of freedom give an overall factor in-
dependent of the oscillator ocuppation numbers Kn,i, Km,j. Moreover, the
center of mass trace factorizes as product of traces over different directions

trc.m. e
−τ2πα′

∑
i
p2i = (tr c.m.1d e

−τ2πα′p2)24 (5.9)

For each direction, we can take the trace by summing over (center of mass)
position eigenstates

tr c.m.1d e
−τ2πα′p2 =

∫
dx 〈x| e−τ2πα′p2 |x〉 =

∫
dx

∫ dp
2π
〈x|p〉 〈p| e−τ2πα′p2 |p〉 〈p|x〉 = (

∫
dx) (4π2α′τ2)

−1/2 (5.10)

Hence

trc.m. e
−τ2πα′

∑
i
p2

i = V24 (4π2α′τ2)
−12 (5.11)

where V24 is a regularized volume of the 24d transverse space.

5.3.3 The oscillator piece

The oscillator creation operators can be applied independently, so the trace
factorizes in traces over the Hilbert space of each independent oscillator.

For a single oscillator, the trace over states (αi−n)
K|0〉 goes like

tr qN̂+E0 = qE0
∑∞
K=0 〈0| (αin)K qN̂(αi−n)

K |0〉 =

= qE0
∑∞
K=0 q

Kn = q−1/24 1
1−qn (5.12)
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For two oscillators, the trace over states (α−n1)
K1(α−n2)

K2|0〉 is

tr qN̂+E0 = q−2/24
∞∑

K1,K2=0

〈0| (αn1)
K1 (αn2)

K2 qN̂1+N̂2 (α−n1)
K1 (α−n2)

K2 |0〉 =

= q−2/24
∞∑

K1,K2=0

〈0| (αn1)
K1 qN̂1 (α−n1)

K1 (αn2)
K2 qN̂2 (α−n2)

K2 |0〉 =

= q−2/24 (1− qn1)−1 (1− qn2)−1 (5.13)

So for the infinite set of left and right oscillators

Tr qL0 qL̃0 = qE0 qẼ0

26∏

i=2

∞∏

n=1

(1− qn)−1
26∏

j=2

∞∏

m=1

(1− qm)−1 =

∣∣∣∣∣q
1/24

∞∏

n=1

(1− qn)
∣∣∣∣∣

−48

(5.14)

Using the definition of the Dedekind eta function (A.2)

η(τ) = q1/24
∞∏

n=1

(1− qn) (5.15)

the complete partition function, for fixed τ , is

Z(τ) = V24 (4π2α′τ2)
−12 |η(τ)|−48 (5.16)

5.4 Modular invariance

5.4.1 Modular group of T2

To obtain the complete partition function we should sum over all inequivalent
geometries. As we have discussed, it is crucial not to overcount geometries.
Since we have characterized the worldsheet geometry in terms of τ , it is
crucial to realize that there exist different values of τ which nevertheless
correspond to the same geometry.

i) For instance, as shown in figure 5.4, two two-tori corresponding to τ
and τ + 1 are defined by the same lattice on the 2-plane, hence correspond
to the same two-torus geometry.

ii) A slightly trickier equivalence is that of two two-tori with complex
structure parameters τ and −1/τ . Let us verify this in the simpler case of
τ1 = 0; in this case we have the equivalence of τ2 and 1/τ2. This is shown
in figure 5.5: the two-torus with parameter i/τ2 is equivalent to that with
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a) b)

Figure 5.4: The two-tori corresponding to τ and τ + 1 correspond to the same
two-dimensional lattice of translation, hence are the same two-torus.

τ2 vs. =
τ2

τ2

Figure 5.5: The geometry of two two-tori with parameters iτ2 and i/τ2 is the
same, as can be seen by exchanging the roles of σ and t and performing a rescaling
of coordinates.
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parameter iτ2, up to an exchange of the roles of σ and t, and a rescaling to
ensure that the total length of the new σ coordinate is `.

Two two-tori with parameters τ and −1/τ are simply related by the
exchange of the roles of the two basis vectors generating the two-dimensional
lattice.

In other words, there exist different choices of τ which lead to the same
geometry, namely two two-tori which can be related by coordinate changes
on the worldsheet

Denoting z = σ + i t, the two torus geometrical parameter τ is specified
by the periodic identifications

a) σ → σ + `, t→ t which gives z → z + `
b) σ → σ + τ1`, t→ t + τ2` which gives z → z + τ`
Performing a change of variables

σ′ = σ + t/τ2 ; t′ = t (5.17)

The two-torus is defined in terms of the identifications
a) σ → σ + `, t→ t, which gives σ′ → σ′ + `, t′ → t′, namely z′ → z′ + `
b) σ → σ+ τ1`, t→ t+ τ2`, which gives σ′ → σ′ + (τ1 + 1)`, t′ → t′ + τ2`,

namely z′ → z′ + (τ + 1)
So in these coordinates the two-torus has parameter τ + 1.
Performing instead a change of variables

σ′ =
τ2t + τ1σ

τ 2
1 + τ 2

2

; t′ =
τ1t− τ2σ
τ 2
1 + τ 2

2

(5.18)

the two-torus is defined in terms of the identifications
a) σ → σ − `, t → t, which gives σ′ → σ′ + τ ′1`, t

′ → t′ + τ ′2`, namely
z′ → z′ + τ ′` with τ ′ = −1/τ

b) σ → σ + τ1`, t → t + τ2`, which gives σ′ → σ′ + `, t′ → t′, namely
z′ → z′ + `.

So in these coordinates the two-torus has parameter −1/τ .
This shows that the geometries corresponding to values of τ related by

the transformations τ → τ + 1, τ → −1/τ are equivalent up to coordinate
changes, diffeomorphisms. It is important to notice that the diffeormor-
phisms involved are ‘large’, that is they are not continuously connected to
the identity (they involve drastic things like exchanging the roles of σ, t;
however, they are simply coordinate changes).
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τ

F0

Figure 5.6: Fundamental domain of τ . Any point in the upper half plane can be
mapped to some point in F0 using the basic modular transformations τ → τ + 1,
τ → −1/τ .

The set of transformations of τ which leaves the geometry invariant has
the structure of a group, called the modular group of the two-torus. By
composing the transformations τ → τ + 1 and τ → −1/τ , the most general
tranformation is of the form

τ → aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 (5.19)

The parameters a, b, c, d can be written as a 2× 2 matrix
(
a b
c d

)
of integer

entries and unit determinant. The group is therefore SL(2,Z).
The set of inequivalent geometries is therefore characterized by the pa-

rameter τ in the upper half complex plane (recall we had τ2 > 0, modulo
SL(2,Z) transformations. A choice of fundamental domain of τ is shown in
figure 5.6

−1/2 ≤ τ1 < 1/2 , |τ | ≤ 1 (5.20)

The set of points in F0 correspond to the set of all possible two-torus geome-
tries. Integrating τ over F0 corresponds to summing over two-torus geome-
tries with no overcounting.

5.4.2 Modular invariance of the partition function

The closed bosonic string partition function Z(τ) should be the same for
equivalent tori, since it should be invariant under reparametrizations of the
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worldsheet. So Z(τ) should be modular invariant, i.e. SL(2,Z) invari-
ant. This is not completely obviour, since the diffeomorphisms involved in
reparametrizations changing τ by modular transformations are not small,
so in principle our gauge fixing procedure (good for ‘small’ diffeomorphism,
continuously connected to the identity) is not good enough to take care of
them 1.

Happily, using the modular tranformation properties of Dedekind’s eta
function (A.3), we find that

Z(τ) ' τ−12
2 |η(τ)|−48 τ→τ+1−→ τ−12

2 |η(τ)|−48 (5.21)

Z(τ) ' τ−12
2 |η(τ)|−48 τ→−1/τ−→ (τ 2

1 + τ 2
2 )12

τ 12
2

1

|τ |24 |η(τ)|48 = τ−12
2 |η(τ)|−48

It is modular invariant! From the viewpoint of the way we computed Z(τ),
invariance under e.g. τ → −1/τ is remarkable: The sum over all states of a
string along σ propagating in t is the same as the sum over all states of the
string in the dual channel, a string along t and propagating in σ. Strinking
conspiracy of the sum over the string tower... From another viewpoint, it is
just a simple consequence of the geometry of the worldsheet. The amplitude
is a function of the worldsheet geometry, and gives the same number for
different values of τ that correspond to the same intrinsic geometry.

The complete vacuum amplitude is obtained by summing over inequiva-
lent geometries, that is restricting to integrating τ over F0

Z =
∫

F0

d2τ

4τ2
(4π2α′τ2)

−12 |η(τ)|−48 (5.22)

where d2τ/(4τ2) is an SL(2,Z) invariant measure in the space of two-tori ge-
ometries (the so-called Teichmuller space). It is easy to check this invariance
by hand.

5.4.3 UV behaviour of the string amplitude

It is now time to study the UV behaviour of this amplitude. To understand
better the nice UV properties of string theory, it is useful to obtain the

1We may say that, since even within our gauge fixing we still encounter the same
geometry for different values of τ , our gauge fixing slices are passing through each gauge
orbit more than once. If the value of Z is the same in each such point, we may by hand
just keep one of them. If not, then the theory is not invariant under large diffeomorphisms,
it does not have a consistent worldsheet geometry.
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vacuum to vacuum amplitude in a theory of point particles. In a theory of
one point particle of mass m in D dimensions, the amplitude of a diagram
given by a circular worldline of length l is

Zm = Vd

∫
dDk

(2π)D

∫ ∞

0

dl

2l
e−(k2+m2)l/2 (5.23)

with (k2 +m2)/2 the worldline hamiltonian, and dl/(2l) the measure in the
space of circle geometries, with the denominator 2l removing the freedom of
translation plus inversions of the circle. We have

Zm = iVd

∫ ∞

0

dl

2l
(2πl)−D/2 e−m

2l/2 (5.24)

For any D > 0 this amplitude is divergent in the UV, as l → 0. On the
other hand, it is IR convergent if m2 > 0.

One could imagine that string theory is just a theory with an infinite
number of particles in spacetime. That is not really true, in a very subtle
way which we will see below. If that were true, then the vacuum to vacuum
amplitude in string theory would be just the sum of contributions like (5.24)
for all particles in the string tower. Using that the mass of a string state is
given by m2 = 2/α′(L0 + L̃0) we have

Z ′ = iVd

∫ ∞

0

dl

2l
(2πl)−D/2 tr H e

−l/α′(L0+L̃0) (5.25)

We prefer to sum over the extended Hilbert space of the theory by not re-
quiring directly L0 = L̃0, and rather imposing this constraint by hand via a
delta function

δL0,L̃0
=
∫ π/2

−π/2

dθ

2π
ei(L0−L̃0)θ (5.26)

to get

Z ′ = iVd

∫ ∞

0

dl

2l

∫ π/2

−π/2

dθ

2π
(2πl)−D/2 trH e

−l/α′(L0+L̃0) ei(L0−L̃0)θ (5.27)

and introducing τ = θ
2π

+ i l
α′

Z ′ = iVd

∫

R

d2τ

4τ2
(4π2α′τ2)

−D/2 trH q
L0 qL̃0 (5.28)
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t t t = t

σ σ
σ

σ

sE      M
sE  > M

Figure 5.7: As the energy in the internal loop increases, longer strings run through
it. The UV limit is geometrically equivalent to some infrared contribution, which
has been already counted.

with R the region τ2 > 0, −1/2 ≤ τ1 < 1/2.

This is the same as the true string amplitude, except for the crucial
difference of the intergration region, R 6= F0. Indeed if (5.28) were the true
string amplitude we would obtain the same UV divergences at τ2 → 0 as for
a theory of point particles. On the other hand, in the true string amplitude
(5.22), the UV divergent region τ2 → 0 is simply absent!

To understand a bit better where the UV region has gone, let us consider
summing over two-torus worldsheets as the energy of the intermediate states
increases, see figure 5.7. As the energy increases, longer and longer strings
are exchanged for a shorter and shorter time. For E � Ms the diagram of
very long strings propagating over a very short time has the same geometry
as and IR contribution (by exchange of the roles of σ, t), so it has been
already counted. Notice that very remarkably the sum of the UV behaviours
of all the states in the string tower resums into an infrared behaviour, which
is typically convergent 2

Notice that to get this result it was crucial not to overcount the worldsheet
geometries. Worldsheet geometry provides an extremely clever cutoff, which
makes string theory quite different from just a field theory with an infinite
number of fields.

Let us comment that this feature that any UV divergent region is absent
in string theory is completely general, and valid for other diagrams, with
more handles and with external insertions. For instance see figure 5.8. Just

2In the closed bosonic string theory, the IR is divergent due to the existence of a
tachyonic state. The IR is well-behaved in other theories with no spacetime tachyons, like
the superstrings.
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= + + ...

+ + ...

+

UV

sE <M

~E      M s

sE  > M IR in dual channel
already counted!

Figure 5.8: The contribution to a 1-loop four-string scattering amplitudes. The
first line shows some low-energy contributions; the second line shows the first
contributions for higher energy, with longer strings being exchanged in one internal
leg. The third line shows the same diagram for energies much larger than MS ; this
seemingly UV regime in geometrically the same as one of the IR contributions, so
it has been already counted and should not be included again.

as above, the UV behaviour of the complete tower of string states resums into
and IR contribution in a dual channel, which is a non-divergent contribution.

Let us conclude by pointing out that the low energy contribution to
the partition function, the vacuum to vacuum amplitude is divergent in the
bosonic string theory. This is because the IR contribution is dominated by
the lightest mode, which is a tachyon with m2 = −4/α′. In the IR τ2 → i∞
the string partition function reduces to the point particle one with m given
by the lightest state mass; one clearly gets an exponential e+τ2 which di-
verges. In theories with no spacetime tachyon, the IR limits are however
well-behaved, so the finiteness of string theory works as discussed above.

Concerning the IR divergence found above, one may wonder whether it is
a physical infinity. It is easy to show that the vacuum to vacuum amplitude
is related to the vacuum energy density, namely to the cosmological constant
in spacetime. Since the spacetime theory is coupled to gravity, it is indeed
a physical observable, and the infinity is physical. So the theory is to some
extent sick.

There is a lot of speculation about the meaning of the tachyon in bosonic
string theory. Our present idea is that it signals an instability of the vacuum
of the theory, rather than an essential inconsistency of the theory; the prob-
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lem is that we have no idea which is the correct vacuum, around which there
would be not spacetime tachyons.



Chapter 6

Toroidal compactification of
closed bosonic string theory

6.1 Motivation

As discussed in the overview lectures, a canonical mechanism to obtain four-
dimensional physics at low energies out of a theory with D > 4 is to consider
the theory in a curved background of the form M4 × XD−4, with XD−4 a
(D−4)-dimensional compact manifold, called the internal space. At energies
E � 1/L, where L is the typical size of the dimensions in XD−4, the physics
is essentially 4d, we do not have enough resolution to see the internal space.
This is called compactification of the theory.

One of the simplest possibilities is to consider the internal space to be a
(D−4)-torus. In this section we are interested in exploring this possibility in
string theory. Happily, the most interesting phenomena are already present
in we compactify just one dimension on a circle, and reduce the 26d bosonic
string theory to a 25d theory at low energies.

We start with a discussion of compactification in field theory. As we
know,this provides a good approximation to the dynamics of string theory
when α′ corrections are negligible 1. That is, when the internal space radius
is much larger than the string length scale. Even in this regime there are
interesting phenomena, like the Kaluza-Klein mechanism to generate gauge
vector bosons out of the higher dimensional metric.

Next we turn to the explicit discussion of compactification in full-fledged

1Recall the picture 6.1.

105
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M4}

} intX

M4}

Ls } intX

Figure 6.1: Picture of compactification spacetimes; thick small lines represent
string states which are light in the corresponding configuration. When the internal
manifold has size of the order of Ls, stringy effects (which do not exist in theories
of point particles) become relevant; for instance, string winding modes (where a
closed string winds around some internal dimension) may become light.

string theory. This can be carried out for toroidal compactification because
it is described by a free worldsheet theory, which can be quantized exactly
in the sense of the α′ expansion. This means that for compactification on
circles of radius comparable or smaller than the string length, string theory
may (and does) differ from field theory.

Among the most surprising effects, we will find i) new light (and even
massless) particles arising from closed string winding around the internal
circle, and ii) T-duality, a complete physical equivalence of two theories living
in different spacetimes.

Results in this section are useful in discussing toroidal compactifications
in other string theories, like superstrings. Also, they will be useful in the
construction of 10d heterotic string theories.

6.2 Toroidal compactification in field theory

Here we roughly follow ideas in section 8.1 of [55]. Our discussion is sketchy
and provides most results without their detailed derivation.

Let us first consider circle compactification in field theory, which is a good
approximation to the situation in string theory for circle radius much larger
than the string length, so that α′ effects (which are the ones related to the
fact that the string is an extended object) are negligible.
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So we consider field theories in D-dimensions, propagating on a back-
ground spacetime of the form Md × S1, with D = d + 1. To explain
why the low-energy physics is d-dimensional, consider first a toy model of
a D-dimensional massless scalar field ϕ(x0, . . . , xD−1) propagates with D-
dimensional action

S5dϕ =
∫

Md×S1
dDxΛD−4∂Mϕ∂

Mϕ (6.1)

with M = 0, . . . , D− 1 and where Λ is some scale which we have introduced
for dimensional reasons.

Since xD−1 parametrizes a circle, it is periodic, and we can expand the
xD−1 dependence in Fourier modes

ϕ(x0, . . . , xD−1) =
∑

k∈Z

e2πikx
D−1/L ϕk(x

0, . . . , xd−1) (6.2)

where L = 2πR is the length of §1.
From the d-dimensional viewpoint, we see a bunch of d-dimensional scalar

fields ϕk(x
0, . . . , xd−1), labeled by the integer index k, which defines the mo-

mentum in the extra dimension pD−1 = k/R. The d-dimensional spacetime
mass of those fields increases with k2. To see that, take the D-dimensional
mass-shell condition

P 2 = 0 , that is P 2
Md

+ p2
D−1 = 0 (6.3)

For the field ϕk, we have

P 2
Md

+ (k/R)2 = 0 (6.4)

which means that the d-dimensional mass of the field ϕk is

m 2
k = (k/R)2 (6.5)

Equivalentely, we may obtain this result from the d-dimensional wave equa-
tion for the field ϕk

∂Mϕ∂
Mϕ = 0 → ∂µϕk∂

µϕk + (k/R)2 = 0 (6.6)

where µ = 0, . . . , d− 1. And we recover (6.5).
At energies much lower than the compactification scale Mc = 1/R, E �

1/R, the only mode which is observable is the zero mode ϕ0(x
0, . . . , xd−1). So
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we see just a single d-dimensional field, with a d-dimensional action, which
is obtained by replacing ϕ(x0, . . . , xD−1) in (6.1) by the only component we
are able to excite ϕ0(x

0, . . . , xd−1). The xD−1 dependence drops and we get

Seff =
∫

Md

ddx
L

ΛD−4
∂µϕ0∂

µϕ0 (6.7)

So we recover d-dimensional physics at energies below Mc. This is the Kaluza-
Klein mechanism, or Kaluza-Klein reduction. The massive d-dimensional
fields ϕk are known as Kaluza-Klein (KK) excitations or KK replicas of ϕ0.

Obs: If the higher-dimensional field theory contains massive fields with
mass M , the 4d KK tower has masses m2

k = M2 + (k/R)2, so they will not
be observable at energies below M .

The Kaluza-Klein reduction works for any higher dimensional field. An
important new feature arises when the original higher dimensionl field has
non-trivial Lorentz quantum numbers. The procedure is then to first decom-
pose the representation of the SO(D) higher-dimensional Lorentz group with
respect to the lower-dimensional one SO(d) (i.e. separate different compo-
nents according to their behaviour under d-dimensional Lorentz), and finally
perform KK reduction for each piece independently. For instance, for a D-
dimensional graviton we have the KK reduction on S1

GMN(x0, . . . , xD−1)→ Gµν(x
0, . . . , xD−1)→ G(0)

µν (x0, . . . , xd−1)

Gµ,D−1(x
0, . . . , xD−1)→ G

(0)
µ4 (x0, . . . , xd−1)

GD−1,D−1(x
0, . . . , xD−1)→ G

(0)
44 (x0, . . . , xd−1)(6.8)

where the first step is just decomposition in components, and the second is
KK reduction. We therefore obtain, at the massless level, a d-dimensional
graviton, a d-dimensional U(1) gauge boson, and a d-dimensional scalar.

To be more specific, the only piece of the D-dimensional metric which is
visible from the low-energy d-dimensional viewpoint is

ds2 = Gµν dx
µ dxν + Gdd (dxd + Aµdx

µ)2 (6.9)

where the fields Gµν, Gdd, Aµ, are already taken to be the zero modes of the
KK tower, and so depend only on the non-compact coordinates x0, . . . , xd−1.

The original D-dimensional invariance under diffeomorphism has a rem-
nant in this truncation of the theory. In particular, it is clear that we have
d-dimensional diffeomorphism invariance acting on x0, . . . , xd−1 (for which
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Gµν is the graviton). There is an additional freedom to reparametrize the
internal coordinate as

x′d = xd + λ(xµ) (6.10)

The effect of this tranformation is to change the d-dimensional vector boson

A′
µ = Aµ − ∂µλ (6.11)

So gauge transformations of this vector boson follow from coordinate reparametriza-
tion in the internal dimension. This remarkable result (gauge invariance from
diffeomorphism invariance in higher dimensions) was the original motivation
for the Kaluza-Klein program of unification of interactions, which has moti-
vated much of the modern research in extra dimensions.

Another field whose KK reduction we will be interested in is aD-dimensional
2-form BMN . By an argument similar to the above one for the graviton, the
result is a d-dimensional theory with a d-dimensional 2-form Bµν and a U(1)

gauge boson Âµ. Just as above, gauge invariance of the D-dimensional 2-form
inplies invariance of the d-dimensional 2-form under

Bµν → Bµν ∂ [µ Λν](x
λ) (6.12)

We will be interested in performing the KK reduction of the effective field
theory for the light modes of the closed bosonic string. This includes a 26d
graviton GMN , a 26d scalar dilaton φ, and a 26d 2-form field BMN .

As discussed in the overview lectures, the original action is

Seff. =
1

2k2
0

∫
d26X (−G)1/2 e−2φ {R − 1

12
HMNP H

MNP + 4∂Mφ∂
Mφ } +O(α′)(6.13)

where HMNP = ∂[MBNP ].
Substitution of the 26d fields by the 25d zero modes of the KK tower,

leads to the 25d effective action for the latter. Defining G25,25 = e2σ, it is
given by 2

S25d = 2πR
2k2

0

∫
d25X (−G)1/2 e−2φ+σ [R − 4 ∂µφ∂

µσ + 4∂µφ∂
µφ +

− 1

4
e2σ FµνF

µν − 1

12
HµνλH

µνλ − 1

4
e2σ F̂µνF̂

µν
]

=

= 2πR
2k2

0

∫
d25X (−G)1/2 e−2φ25d [R − 4 ∂µσ∂

µσ + 4∂µφ∂
µφ+

− 1

4
e2σ FµνF

µν − 1

12
HµνλH

µνλ − 1

4
e2σ F̂µνF̂

µν
]

(6.14)

2This combines eqs (8.1.9) and (8.1.13) in [55].
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where Hµνλ = ∂[µBνλ] − A[µF̂νλ], and where we have defined φ25d = φ− σ/2,
the effective 25d dilaton, which fixes the 25d interaction strength.

Notice that the vev for the scalar field G25,25 is related to the radius of
the internal circle. In fact, only the combination ρ = Reσ labels inequivalent
theories. Therefore, the radius is not an external parameter, but the vev
of a 4d dynamical scalar field. On the other hand, the compactification
background is consistent (solves the D-dimensional equations of motion) no
matter what circle radius we choose; this implies that in the d-dimensional
effective action there is no potential for this scalar, it parametrizes what is
called a flat direction of the potential. The field is called a modulus, and its
vev parametrizes inequivalent vacua of the theory. The set of vevs for this
modulus is called the moduli space (of circle compactifications).

A last important comment. It is interesting to notice that states carrying
momentum in the circle direction are charged with respect to Aµ. This is be-
cause the global version of the corresponding gauge symmetry is a translation
along xd, hence the corresponding charge is internal momentum. This is a
lower-dimensional remnant of the fact that the higher dimensional gravition
couples to the energy momentum tensor. On the other hand, the original
field theory did not have states charged under the 2-form field, hence the
lower-dimensional theory does not have any states charged under the gauge
boson Âµ. Later on we will see that string theory does contain such charged
states.

6.3 Toroidal compactification in string the-

ory

Let us discuss the circle compactification of the closed bosonic string in string
theory language. Naively, to do that, we need to specify the worlsheet action
for a string propagating 3 in M25×S1, by replacing the Minkowski metric in
M26 in the Polyakov action by the metric in M25 × S1. The puzzling feature
is that the latter metric is also flat, locally a Minkowski metric as well, so
the worldsheet action is still

SP = − 1

4πα′

∫

Σ
d2ξ (−g)1/2 gab(σ, t) ∂aX

µ ∂bX
νηµν (6.15)

3It is possible to work in general and finally show that consistency requires the total
dimension of spacetime to be D = 26 so we settle this from the start.
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The difference between M25 × S1 and M26 is a global effect, they have
different topology although the local metric is the same for both. The effects
of the compactification will arise not at the level of the local structure of
the worldsheet, but in the boundary conditions we have to impose on the 2d
worldsheet fields.

6.3.1 Quantization and spectrum

Indeed, the light-cone quantization can be carried out without change as in
the uncompactified theory until we reach the hamiltonian

H =
`

4πα′p+

∫ `

0
dσ [ 2πα′ Πi Πi +

1

2πα′ ∂σX
i ∂σX

i ] (6.16)

In order to rewrite it in terms of oscillator modes, etc, we need to specify
the boundary conditions obeyed by the 2d physical fields X i(σ, t). For X i,
i = 1, . . . , 24, we need to impose

X i(σ + `, t) = X i(σ, t) for i = 1, . . . , 24 (6.17)

as usual. However, the fact that X25 parametrizes a circle of radius R means
that X25 and X25 + 2πR correspond to the same point in spacetime. Hence,
the following boundary condition defines a consistent closed string

X25(σ + `, t) = X25(σ, t) + 2πRw, , w ∈ Z (6.18)

It corresponds to a closed string winding around the internal circle a number
of times given by w, which is called the winding number, see fig 6.2. 4 .
Each value of w corresponds to a different closed string sector. The complete
spacetime 25d spectrum is given by the set of states of closed string in all
possible winding sectors.

4It is amusing to notice that, from the viewpoint of the 2d theory, configurations of
fields X i(σ, t) satisfying boundary conditions with non-zero winding correspond to solitonic
states of the 2d field theory. The topological quantity associated to these solitons is the

spatial integral of the derivative of the 2d field, namely
∫ `

0
∂σX25 = 2πRw. As usual,

solitons of a field theory are associated to non-trivial topology of the target space where
the fields take values (recall that in the ’t Hooft-Polyakov monopole, the existence of a
soliton in the 4d theory was associated to the non-trivial topology of the space of vacua,
namely the space where the Higgs field takes values). Please recall that here we are talking
about solitons on the worldsheet, and have no relation at all with spacetime solitons.
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w=1 w=−1

w=0

Figure 6.2: States representing closed strings winding around the compact dimen-
sion.

Figure 6.3: String interactions conserve winding number.

The existence of winding is possible only because strings are extended
objects. The sector w = 0 corresponds to taking strings which are already
closed without the compactification. These are the fields that appear in the
approximation of compactifying the effective 26d field theory. We will see
that for large radius states in non-zero winding sectors are very heavy, and
this is a good approximation. For small radius, non-zero winding state lead
to very interesting surprises!

Winding number is conserved in string interactions, see figure 6.3

Since the X i, i = 2, . . . , 24 behave as usual, we only center on the analysis
of X25. The mode expansion for the boundary conditions (6.2) are

X25(σ, t) = x25 +
p25

p+
t +

2πRw

`
σ + i

√
α′

2

∑

n∈Z−{0}

[
αin
n
e−2πi n (σ+t)/` +

α̃in
n
e2πi n (σ−t)/`

]
(6.19)

Notice that the momentum must be quantized p25 = k/R, with k ∈ Z just
like in the field theory discussion.
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For future convenience, we may recast the expansion in terms of left and
right movers X25(σ, t) = X25

L (σ + t) +X25
R (σ − t)

X25
L (σ + t) = x25

2
+ pL

2p+
(t+ σ) + i

√
α′

2

∑
n∈Z−{0}

αi
n

n
e−2πi n (σ+t)/`

X25
R (σ − t) = x25

2
+ pR

2p+
(t− σ) + i

√
α′

2

∑
n∈Z−{0}

α̃i
n

n
e2πi n (σ−t)/` (6.20)

with

pL =
k

R
+
wR

α′ ; pR =
k

R
− wR

α′ (6.21)

These will be called left and right moving momenta (although notice that
each is a combination of the real spacetime momentum and winding).

The hamiltonian differs from the one in the non-compact situation only
in the new contributions of winding terms to ∂σX

25. In terms of modes, etc,
we obtain

H = Hw=0 +
`

4πα′p+

∫ `

0
dσ

1

2πα′ (
2πRw

`
)2 =

=
24∑

i=2

p 2
i

2p+
+

(k/R)2

2p+
+

R2w2

2α′2p+
+

1

α′p+
(N + Ñ − 2) (6.22)

where Hw=0 is the usual hamiltonian in the non-compact case. As usual, we
build the Hilbert space of the theory by taking oscillator groundstates (each
one labeled by a 25d momentum, a quantized momentum k ∈ Z in the circle,
and a winding number) and applying oscillator creation operators to it.

The level matching constraint is P = 0 with

P =
∫ `

0
dσΠi ∂σX

i =
p+

`

∫ `

0
dσ ∂tX

i ∂σX
i =

= Pw=0 +
p+

`
`
k/R

p+

2πRw

`
=

2π

`
(N − Ñ + kw) (6.23)

Each state corresponds to a particle in 25d spacetime. The 25d mass of
the corresponding state is given by

M 2
25d = 2p+H −

24∑

i=2

p2
i (6.24)
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We obtain

M 2
25d =

k2

R2
+

R2

α′2w
2 +

2

α′ (N + Ñ − 2) (6.25)

As mentioned above, for large R2/α′, the states with non-zero winding
have large α′M2 and decouple. For not so large R2/α′, effects of winding
states are very relevant and we cannot trust results obtained from the field
theory approximation (namely, the physics obtained only from the w = 0
sector). Winding states, equivalentely α′ effects, lead to important modifi-
cations of the physics, which can be regarded as important modification to
how string theory feels the geometry when curvature lengths are as small as
the string length (this is called stringy geometry for instance in the book by
B. Greene).

For future convenience, we split the hamiltonian and mass in left and
right handed pieces. We have H = HL +HR with

HL =
1

4p+

[
24∑

i=1

p2
i + p2

L

]
+

1

α′p+
(N + E0)

HR =
1

4p+

[
24∑

i=1

p2
i + p2

R

]
+

1

α′p+
(Ñ + Ẽ0) (6.26)

and M2 = M2
L +M2

R with

M2
L =

p2
L

2
+

2

α′ (N − 1)

M2
R =

p2
R

2
+

2

α′ (Ñ − 1) (6.27)

We see that one may carry out the quantization of the left and right moving
coordinates independently, reach a mass formular for each side, and finally
combine things together (satisfying the level matching constraint) at the end.
This is only to re-emphasize the fact that in 2d the field theory of purely left-
moving and purely right-moving fields make sense independently 5. At a last
stage, states of both theories are combined together to give physical states.

The level-matching constraint is

M2
L = M2

R (6.28)

5This observation will be crucial in the construction of heterotic string theorires.
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It is an easy exercise to obtain the one-loop partition function for this
theory. For a two-torus worldsheet with geometry specified by τ1, τ2, we have

Z(τ) = trHclosed
[ e−τ2`H eiτ1`P ] =

=
∞∑

k,w=−∞
tr Hk,w

[ e−τ2πα
′
∑24

i=1
p 2

i e−τ2πα
′(k/R)2 e−τ2πR

2w2/α′

e−2πτ2(N+Ñ−2) e2πiτ1(N−Ñ) e2πiτ1 kw ]

Here Hk,w is the closed string sector with momentum k and winding number
w. Most of this computation is already familiar, the only new piece is the
contribution over discrete momenta and the windings. We get

Z(τ) = |η(τ)|−48 (2πα′τ2)
−23/2

∞∑

k,w=−∞
exp [−πτ2

(
α′k2

R2
+
R2w2

α′ + 2πiτ1 kw

)
] (6.29)

This expression is modular invariant. Invariance under τ → τ + 1 is obvi-
ous, whereas invariance under τ → −1/τ can be shown by using Poisson
resummation formula
∑

n∈Z

exp [−πA(n+ θ)2 + 2πi (n+ θ)φ ] = A−1/2
∑

k∈Z

exp [−πA−1(k + φ)2 − 2πikφ ](6.30)

on both sums over k and w. It is interesting to point out that the sum
over winding and momenta is almost invariant under τ → −1/τ , except for
picking up a factor of (ττ )1/2 which compensates for the lack of invariance
of |η(τ)|−48(τ2)

−23/2.

It is important to point out that in string theory compactified on a circle,
winding states are crucial in obtaining a modular invariant partition partition
function. One intuitive way to argue about this is as follows. Consider
starting with the partition function of the uncompactified theory

Zuncomp. = tr Huncomp.
[ e−τ2`H eiτ1`P ] (6.31)

In order to describe the theory compactified on a circle, we may do by ex-
plicitly forcing that the only states that propagate are those invariant under
translations of 2πR in X25, by inserting the projector

Π =
∑

w∈Z

eiw2πRΠ25 (6.32)

in the trace. Here Π25 is the momentum operator, and Tw = ei2πwRΠ25

translates X25 by 2πRw. The partition function is

Zcomp. =
∑

w∈Z

trHuncomp.
[ e−τ2`H eiτ1`P Tw ] (6.33)
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τ −1/τ

t
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t
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T
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a) b)

Figure 6.4: Under the modular transformation τ → −1/τ , the roles of σ and
t are exchanged. An insertion of Tw in the t (appearing from the insertion of
the projector onto states invariant under discrete X 25 translations) is mapped to
an insertion of Tw in the σ direction, implying that we obtaine string closed up
to translation in X25, namely strings with winding w. Recall that sides of the
rectangle are identified to make the worldsheet a two-torus.

This can be shown pictorially as in figure 6.4a. As the closed string prop-
agates along the t direction, it crosses a cut along which the field X25(σ, t)
jumps an amount 2πRw.

Under the modular transformation τ → −1/τ , the roles of σ and t are
exchanged, so the cut is found in the σ direction, as in figure 6.4b. Such
picture represents a 1-loop diagram for a closed string which is closed up
to a translation of the coordinate X25 by 2πRw, namely a closed string
satisfying the boundary conditions (6.18). This means that to achieve a
modular invariant partition function it is absolutely essential to add sectors
with non-zero winding; namely, we have additional pieces

∑

w∈Z

trHw
[ e−τ2`Hw eiτ1`P ] (6.34)

where the trace is taken over the Hilbert space of string states in the sector
of winding w.

Subsequently, we would have to enforce that in these new sectors the
propagating modes are also invariant under translations of X25, by introduc-
ing a projector. The total result is the double sum in k, w in (6.29). Sum
in w sums over different sectors, whereas the sum in k projects onto states
invariant under X25 translations.
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6.3.2 α′ effects I: Enhanced gauge symmetries

At large values of R, one easily recovers that the string spectrum reproduces
the spectrum obtained using the field theory approximation. Indeed, winding
states are very heavy, so only the w = 0 sector has a chance of being light.
States with different k are merely KK replicas of the basic fields that exist
in the 26d theory.

Forgetting the tachyon and its KK replicas (which can be lighter than
M2 = 0 for large enough R), the massless modes are αM−1α̃

N
−1|0〉, suitably

decomposed according to whether M,N = 25, or M,N = µ. Explicitly, we
get

αµ−1α̃
ν
−1|0〉 (6.35)

which are the 25d graviton, 2-form, and a scalar (from the trace). We also
have

αµ−1α̃
25
−1|0〉 , α25

−1α̃
µ
−1|0〉 (6.36)

two 25d gauge bosons. Taking symmetric and antisymmetric combinations,
they are easily seen to arise from the 26d metric and 2-form, respectively.
Hence the generic gauge symmetry in 25d is U(1)× U(1).

Finally we also have

α25
−1α̃

25
−1|0〉 (6.37)

which is an additional scalar. This and the trace of (6.35) are the 25d dilaton
and geometric moduli.

As in field theory, the charge of states under the gauge boson arising
from the 26d graviton is given by their internal momentum, k. It is also easy
to argue that the charge of states under the gauge boson arising from the
26d 2-form is given by their winding number w. Namely, starting from the
coupling of a string to the 2-form field in 26d

∫

Σ
BMN ∂aX

M ∂bX
N εab (6.38)

It is clear that we obtain a coupling of a string wrapped on S1 to the mixed
component Bµ,25,

∫
dt
∫ `

0
dσ Bµ,25 ∂σX

25 ∂tX
µ ' w

∫
dt Âµ∂tX

µ (6.39)
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the state behaves as a 25d point particle coupling to Âµ with charge w.

As announced before, as we let R approach the string length scale Ls =√
α′ new surprising features arise. In fact we can check that at R =

√
α′

there appear new massless states from sectors of non-zero winding. The
mass formulae in this point in moduli space are

α′M2
L =

1

2
(k + w)2 + 2(N − 1)

α′M2
R =

1

2
(k − w)2 + 2(Ñ − 1) (6.40)

Denoting |k, w〉 the vacuum in the sector of momentum k and winding w,
there are additional massless states, satifying the level matching condition
(6.28).

We obtain four additional gauge bosons

αµ−1|1,−1〉 , αµ−1| − 1, 1〉
α̃µ−1|1, 1〉 , α̃µ−1| − 1,−1〉

One should recall that they are charged under the generic U(1)×U(1) gauge
symmetry, with charges given precisely by the pairs (k, w). The total gauge
group is non-abelian and it is in fact SU(2)2.

We also obtain eight new additional massless scalars

α25
−1|1,−1〉 , α25

−1| − 1, 1〉
α̃25
−1|1, 1〉 , α̃25

−1| − 1,−1〉
|2, 0〉 , | − 2, 0〉 , |0, 2〉 , |0,−2〉 (6.41)

Checking the charges under the generic U(1)2 symmetry, it is possible to
see that these scalars, along with the radial modulus (6.37) transform in the
representation (3, 3) of SU(2) × SU(2). The set of charges for the gauge
bosons, and the scalars are shown in figure 6.5, and can be seen to correspon
to roots of SU(2)2 and weights of (3, 3).

This is a very surprising effect. For a particular value of the compacti-
fication radius R =

√
α′, stringy effects (namely the existence of winding)

generate an enhanced gauge symmetry in spacetime (enhanced as compared
with the symmetry at a generic value of R). Indeed a dramatic effect! This
mechanism of generating gauge bosons goes well beyond what was achievable
from the field theory KK mechanism.
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a)

k

w

k

wb)

Figure 6.5: Charges of gauge bosons (a) and scalars (b) at the enhanced symmetry
point R =

√
α′. The charges tell us that the gauge bosons fill out a SU(2)×SU(2)

group (the roots of each SU(2) factor point along the dashed lines), whereas the
scalars fill out a representation (3, 3) of SU(2)2.

Of course it is possible to cook up a new 25d effective field theory by
including by hand the new massless modes. So this effective field theory
would contain gravity and non-abelian SU(2)2 gauge interactions, and a
bunch of 9 scalars transforming in the representation (3, 3) coupled to these
gauge bosons. It is important to understand two facts:

• This effective field theory is not derived from the 26d effective field
theory by compactification; we know that the latter missed the crucial issue of
winding states, and is a good approximation at large R, and not at R =

√
α′

• This effective field theory is a good approximation to the 25d physics
for R close to

√
α′. As we will see shortly, going away from R =

√
α′ makes

some fields massive, so for R very different from
√
α′ these masses are too

large and it is not a good idea to include the corresponding fields in the
effective field theory.

It is interesting to understand what happens when we vary slightly the
value of R away form the value

√
α′. Since we have solved the string states

for all values of R, we simply read off the mass formulae and see that the
additional gauge bosons, as well as the additional scalars get masses (pro-
portional to the deviation of R and

√
α′.

This sounds very much like a Higgs mechanism, with gauge bosons be-
coming massive and some scalars being eaten and becoming the longitudinal
components of the massive vector bosons. Indeed this is correct: for small
departures from R =

√
α′ the 25d effective field theory language should be

appropriate and the breaking of the gauge group is just a Higgs mechanism
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triggered by the scalars in the (3, 3).
A finer point is that the number of scalars that disappears is larger than

the number of gauge bosons becoming massive. This is however consistent.
Out of the original 9 massless scalars, 4 of them are eaten by the 4 gauge
bosons associated to the broken generators, 1 of the remaining remains mass-
less (and is interpreted as the geometric modulus parametrizing R), and the
4 remaining become massive due to couplings between them and the scalars
picking up a vev.

As discussed by Polchinski (around eq (8.3.22), organizing the 9 scalars
in a 3×3 matrix Mij, the scalar potential for the theory at R =

√
α′ includes

an SU(2)2 invariant term

V (M) = εijk εi
′j′k′ Mii′ Mjj′ Mkk′ (6.42)

Giving a vev to one of the scalars, say M33, we generate mass terms

εijεi
′j′ Mii′ Mjj′ (6.43)

for i, i′, j, j ′ = 1, 2. Namely four fields become massive due to the scalar
potential.

A tantalizing (but more advanced) comment is that the field that has
received the vev has flat potential, so it is a modulus, and parametrizes the
deviation of R from

√
α′. So it is what we have called the geometric modulus.

Increasing the vev for this field would eventually lead us into the large volume
regime.

However notice that in principle any of the 9 fields in Mij can be the
one in getting the vev. They are in the same SU(2)2 multiplet, so gauge
invariance tells us that none of these fields is priviledged. Therefore, starting
from the enhanced symmetry point, there seem to exist different regimes
which can be interpreted as large volume regimes in suitable variables. This
will become clearer after we study next section.

6.3.3 α′ effects II: T-duality

The existence of winding states in string theory leads to another amazing
surprise. Recall the mass formula (6.44)

M 2
25d =

k2

R2
+

R2

α′2w
2 +

2

α′ (N + Ñ − 2) (6.44)
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It is invariant under the so-called T-duality transformation

R→ α′

R
; k ↔ w (6.45)

Namely the complete spectrum of the theory at radius R is the same as
the spectrum of the theory at radius α′/R, up to a relabeling of k and w.

This is extremely striking. If we are 25d observers and measure the
spectrum of states, we would be unable to distinguish whether it is coming
from a string theory compactified on a circle of radius R or α′/R.

Striking again! The theory at large R → ∞ has infinite towers of mo-
mentum states becoming massless (the KK step 1/R is very small); this is
a typical signal of a decompactification limit. On the other hand, in the
T-dual theory the radius is going to zero R′ = α′/R→ 0, and we still recover
infinite towers of states becoming massless, but now they are coming from
string with winding number w (since the T-dual circle is small, it costs almost
no energy to increase the winding number). So the small R limit looks also
as a decompactification limit, and it is a decompactification limit in T-dual
language!

One might thing that this puzzling feature is not a property of full-fledged
string theory, but just an accidental property of the spectrum. This is not
correct, and one can show that string interactions also respect T-duality. T-
duality is the complete physical equivalence of the theories compactified on
circles of radius R and α′/R.

In other words, both theories are described by exactly the same worldsheet
theory, and differ on how the spacetime coordinates (the spacetime geometry)
is recovered from the 2d worldsheet theory.

To be more specific, it is convenient to describe our worldsheet theory as
given by two sets of 2d fields X i

L(σ+ t) and X i
R(σ− t), which are decoupled.

Now there are two ways to construct the true spacetime coordinates X i(σ, t)
out of them. One possibility is

X i(σ, t) = X i
L(σ + t) +X i

R(σ − t) ; i = 2, . . . , 24

X25(σ, t) = X25
L (σ + t) +X25

R (σ − t) (6.46)

whereas there is another

X i(σ, t) = X i
L(σ + t) +X i

R(σ − t) ; i = 2, . . . , 24

X25(σ, t) = X25
L (σ + t)−X25

R (σ − t) (6.47)
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The relation between one and the other is

p25
L → p25

L ; p25
R → −p25

R ; (6.48)

which corresponds to the T-duality transformation (B.1).

The implications of this are difficult to overemphasize. It certainly sug-
gests that spacetime is a secondary concept in string theory, and that it is
derived from more fundamental concepts like the worldsheet theory. What
this means for our understanding of the nature of spacetime in string theory
is still unclear.

A final comment we would like to make in this respect is that T-duality is
in fact a Z2 remnant of a gauge symmetry. Indeed, there is a value of R for
which the theory is self-dual, this is our old friend R =

√
α′. At this point,

the complete spectrum is invariant under k ↔ w.

It is also easy to see that the effect of this transformation is nothing but
a gauge transformation within the enhanced gauge group SU(2)2. Finally, it
is possible to see that two T-dual deviations from R =

√
α′ are mapped to

each other by a relabeling transformation which is a subroup of this group:
indeed, regarding SU(2) as SO(3) (the rotation group in 3d) a rotation of
π around the axis distinguished by the field getting a vev (the direction 3
if M3,i′ gets the vev) in the first SO(3) has the effect of mapping the vev
for one of the modulus to its negative. Hence maps a deformation toward
R >

√
α′ to a deformation towards R <

√
α′.

This means that two T-dual theories are identified by a gauge transfor-
mation, so should not be considered as really different. Hence the moduli
space of compactification is not really parametrized by the real line (i.e. pos-
sible values of R) but rather by the real line modulo R→ 1/R. The moduli
space can therefore be described (with no redundancy) by the set of points
R >

√
α′.

Again this has amazing implications, since it suggests the existence of
a minimum distance in string theory. These issues must be taken with a
grain of salt, however, since in the study of D-branes the community has
realized that there exist other objets in string theory which are able to probe
distances much shorter than Ls [41].

We see that even the simplest compactification is rich enough to illustrate
the amazing features of string theory regarding the nature of spacetime.
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6.3.4 Additional comments

Let us conclude by pointing out some generalizations of the concepts we have
studied in toroidal compactifications

• Toroidal compactification of more than one dimension

This is studied nicely enough in section 8.4 in [55]. One can proceed in
analogy with the circle case. Some of the new features of this situation
are the appearance of scalars from the KK reduction of the 26d 2-form.
They have flat potential and are new moduli from the viewpoint of
the lower-dimensional theory, characterizing the background B-field in
the internal space. The complete moduli space (without taking into
account dualities) is called Narain moduli space and is described as a
coset

O(k, k,R)

O(k,R)×O(k,R)
(6.49)

The set of T-dualities is larger, and is given by the group O(k, k,Z),
so the true moduli space is

O(k, k,R)

O(k,R)×O(k,R)×O(k,k,Z)
(6.50)

A standard reference on all these issues is [42].

• Buscher’s T-duality

The existence of T-dual configuration does not require spacetime to
be a cartesian product with one factor given by a circle. In fact, T-
duality can be extended to geometries with one Killing vector with
compact orbits (with finite length, at least asymptotically). Buscher’s
formulae provide the backgroud obtained by applying T-duality along
the orbits of this Killing vector. Surprisingly T-duality is even able to
relate geometries with different topology.

• Compactification on non-toroidal geometries

Although this can be considered in bosonic string theory, it has found
more applications in the supertring context. We will discuss some of
this for heterotic string theories in later lectures.
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Chapter 7

Type II Superstrings

We are already familiar with bosonic string theory, and have learned how to
solve the issue of reducing it to lower dimensions via compactification. How-
ever, we have been unable to construct a theory with fermions in spacetime.

In this and coming lectures we study string theories whose massless spec-
trum contains spacetime spinor particles. These are the superstring theories,
and today we will center on a particular kind of them: type II superstrings
(leaving other superstrings, like heterotic strings and type I strings, for later
lectures).

Before getting started, let us mention that in order to identify the quan-
tum numbers of states with respect to the spacetime Lorentz group, it is
quite crucial to have in mind the representation theory of SO(2n) Lie alge-
bras, which can be found in section 6 of the appendix on group theory.

7.1 Superstrings

7.1.1 Fermions on the worldsheet

To describe a new string theory we have to modify the worldsheet theory.
Clearly, if we keep the same field content as in the bosonic string and simply
add interactions, the spectrum in spacetime will not be very different from
that in the bosonic theory, and in particular it will not contain spacetime
fermions. Addint interactions is more similar to just curving the background
on which the string is propagating.

Instead, we propose to change the field content of the 2d theory describing

125
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the worldsheet. A simple possibility which preserves D-dimensional Poincare
invariance is to make the 2d worlsheet theory supersymmetric 1. Namely, to
add 2d fermion fields ψµ(σ, t), partners of the 2d bosonic fields Xµ(σ, t),
and gravitino partners for the worldsheet metric gab(σ, t) (notice that since
supersymmetry commutes with global symmetries, the 2d fermionic fields
should transform in the vector representation of the D-dimensional space-
time Lorentz group, just like the 2d bosonic fields). It is important to em-
phasize that at this stage it is not obvious at all that such theory will lead
to spacetime fermions or spacetime supersymmetry; in fact, the 2d fermion
fields are bosons with respect to the spacetime Lorentz group!

Two-dimensional theories of this kind are sometimes refered to as ‘fermionic
strings’. We will not write down the 2d action for those fields, etc, but instead
use the simple practical rules to give the final result of physical fields and
hamiltonian after light-cone quantization. Recall that upon light-cone quan-
tization of the bosonic theory the physical fields where the bosonic fields
associated to the transverse coordianates X i(σ, t), i = 2, . . . , D − 1, with
hamiltonian given by an infinite set of decoupled harmonic oscillators.

The light-cone quantization for the fermionic sector also leaves the trans-
verse fermionic coordinates ψi(σ, t), i = 2, . . . , D − 1 as the only remaining
physical fields. Their hamiltonian corresponds to an infinite set of fermionic
harmonic oscillators.

In closed string theories it is possible to carry out the quantization etc
independently for left- and right-moving degrees of freedom. This is quite
convenient for us, so we split our degrees of freedom in X i

L(σ+ t), ψiL(σ+ t),
X i
R(σ − t), ψiR(σ − t), and work with just the left moving piece. The level

matching constraints etc will be discussed at a later stage.

1One may wonder if 2d susy is really necessary to achieve spacetime fermions. In our
discussion it would seem that we are emphasizing just the need of worldsheet fermions,
and that 2d susy appears as an accidental symmetry in the system of decoupled fermionic
and bosonic harmonic oscillators; however it is possible to argue as in the first section
of chapter 10 in [71] that the equation of motion for spacetime spinors arises from the
conserved supercurrent of the 2d theory. From this viewpoint 2d susy is quite crucial. In
fact, even in our simplified discussion spatime fermions are seen to arise from fermionic

zero modes in the R sector, where the zero point energy exactly vanishes due to 2d susy;
hence susy turns out to be crucial as well in our description, although not in a very explicit
way.
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7.1.2 Boundary conditions

We are interested in discussing closed fermionic strings in flat D-dimensional
Minkowski space. To have closed string in flat space, the 2d bosocic fields
must be periodic in σ

X i
L(σ + t+ `) = X i

L(σ + t) (7.1)

and we have the oscillator expansion

X i
L(σ + t) =

xi

2
+

pi
2p+

(t+ σ) + i

√
α′

2

∑

n∈Z−{0}

αin
n
e−2πi n (σ+t)/` (7.2)

with modes having commutation relations

[xi, pj] = iδij ; [αin, α
j
m] = mδij δm,−n (7.3)

and hamiltonian

HB =

∑
i pipi
4p+

+
1

α′p+

[∑

n>0

αi−nα
i
n + EB

0

]

EB
0 = −D − 2

24
(7.4)

For fermions, there is a subtlety in discussing boundary conditions. In
the two-dimensional worldsheet field theory, as in any quantum field theory,
the only observables are expressions that go like products of two fermion
fields. That means thae periodicity in σ of observables is consistent with an-
tiperiodicity of the fermion fields . Hence there are two consistent boundary
conditions

Neveu − Schwarz NS ψiL(σ + t+ `) = −ψiL(σ + t)

Ramond R ψiL(σ + t+ `) = ψiL(σ + t) (7.5)

These can be chosen independently for left and right sectors. It is important
to notice that consistency, e.g. Lorentz invariance, already requires that in a
given sector, fermions fields ψiL for all i are all periodic or all antiperiodic.

Hence it would seem that we can define four different kinds of closed
strings, according to whether the left and right sectors have NS or R fermions;
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namely we would have NS-NS, NS-R, R-NS and R-R strings. Very surpris-
ingly, we will see that modular invariance requires these different boundary
conditions to coexist within the same theory. In a sense, in the same way that
a consistent string theory requires us to sum over different worlsheet topolo-
gies (topological sectors of the embedding functions X i), it also requires us
to sum over different topological sectors (boundary conditions) for the 2d
fermion fields, in a precise way dictated by the requirement to get a modular
invariant partition function. This has been formulated very precisely as a
sum over spin structures on the worldsheet [94].

7.1.3 Spectrum of states for NS and R fermions

Before going further, it will be useful to compute the oscillator expansion,
hamiltonian and spectrum of states for 2d fermions with NS and R boundary
conditions. We describe this for the left-moving sector, being analogous (and
independent) for the right-moving one.

NS sector

Antiperiodic boundary conditions require the oscillator modding to be half-
integer. We have the oscillator expansion

ψiL(σ + t) = i

√
α′

2

∑

r∈Z

ψir+1/2 e
−2πi(r+1/2)(σ+t)/` (7.6)

Notice that there are no zero modes in the expansion. The oscillators have
anticommutation relations

{ψin+1/2, ψ
j
m+1/2} = δij δm+1/2,−(n+1/2) (7.7)

The hamiltonian for the fermionic degrees of freedom is

HF,NS =
1

α′p+

[ ∞∑

r=0

(r +
1

2
)ψi−r−1/2 ψ

i
r+1/2 + E FNS

0

]
(7.8)

where the zero point energy for NS fermionic oscillators is

E FNS
0 = −1

2

∞∑

n=0

(n +
1

2
) (7.9)
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evaluated with the exponential regularization. It is useful to compute in
general (for α > 0)

Zα =
1

2

∞∑

n=0

(n+ α) (7.10)

as the ε→ 0 limit of the finite part of

Zα(ε) =
1

2

∞∑

n=0

(n+ α) e−(n+α)ε = −1

2

∂

∂ε

∞∑

n=0

e−(n+α)ε = −1

2

∂

∂ε

(
e−αε

1− e−ε
)

=

= −1

2

∂

∂ε

[
(1− αε+ α2/2ε2 +O(ε3)) (

1

ε
+

1

2
+

1

12
ε +O(ε2))

]
=

= −1

2

∂

∂ε

[
1

ε
+

1

2
+

1

12
ε− α− 1

2
αε+

1

2
α2ε +O(ε2)

]
=

=
1

2ε2
− 1

24
+

1

4
α(1− α) +O(ε) (7.11)

so we get

Zα = − 1

24
+

1

4
α(1− α) (7.12)

and

E FNS
0 = − 1

48
(D − 2) (7.13)

The total bosonic and fermionic hamiltonian for the 2d theory in the NS
sector is

HL =

∑
i pipi
4p+

+
1

α′p+

[∑

n>0

αi−nα
i
n +

∞∑

r=0

(r +
1

2
)ψi−r−1/2 ψ

i
r+1/2 + (D − 2)

−1

16

]
(7.14)

The contribution of the left-moving sector to the spacetime mass is

m2
L = 2p+HL −

1

2

∑

i

p2
i (7.15)

namely

α′m2
L/2 =

[∑

n>0

αi−nα
i
n +

∞∑

r=0

(r +
1

2
)ψi−r−1/2 ψ

i
r+1/2 −

(D − 2)

16

]
(7.16)
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The spectrum in the NS sector is obtained by defining a groundstate |k〉NS
with spacetime momenta ki, and annihilated by all positive modding oscilla-
tors

ψin+1/2|k〉NS = 0 ; ∀n ≥ 0

αin|k〉NS = 0 ; ∀n > 0 (7.17)

and applying negative modding oscillators in all possible ways.
The lightest left moving states (for zero spacetime momentum) are

State α′m2
L/2

|0〉NS −(D − 2)

16

ψi−1/2|0〉NS
1

2
− (D − 2)

16
(7.18)

Now we realize that the first excited state is a vector with respect to spactime
Lorentz transformations, and that it only has D−2 components. So it forms
a representation of the group SO(D − 2), which is the little group of a
massless particle in a Lorentz invariant D-dimensional theory. This means
that in order to be consistent with Lorentz invariance, the state should be
massless, and this requires (D − 2)/16 = 1/2, namely D = 10. Namely we
obtain the result that the string theory at hand propagates consistently only
in a spacetime of ten dimensions.

The states we have transform under the SO(8) group as
State α′m2

L/2 SO(8)
|0〉NS −1/2 1

ψi−1/2|0〉NS 0 8V

where 8V is the vector representation of SO(8).

Ramond sector

Periodic boundary conditions require integer modding for fermionic oscilla-
tors

ψiL(σ + t) = i

√
α′

2

∑

r∈Z

ψir e
−2πir(σ+t)/` (7.19)

An important difference with respect to the NS sector is the existence of
fermion zero modes ψi0.
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The anticommutation relations read

{ψin, ψjm} = δij δm,−n (7.20)

The hamiltonian for the fermionic degrees of freedom is

HF,R =
1

α′p+

[ ∞∑

r=1

r ψi−r ψ
i
r + E FR

0

]
(7.21)

with E FR
0 = (D−2)× (−1/2)

∑∞
r=1 r, which for D = 10 equals E FR

0 = 8× 1
24

.
The total bosonic plus fermionic zero point energies cancel in the R sector 2

The total bosonic and fermionic hamiltonian for the 2d theory in the NS
sector is

HL =

∑
i pipi
4p+

+
1

α′p+

[∑

n>0

αi−nα
i
n +

∞∑

r=1

r ψi−r ψ
i
r

]
(7.22)

The contribution of the left-moving sector to the spacetime mass is

m2
L = 2p+HL −

1

2

∑

i

p2
i (7.23)

namely

α′m2
L/2 =

[∑

n>0

αi−nα
i
n +

∞∑

r=0

r ψi−r ψ
i
r

]
(7.24)

To compute the spectrum we have to be careful with the definition of the
ground state, because of fermion zero modes. Given a groundstate, applica-
tion of some ψi0 costs no energy and we get another groundstate. The system
has a degenerate set of groundstates, and we have to find how the fermionic
operators act on them. Clearly we can require that positive modding oper-
ators annihilate it; however we cannot require that all fermionic zero modes
annihilate it, since this is not consistent with the zero mode anticommutators

{ψi0, ψj0} = δij (7.25)

2In the NS sector the local 2d susy is broken by the different boundary conditions
betwen bosons and fermions, leaving a finite zero point energy contribution; in the R
sector the 2d susy is globally preserved by the boundary conditions, so the zero point
energies cancel.
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which is a Clifford algebra (see section 6 of the lesson on group theory). In
fact, defining the action of the ψi0 on the set of groundstates is constructing
a representation of the corresponding Cliffor algebra

By now we know that to construct such a representation we should define
the operators

A±
a = ψ2a

0 ± iψ2a−1
0 for a = 1, . . . , 4 (7.26)

define a lowest weight state by A−
a |0〉 = 0, and build the set of states by

application of the A+
a operators

|0〉 A+
a1
|0〉

A+
a1A

+
a2 |0〉 A+

a1A
+
a2A

+
a3 |0〉

A+
1 A

+
2 A

+
3 A

+
4 |0〉 (7.27)

A representation of the Clifford algebra splits into two spinor representations,
of different chiralities, of the SO(8) Lie algebra. These correspond to the
two above columns; we denote the corresponding states by 8S and 8C, or
equivalently by the corresponding weights 1

2
(±,±,±,±) with the number of

−’s even for 8S and odd for 8C.

The Hilbert space in the R sector is obtained by applying the negative
modding operators to these groundstates in all possible ways. At the massless
level, the only states are the groundstates, transforming under SO(8) as

8S + 8C (7.28)

Our results, to summarize, are that the light modes in the NS and R
sectors are

State α′m2
L/2 SO(8)

NS |0〉NS −1/2 1
ψi−1/2|0〉NS 0 8V

R 1
2
(±,±,±,±) #− = even 0 8S

1
2
(±,±,±,±) #− = odd 0 8C

We can choose these states independently for left and right movers. We
now need to discuss how to glue them together to form physical states. One
conditions is the level matching constraint, which amounts to

m2
L = m2

R (7.29)
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The glueing is also constrained from modular invariance. Namely, a string
in one of these sectors, namely NS for left movers and NS for right movers,
is not modular invariant.

The real, physical, string theories are formed by combining NS and R
sectors in a way consisntent with modular invariance. In a sense we need to
sum over boundary conditions for the fermions, i.e. combine the spectra of
different sectors.

7.1.4 Modular invariance

We would like to discuss the partition function

Z(τ) = tr H
(
e−τ2`H eiτ1`P

)
(7.30)

In order to keep discussion about left and right movers independently it
is useful to recall that the trace over the physical level-matched Hilbert space
of a string theory can be extended to a trace over an unconstrained Hilbert
space, with independend left and right sectors, with level matching imposed
upon integration of the τ1 piece of the modular parameter (see lesson on
modular invariance).

Using that

H =

∑
i p

2
i

2α′p+
+HL +HR ; P = HL −HR (7.31)

with HL = 1
α′p+

(N+E0), HR = 1
α′p+

(Ñ+Ẽ0), the expression for the partition
function can be written as

Z(τ) = tr H e
−πα′τ2

∑
p2

i qN+E0 qÑ+Ẽ0 = trHc.m.
e−πα

′τ2
∑

p2
i tr HL

qN+E0 trHR
qÑ+Ẽ0 =

= (4π2α′τ2)
−4 tr HL

qN+E0 tr HR
qÑ+Ẽ0 (7.32)

where factorization follows from considering the left and right movers inde-
pendently.

Within each sector we have such factorization. We would now like to
compute the left movers partition functions for NS and R boundary condi-
tions. At this point, it will be useful to recall some useful modular functions,
(see appendix of the lesson on modular invariance), which we gather in the
appendix.
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The partition function in the left sector contains a trace over the bosonic
oscillators, which is computed just like in bosonic string theory

tr Hbos
qNB+EB

0 = η(τ)−8 (7.33)

To obtain the partition function over the infinite set of fermionic oscil-
lators, consider first the simplified situation of the partition function of a
single fermionic harmonic oscillator. It has just two states, the vacuum |0〉
and ψ−ν|0〉, where ν denotes the oscillator moding. For this system we have

trH q
NF +EF

0 = qE)F

(1 + qν) (7.34)

For several decoupled fermionic harmonic oscillators, we simply get the prod-
uct of partition functions for the individual ones.

NS fermions
Using this, the partition function for 8 NS fermionic coordinates is the

product of partiton functions for eight infinite sets of fermionic harmonic
oscillators with half-integer moddings n + 1/2, namely

tr HNS
qNF +EF

0 =

[
q−1/48

∞∏

n=1

(1 + qn−1/2)

]8

=

ϑ

[
0
0

]4

η4
(7.35)

R fermions
This is the product over the partition function of eight infinite sets of

fermionic harmonic oscillator with integer modding, times the multiplicity of
16 due to the degenerate ground state, namely

tr HR
qNF +ER

0 = 16

[
q1/24

∞∏

n=1

(1 + qn)

]8

=

ϑ

[
1/2
0

]4

η4
(7.36)

Now we easily observe that modular transformations may mix different
boundary conditions, and even require the introduction of new pieces in the
partition function. For instance

ϑ

[
0
0

]4

η4

τ→τ+1−→
ϑ

[
0

1/2

]4

η4

τ→−1/τ−→
ϑ

[
1/2
0

]4

η4

τ→−1/τ−→ (7.37)

Clearly a modular invariant partition function must be a sum over sectors
with different boundary conditions.
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7.1.5 Type II superstring partition function

Instead of working by trial and error, let us simply give the final result of a
possible modular invariant partition function, and then interpret it in terms
of the physical spectrum of the theory.

Consider the two partition functions for left movers

Z± =
1

2
(4π2α′τ2)

−4 η−8 η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

± ϑ
[

1/2
1/2

]4

(7.38)

The first piece is half of the contribution from spacetime momenta, then fol-
lows the piece from left bosonic oscillators, then the piece from left fermionic
oscillators. Either of the two choices is invariant under τ → −1/τ , and they
transform as Z± → −Z± under τ− → τ +1. Therefore, it is possible to cook
up several modular invariant partition functions for the complete left times
right theory. Namely we consider the partition functions

Z+Z+ ; Z−Z− ; Z+Z− ; Z−Z+ (7.39)

This means that there are four consistent string theories! (in fact, we will
see later on that there are only two inequivalent ones).

7.1.6 GSO projection

It is now time to address the question of what is the meaning of pieces like

ϑ

[
0

1/2

]
or ϑ

[
1/2
1/2

]
in the partition function. For NS fermions it is easy

to realize that

η−1 ϑ

[
0
0

]
= q−1/48

∞∏

n=1

(1 + qn−1/2)2 = trHNS
qN+EF

0

η−1 ϑ

[
0

1/2

]
= q−1/48

∞∏

n=1

(1− qn−1/2)2 = tr HNS
qN+EF

0 (−1)F

(7.40)

On the second line we sum over NS fermions, weighting each fermionic os-
cillator mode by a minus sign; this can be implemented in the trace as the
insertion of an operator (−1)F which anticommutes with all fermionic oscil-
lator operators.
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Using this, we are now ready to interpret the meaning of one of the pieces
of the left partition functions Z±. Namely

η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

 = 1

2
tr HNS

qN+EF
0 − trHNS

qN+EF
0 (−)F =

= trHNS
qN+EF

0
1
2
(1− (−)F ) (7.41)

The operator 1
2
(1− (−)F ) is a projector that allows to propagate only modes

with an odd number of fermionic oscillators. This piece of the partition
function traces over 8 fermions with NS boundary conditions, projecting
out modes with an even number of fermionic oscillators. This is the GSO
projection in the NS sector.

The effect on the light NS states is to remove the tachyonic groundstate
|0〉NS from the physical spectrum, and leave the states ψi−1/2|0〉NS.

Similarly, the remaining pieces of the partition function correspond to

η−4


ϑ

[
1/2
0

]4

± ϑ

[
1/2
1/2

]4

 = 1

2
trHR

qN+EF
0 ± tr HR

qN+EF
0 (−)F =

= trHR
qN+EF

0
1
2
(1± (−)F ) (7.42)

which implements a GSO projection on the R sector. Namely, for the par-
tition function Z+ the GSO projection leaves states with even number of
excitations over the groundstate 8C and states with odd number of excita-
tions over the groundstate 8S (and projects out other possibilities); while Z−
leaves states with odd number of excitations over the groundstate 8C and
states with even number of excitations over the groundstate 8S (and projects
out other possibilities).

7.1.7 Light spectrum

The product form of the left times right partition function implies that left
NS and R sectors can combine with right NS and R sectors. More explicitly,
the fermionic piece of the partition function has the structure

Zψ(τ) = ( trHNS,GSO−
− tr HR,GSO−

) × ( trHNS,GSO−
− tr HR,GSO±

)∗ =

= trHNS,GSO−
tr ∗

HNS,GSO−
− trHNS,GSO−

tr ∗
HR,GSO±

−
− trHR,GSO−

tr ∗
HNS,GSO−

+ trHR,GSO−
tr ∗

HR,GSO±
(7.43)
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where the subindex GSO± implies we trace only over the states surviving
the GSO projection 1

2
(1± (−)F ). Notice the minus sign in the contributions

from the NS-R and R-NS partition function, which implies that loops of the
corresponding spacetime fields are weighted with a minus sign, namely they
are fermions. We will see that these states have half-integer spin, so these
string theories automatically implement the spin-statistics relation.

We discuss the light (in fact massless) spectrum of the theories in what
follows.

Type IIB superstring

Consider the theory described Z+Z+. Using the above projections, it is
easy to realize that (both for left and right sectors) the massless NS states
are simply the ψi−1/2|0〉, transforming in the 8V , while in the R sector the
states surviving the GSO projection transform as 8C . These states can be
glued together satisfying the level matching condition.

The SO(8) representation of the complete states is obtained by tensoring
the representations of the left and right pieces. Hence we have

NS-NS 8V ⊗ 8V 1 + 28V + 35V
NS-R 8V ⊗ 8C 8S + 56S
R-NS 8C ⊗ 8V 8S + 56S
R-R 8C ⊗ 8C 1 + 28C + 35C

The NS-NS sector contains an scalar (dilaton), a 2-index antisymmetric
tensor (2-form Bµν), and a 2-index symmetric tensor (graviton Gµν).

The R-NS and NS-R sectors contain fermions, in fact the 56S arising from
a vector and a spinor under SO(8) is a gravitino (a spin 3/2 particle).

The RR sector contains a bunch of p-forms, namely p-index completely
antisymmetric tensors. In particular, a 0-form (scalar) a, a 2-form B̃2, and a
4-form (of self-dual field strength) A+

4 . It is sometimes convenient to intro-
duce the Hodge duals of these, which are a 6-form B6, an 8-form C8. Finally,
it is also useful to introduce a 10-form C10, which does not have any prop-
agating degrees of freedom, since it has no spacetime kinetic term (since its
field strength would be a 11-form in 10d spacetime).

The theory is invariant under spacetime coordinate reparametrization,
and gauge transformations of the p-forms. It is also invariant under local
supersymmetry. It is easy to verify from the tables in [46] that the massless
spectrum is that of 10d N = 2 chiral supergravity. String theory is providing
a finite ultraviolet completion of this supergravity theory, remarkable indeed!

Finally, this theory is chiral in 10d, and has potential gravitational anoma-
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lies. It was checked in [45] that the chiral sector of the theory is precisely
such that all anomalies automatically cancel (in a very non-trivial, almost
miraculous, way).

This is the TYPE IIB superstring.

Consider now the theory described by Z−Z−. It is similar to the above
by simply exchanging C ↔ S in the SO(8) representations. Hence, clearly
the two theories are the same up to a redefinition of what we mean by left
and right chirality in 10d (namely, up to a parity transformation). So we do
not obtain a new theory from Z−Z−. Similarly Z−Z+ and Z+Z− are related,
and is enough to study just one of them.

Type IIA superstring
Consider the theory described Z+Z−. Using the above projections, the

massless sector is
NS-NS 8V ⊗ 8V 1 + 28V + 35V
NS-R 8V ⊗ 8S 8C + 56C
R-NS 8C ⊗ 8V 8S + 56S
R-R 8C ⊗ 8S 8V + 56V

The NS-NS sector contains an scalar (dilaton), a 2-index antisymmetric
tensor (2-form Bµν), and a 2-index symmetric tensor (graviton Gµν).

The R-NS and NS-R sectors contain fermions, in fact the 56S, 56C arising
from a vector and a spinor under SO(8) are gravitinos (a spin 3/2 particle).

The RR sector contains a bunch of p-forms, namely p-index completely
antisymmetric tensors. In particular, a 1-form (scalar) A1, and a 3-form C3.
It is sometimes convenient to introduce the Hodge duals of these, which are
a 5-form C5, a 7-form A7. Finally, it is also useful to introduce a 9-form C9,
which does not contain much dynamics (and is related to Romans massive
IIA supergravities [76]).

The theory is invariant under spacetime coordinate reparametrization,
and gauge transformations of the p-forms. It is also invariant under local
supersymmetry. It is easy to verify from the tables in [46] that the massless
spectrum is that of 10d N = 2 non-chiral supergravity. String theory is pro-
viding a finite ultraviolet completion of this supergravity theory, remarkable
indeed!

Finally, this theory is non-chiral in 10d, hence is automatically anomaly
free.

This is the TYPE IIA superstring.

Some comments
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Figure 7.1: The four theta function contributions to the partition function can
be understood as for possible boundary conditions in σ and t for fermions in a
2-torus. (Anti)periodicity in t is correlated with the presence of (−)F insertions
in the trace, while (anti)periodicity in σ is correlated with the choice of NS or R
fermions. Clearly modular transformations relate different contributions, so that
a modular invariant theory needs to combine all of them.

• The construction we have described seems a bit intricate. However,
it follows naturaly from the underlying worldsheet geometry of the string,
namely from modular invariance, i.e. invariance under (large) coordinate
transformations on the worldsheet. The reason why modular transforma-
tions mix different boundary conditions can be understood intuitively from
figure 7.1: Starting with a GSO projected trace over NS states, the piece in-
volving the (−1)F insertion implies that 2d fermions pick up a minus sign as
they evolve in t; upon the modular transformation τ → −1/τ , we obtain that
fermions pick up an additional sign as σ varies, namely the boundary condi-
tion is not NS any longer, but is flipped to R in this sector. All contributions
in the partition function may be understood in this language.

• We re-emphasize that the appearance of spacetime fermions is subtle,
and is not automatically obtained from the existence of 2d fermions. Indeed,
in the NS sector we have 2d fermions but no spacetime fermions. Similarly,
the existence of spacetime supersymmetry does not automatically follow from
2d susy, rather it is implemented due to the GSO projection. This is one of
the remarkable features of string theory, the deep relation between physics of
the worldsheet (modular invariance, etc) and spacetime physics (spacetime
susy).

• Spacetime supersymmetry is not manifest in the formalism we have
described. It would be nice to find a formalism which describes type II su-
perstring, and which makes spacetime supersymmetry manifest. Intuitively,
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we would like to describe the worldsheet theory by describing string configu-
rations by an embedding of the worldsheet into 10d superspace, namely a set
of embedding superfunctions (Xµ(σ, t),Θα(σ, t)), where Θα transform in the
spinor representation of the spacetime Lorentz group and parametrize the
fermionic dimensions of superspace. Such a formulation exists and is known
as the Green-Schwarz superstrings. For type II theories it is equivalent to
the formulation we used (called the NSR formulation), but it is more difficult
in some respects. Some useful comments on it may be found in section 12.6
in [71].

• Recall that the partition function is the vacuum energy of the spacetime
theory. Spacetime supersymmetry implies that the spectrum is fermion/boson
degenerate, and that this vacuum energy vanishes. Indeed, the theta func-
tions satisfy the ‘abstruse identities’

ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

= 0 ; ϑ

[
1/2
1/2

]
= 0 (7.44)

So the 1-loop cosmological constant vanishes in these theories.

• If the partition function is exactly zero, why should we bother about
whether it is modular invariant or not?? The key observation is that modu-
lar invariance of the vacuum amplitude (without use of abstruse identities)
guarantees that other more complicated amplitudes (with external legs) are
also invariant under large coordinate reparametrizations on the worldsheet.

• Recall that the contribution Z(τ) must be integrated over the funda-
mental domain in τ to get the complete contribution. As discussed in the
bosonic theory, the ultraviolet region is related, namely is equivalent geomet-
rically, to the infrared region. A difference with the bosonic theory is that
the type II superstrings do not contain tachyons, so there are no infrared
divergences.

7.2 Type 0 superstrings

We would like to discuss (the only) other possible modular invariant par-
tition functions that one can construct with the basic building blocks we
have, namely the 2d fields of the (2d supersymmetric) strings. Interestingly
enough, the theories we are about to construct, called type 0 theories, are not

spacetime supersymmetric, and moreover do not contain spacetime fermions.
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So they clearly illustrate the fact that 2d fermions/susy do not guarantee
spacetime fermions/susy.

The complete left times right partition function is given by

Z± =
1

2
(4π2α′τ2)

−4 |η|−16|η|−8



∣∣∣∣∣ϑ
[

0
0

] ∣∣∣∣∣

8

+

∣∣∣∣∣ϑ
[

0
1/2

] ∣∣∣∣∣

8

+

∣∣∣∣∣ϑ
[

1/2
0

] ∣∣∣∣∣

8

±
∣∣∣∣∣ϑ
[

1/2
1/2

] ∣∣∣∣∣

8

(7.45)

We obtain two new inequivalent theories, whose structure in the fermionic
partition function is

tr HNS,GSO+
tr ∗

HNS,GSO+
+ trHNS,GSO+

tr ∗
HNS,GSO−

+

+tr HR,GSO+
tr ∗

HNS,GSO±
+ tr HR,GSO−

tr ∗
HR,GSO∓

(7.46)

The lightest modes of the two theories are
Type 0A
Sector States SO(8) α′m2 Fields
NS-NS 1⊗ 1 1 −2 T

8V ⊗ 8V 1 + 28V + 35V 0 φ, B2, Gµν

R-R 8C ⊗ 8S 8V + 56V 0 A1, C3

8S ⊗ 8C 8V + 56V 0 A′
1, C

′
3

Type 0A
Sector States SO(8) α′m2 Fields
NS-NS 1⊗ 1 1 −2 T

8V ⊗ 8V 1 + 28V + 35V 0 φ, B2, Gµν

R-R 8C ⊗ 8C 1 + 28C + 35C 0 a, B̃2, A
+
4

8S ⊗ 8S 1 + 28S + 35S 0 a′, B̃′
2, A

−
4

The theories contain a tachyon in the NS-NS sector. As usual, one inter-
prets the tachyon as an instability of the theory, which is sitting at the top
of some potential for the corresponding field. There are many speculations
on what is the stable vacuum of type 0 theories, and even whether it exists
or not. The issue remains for the moment as an open question.

Due to this feature, and to lack of fermions, most research is centered on
type II strings, rather than type O.

7.3 Bosonization∗

We would like to finish with some comments on bosonization. Bosoniza-
tion/fermionization is a phenomenon relating certain two-dimensional field
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theories; it is the complete physical equivalence of a 2d quantum field the-
ory with bosonic degrees of freedom and one with fermionic degrees of free-
dom. This can happen two dimensions since all representations of the SO(2)
Lorentz group are one-dimensional, there is no real concept of spin.

For our simplified discussion, we will be interested in discussing simply
the equivalences of partition functions of the corresponding 2d theories. But
let us emphasize that bosonization/fermionization is complete equivalence
of all physical quantities in both theories). Notice however that equivalence
of partition functions implies a one-to-one map between states in the two
Hilbert spaces, and agreement in their energies.

A simple example of bosonization/fermionization is that the 2d theory of
two left-moving free fermions (with NS boundary conditions on the circle)
is equivalent to the 2d theory of one left-moving boson compactified on a
circle of radius R =

√
α′. Indeed, let us compute the partition function of

the theory with two fermions

Z2ψ =

[
q−1/48

∞∏

n=1

(1− qn−1/2)

]2

=

ϑ

[
0
0

]
(τ)

η(τ)
(7.47)

This final expression can be rewritten using (A.5) as

1

ητ

∑

n∈Z

qn
2/2 (7.48)

which corresponds to the partition function of one left-moving boson parametriz-
ing a compact direction of radius

√
α′. The η corresponds to the trace over

the oscillator degrees of freedom, while the sum over n corresponds to the
sum over left-moving momentum pL. Finally, purely left-moving bosons with
no right-moving partner have no center of mass degrees of freedom, so there
is no trace over center of mass momentum. Some of these issues will appear
back in the study of the heterotic.

Using this kind of computations, it is possible to bosonize the complete
left-moving sector of a type II superstring. Indeed it is possible to recast the
left-moving fermion partition function in terms of a bosonic interpretation.
In fact, starting with the GSO projected fermionic partition function

Z± =
1

2
η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

± ϑ
[

1/2
1/2

]4

 (7.49)
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and writing the ϑ functions as infinite sums, we obtain

Z± =
1

2
η−4

( ∑

n1,n2,n3,n4

q
∑

i
n 2

i −
∑

n1,n2,n3,n4

q
∑

i
n 2

i eπi
∑

i
ni −

−
∑

n1,n2,n3,n4

q
∑

i
(ni+1/2) 2 ±

∑

n1,n2,n3,n4

q
∑

i
(ni+1/2) 2

eπi
∑

i
(ni+1/2)

)

By gathering terms we may write

Z± = η−4


 ∑

~r=(n1,n2,n3,n4)

q~r
2 1

2
(1− (−1)

∑
i
ni) −

∑

r=(n1+1/2,...,n4+1/2)

q~r
2 1

2
(1± (−1)

∑
i
ni)




Defining lattices Λ± of vectors of the form

(n1, n2, n3, n4) ; ni ∈ Z ;
∑

i

ni = odd (7.50)

(n1 + 1
2
, n2 + 1

2
, n3 + 1

2
, n4 + 1

2
) ; ni ∈ Z ;

∑

i

ni = odd, even forΛ+, Λ−

we can write

Z± = η−4
∑

r∈Λ±

qr
2

(7.51)

Which corresponds to the partition function of four left-moving bosons parametriz-
ing a four-torus defined by the lattice Λ±. Recall that this is not a fake trick,
but a complete physical equivalence of 2d theories.

We will not use much this bosonic description. However, it is sometimes
used in discussing more complicated models, like orbifolds, since it provides
an easy bookeeping of the GSO projections in terms of a lattice.
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Chapter 8

Heterotic superstrings

8.1 Heterotic superstrings in bosonic formu-

lation

8.1.1 Heteroticity

We have discussed that in closed string theories the left and right moving
sectors have independent hamiltonian evolution. The only relation between
both is in the construction of physical states, the level matching conditions.

We have also discussed two consistent (say, left moving) sectors. That of
the bosonic string, given (in the light-cone gauge) by 24 2d bosons X i

L(σ+ t),
i = 2, . . . , 25 and that of the superstring, given by 8 bosons X i

L(σ + t) and 8
fermions ψiL(σ + t), i = 2, . . . , 9.

The basic idea in the construction of the heterotic string theories is to
consider using the bosonic 2d content for the left moving sector and the
superstring 2d content for the right moving sector 1. Let us denote our right
movers by X i

R(σ− t) ψiR(σ− t), and our left movers by X i
L(σ+ t), XI

L(σ+ t),
with i = 2, . . . , 9, I = 1, . . . , 16.

The theory is rather peculiar at first sight. The left moving bosons
X i
L(σ + t) can combine with the right moving ones X i

R(σ − t) to make out

1That this can be done is already very non-trivial. In a Polyakov description we are
coupling a 2d chiral field theory (since it is not invariant under 2d parity, i.e. exchange
of left and right) to a 2d metric. In order for the path integral over 2d metrics to be well
defined the 2d field theory must be free of 2d gravitational anomalies; this is true precisely
for the matter content of left and right moving degrees of freedom that we have proposed.

145
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the coordinates of physical spacetime (which therefore has ten dimensions).
On the other hand, it is not clear what meaning the remaining left moving
bosons XI

L(σ + t) have. We will see that, in a precise sense to be explained
below, they do not correspond to physical spacetime dimensions, but rather
should be though of as parametrizing a 16d compact torus, with very small
and fixed radius R =

√
α′. Since this distance is of order the string scale, it is

not very meaningful to assing a geometric interpretation to the corresponding
dimensions.

8.1.2 Hamiltonian quantization

The worldsheet action is the expected one, namely the Polyakov action for left
and right movers independently, with the right moving sector coupling also
to a 2d gravitino. Since we will be interested in the light cone quantization,
we simply say that it proceeds as usual, and that the only physical fields left
over are those mentioned above. We now review the main features

Right movers
In the right moving sector, bosons parametrize non-compact directions,

so they must be periodic in σ

X i
R(σ − t+ `) = X i

R(σ − t) (8.1)

They have the usual integer mode expansion

X i
R(σ − t) =

xi

2
+

pi
2p+

(t− σ) + i

√
α′

2

∑

n∈Z−{0}

α̃in
n
e2πi n (σ−t)/` (8.2)

Right moving fermions can be either periodic (R) or antiperiodic (NS)

NS ψiL(σ + t+ `) = −ψiL(σ + t)

R ψiL(σ + t+ `) = ψiL(σ + t) (8.3)

so we have the mode expansion

ψiR(σ − t) = i

√
α′

2

∑

r∈Z

ψ̃ir+ν e
2πi(r+ν)(σ−t)/` (8.4)

with ν = 0, 1/2 for R, NS fermions.



8.1. HETEROTIC SUPERSTRINGS IN BOSONIC FORMULATION 147

The complete right moving hamiltonian is

HR =

∑
i pipi
4p+

+
1

α′p+
(ÑB + ÑF + Ẽ0)

ÑB =
∑

n>0

α̃i−nα̃
i
n ; ÑF =

∞∑

r=0

(r + ν)ψi−r−ν ψ
i
r+ν ; Ẽ0 = −2ν(1− ν)(8.5)

Left movers
For the left sector, the bosons X i

L(σ+ t) are paired with the right moving
bosons, so they are pediodic

X i
L(σ + t+ `) = X i

L(σ + t) (8.6)

and have a mode expansion

X i
L(σ + t) =

xi

2
+

pi
2p+

(t+ σ) + i

√
α′

2

∑

n∈Z−{0}

αin
n
e−2πi n (σ+t)/` (8.7)

We now need to propose mode expansions for the remaining left moving
bosons XI(σ+ t). To put it in a heuristic way, we propose a mode expansion
that corresponds to the left moving sector of a bosonic theory compactified
on a 16d torus, consistently with making the corresponding right moving
degrees of freedom identically vanish.

Namely, recall the mode expansion for left and right moving bosons in a
circle compactification of the bosonic theory (see lesson on toroidal compact-
ification), in the sector of momentum k and winding w (k,

XL(σ + t) = x
2

+ pL

2p+
(t + σ) + i

√
α′

2

∑
n∈Z−{0}

αi
n

n
e−2πi n (σ+t)/`

XR(σ − t) = x
2

+ pR

2p+
(t− σ) + i

√
α′

2

∑
n∈Z−{0}

α̃i
n

n
e2πi n (σ−t)/` (8.8)

with

pL =
k

R
+
wR

α′ ; pR =
k

R
− wR

α′ (8.9)

In order to be compatible with making all right handed dynamics trivial,
namely XR ≡ 0, we need

x = 0 ; α̃n = 0 ; k = w ; R =
√
α′ (8.10)
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So the center of mass position degree of freedom is removed, momentum is
related to winding, and the internal torus is frozen at fixed radius

√
α′.

Generalizing to 16 dimensions, we propose the following expansion for
the left moving fields XI(σ + t)

XI
L(σ + t) = P I

2p+
(t+ σ) + i

√
α′

2

∑
n∈Z−{0}

αi
n

n
e−2πi n (σ+t)/` (8.11)

where P I is a 16d vector in a lattice Λ of internal quantized momenta. The
whole right moving sector can be though of as consistenty truncated from
the theory (to check complete consistency would require to verify that right
handed dynamical modes are not excited in interactions, either; we skip this
more involved issue).

The total left moving hamiltionian is

HL =

∑
i p

2
i

4p+
+

∑
I P

IP I

4p+
+

1

α′p+
(N − 1)

N =
∑

i

∑

N

αi−nα
i
n

∑

I

∑

N

αI−nα
I
n (8.12)

We have the spacetime mass formulae

α′m2
R/2 = ÑB + ÑF − 2ν(1− ν)

α′m2
L/2 = NB +

P 2

2
− 1 (8.13)

and the level matching conditions are given by

m2
L = m2

R (8.14)

8.1.3 Modular invariance and lattices

Let us describe a modular invariant partition function and then discuss what
kind of physical spectrum it is describing. We can assume the simple ansatz
that the complete partition function factorizes as a product of a left and a
right moving piece, namely

Z(τ) = (4πα′τ2)
−4 |η(τ)|−16 Zψ(τ)ZαI (τ) (8.15)

The first factor corresponds to tracing over the 10d spacetime momentum
degrees of freedom, the second to the trace over the oscillators of the X i

R,
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X i
L. The factor Zψ(τ) is the trace over the right moving fermionic oscillators.

From our experience with type II superstrings, an almost modular invariant
partition function for this sector is

Zψ = (η−4)∗


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

± ϑ
[

1/2
1/2

]4



∗

(8.16)

The two choices for the sign eventually lead to the same theory (up to a 10d
parity transformation), so for concreteness we pick the − sign.

For ZαI (τ) we have the trace over the oscillators and the 16d momentum
degrees of freedom

ZαI (τ) = η(τ)−16
∑

P∈Λ

qP
2/2 (8.17)

Now we need to require modular invariance, and this will impose some
restrictions on the possible choices of Λ.

i) As τ → τ + 1, the momentum and bosonic oscillator part is invariant,
while we have

ϑ

[
0
0

]
(τ + 1) = ϑ

[
0

1/2

]
(τ) ; ϑ

[
0

1/2

]
(τ + 1) = ϑ

[
0
0

]
(τ)

ϑ

[
1/2
0

]
(τ + 1) = e−πi/4 ϑ

[
1/2
0

]
(τ) ; ϑ

[
1/2
1/2

]
(τ + 1) = e−πi/4 ϑ

[
1/2
1/2

]
(τ)

η(τ + 1) = eπi/12 η(τ)

and hence

Zψ(τ + 1) = e4πi/3 Zψ (8.18)

Hence we need

ZαI (τ + 1) = e2πi/3 ZαI (8.19)

This is so, provided
∑

P∈Λ

e2πi(τ+1) P 2/2 =
∑

P∈Λ

e2πiτ P
2/2 (8.20)

Namely, we need P 2 ∈ 2Z for any P ∈ Λ. Lattices with this property are
called even.
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For future use (see next footnote), let us point out that even lattice are
always integer lattices. An integer lattice is such that for any v, w ∈ Λ, we
have v · w ∈ Λ. To show this, notice that in an even lattice, for any v, w we
have (v+w)2 is even, but (v+w)2 = v2 +w2 + 2v ·w. Since v2, w2 are enen,
it follows that v · w ∈ Z and Λ is integer.

ii) As τ → −1/τ , the spacetime momentum times spactime bosonic os-
cillator piece is invariant. For the fermionic piece we have

ϑ

[
0
0

]
(−1/τ) = (−iτ)1/2 ϑ

[
0
0

]
(τ) ϑ

[
0

1/2

]
(−1/τ) = (−iτ)1/2 ϑ

[
1/2
0

]
(τ)

ϑ

[
1/2
0

]
(−1/τ) = (−iτ)1/2 ϑ

[
0

1/2

]
(τ) ϑ

[
1/2
1/2

]
(−1/τ) = i(−iτ)1/2 ϑ

[
1/2
1/2

]
(τ)

η(−1/τ) = (−iτ)1/2 η(τ)

and hence

Zψ(−1/τ) = Zψ(τ) (8.21)

So we need

ZαI (−1/τ) = ZαI (τ) (8.22)

The left hand side reads

ZαI (−1/τ) = (−iτ)−8 η(τ)−16
∑

P∈Λ

e2πi(−1/τ)P 2/2 (8.23)

Using the Poisson resummation formula 2

∑
v∈Λ exp [−π(v + θ) · A · (v + θ) + 2πi (v + θ) · φ ] =

= 1
|Λ∗/Λ|

√
detA

∑
k∈Λ∗ exp [−π(k + φ) ·A−1 · (k + φ)− 2πikθ ] (8.24)

we have

ZαI (−1/τ) = (−iτ)−8 η(τ)16 1

|Λ∗/Λ|(−iτ)
8
∑

K∈Λ∗

e−2πiτ K2/2 (8.25)

2Here Λ∗ is the lattice dual to Λ, which is formed by the vectors k such that k · v ∈ Z

for any v ∈ Λ. For integer lattices, Λ is a sublattice of Λ∗, and the quotient Λ∗/Λ is a
finite set. Its cardinal |Λ∗/Λ| is called the index of Λ in Λ∗.
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So we have invariance if Λ∗ = Λ. Such lattices are called self-dual.

The compactification lattice Λ must be even and self-dual to obtain a con-
sistent modular invariant theory. Even self-dual lattices (with euclidean sig-
nature scalar product) have been proved by mathematicians to be extremely
constrained. They only exist in dimensions multiple of eight; happily we
need 16d lattices, so the dimension is in the allowed set of values.

Moreover there are only two inequivalent 16d even and self-dual lattices.
These are the following

i) The E8 × E8 lattice

It is spanned by vectors of the form

(n1, . . . , n8;n
′
1, . . . , n

′
8) ; (n1 + 1

2
, . . . , n8 + 1

2
;n′

1, . . . , n
′
8)(8.26)

(n1, . . . , n8;n
′
1 +

1

2
, . . . , n′

8 +
1

2
) ; (n1 + 1

2
, . . . , n8 + 1

2
;n′

1 + 1
2
, . . . , n′

8 + 1
2
)

with nI , n
′
I ∈ Z, and

∑
I nI = even,

∑
I′ n

′
I = even

ii) The Spin(32)/Z2 lattice

Spanned by vectors of the form

(n1, . . . , n16)

(n1 + 1
2
, . . . , n16 + 1

2
) (8.27)

So these define two consistent heterotic superstring theories.

8.1.4 Spectrum

The spectrum of these theories is found by constructing left and right moving
states in the usual way (constructing ladder operators and Hilbert spaces,
and applying the GSO projections dictated by the partition function), and
glueing them together satisfying level-matching.

We will simply discuss massless states, although the rules to build the
whole tower of string states should be clear.

The right moving sector is exactly the same as one of the sides of the type
II superstrings. The two choices of Zψ give two final theories which differ by
a 10d parity operation, so are equivalent; hence we choose one of them. The
massless states suriviving the GSO projection are
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Sector State SO(8)

NS ψ̃i−1/2|0〉 8V
R Ã+

a |0〉 8C
Ã+
a1Ã

+
a2Ã

+
a3 |0〉

We will denote the states in the R sector by 1
2
(±,±,±,±) (with odd

number of −’s), i.e. by the SO(8) weights.
For the left movers, the mass formula is given by

α′m2
L/2 = NB +

P 2

2
− 1 (8.28)

Lightest states are

State α′m2
L/2 SO(8)

NB = 0, P = 0 |0〉 -1 1
NB = 1, P = 0 αi−1|0〉 0 8V
NB = 1, P = 0 αI−1|0〉 0 1
NB = 0, P 2 = 2 |P 〉 0 1

Notice that there is a tachyon, but it will not lead to any physical state
in spacetime since it has no tachyonic right-moving state to be level-matched
with.

The latter states with P 2 = 2 are different for the two choices of lattice.
For the E8 ×E8 lattice, these states have internal momentum P of the form

(±,±, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0)
1
2
(±,±,±,±,±,±,±,±; 0, 0, 0, 0, 0, 0, 0, 0) #− = even

(0, 0, 0, 0, 0, 0, 0, 0;±,±, 0, 0, 0, 0, 0, 0)
1
2
(0, 0, 0, 0, 0, 0, 0, 0;±,±,±,±,±,±,±,±) #− = even (8.29)

We note that these are the non-zero root vectors of E8×E8 (hence the name
of the lattice).

States with P 2 = 2 in the Spin(32)/Z2 lattice have P of the form

(±,±, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (8.30)

We note that these are the non-zero root vectors of SO(32) (hence the name
of the lattice). Notice that momenta of the form P = 1/2(±, . . . ,±) have
P 2 = 4 and give rise to massive states.
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We should now glue together left and right states. The schematic struc-
ture of massless states is

(8̃V + 8̃C)× (8V + αI + |P 〉) (8.31)

Namely, we have the states

ψ̃i−1/2|0〉 × αj−1|0〉 8V × 8V = 1 + 28V + 35V
1
2
(±,±,±,±)× αj−1|0〉 8C × 8V = 8S + 56S

The massless fields are a scalar dilaton φ, a graviton Gµν , a 2-form B2,
and fermion superpartners, including a 10d chiral gravitino (56S). This is
the N = 1 10d supergravity multiplet, so the theory turns out to have N = 1
spacetime susy. Notice that this is half the susy of type II theories, since
we have GSO projection only on one of the sides, and this produces half as
many gravitinos.

We also obtain the states

ψi−1/2|0〉 × αI−1|0〉 8v
1
2
(±,±,±,±)× αI−1|0〉 8C

they correspond to 16 gauge bosons and superpartner gauginos. The
gauge group is U(1)16.

Finally we have the states

ψ̃i−1/2|0〉 × |P 〉 8v
1
2
(±,±,±,±)× |P 〉 8C

These are also gauge bosons and gauginos. It is possible to see that
they are charged under the U(1)16 gauge symmetries (this is analogous to
how winding and momentum states are charged with respect to the gauge
symmetries obtained in toroidal compactifications), so the gauge group will
be enhanced to a non-abelian symmetry. We would like to identify what is
the final gauge group, for each of the two choices of internal lattice. The
U(1)16 gives the Cartan subalgebra of the group, which hence has rank 16.
The charge of a state |P 〉 under the I th U(1) factor is given by P I , hence
the vectors P must correspond to the non-zero roots of the gauge group. As
we have mentioned before, the P 2 = 2 states of the compactification lattices
precisely correspond to the non-zero roots of the groups E8×E8 and SO(32),
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respectively for each of the lattices. Hence states from the αI oscillators and
from momentum P give altogether 10d N = 1 vector multiplets of E8 × E8

or SO(32).

The complete massless spectrum for the two consistent (spacetime super-
symmetric) heterotic theories is 10d N = 1 supergravity coupled to E8 ×E8

or SO(32) vector multiplets. These theories are chiral, so there is a very
stringent consistency issue arising from 10d anomalies. This will be reviewed
later on in this lecture.

Notice that the spectrum of these theories is very exciting. It contains
non-abelian gauge symmetries and charged chiral fermions. In later lec-
tures we will see that this structure allows to obtain interesting theories
with charged chiral 4d fermions upon compactification. In particular this is
possible due to the existence of fundamental vector multiplets in the higher
dimensional theory, therefore avoiding diverse no-go theorems about getting
charged chiral fermions in Kaluza-Klein theories with pure (super)gravity in
the higher dimensional theory.

8.2 Heterotic strings in the fermionic formu-

lation

In this section we discuss a different construction of the same heterotic string
theories as before. Readers comfortable with the above bosonic formulation
may therefore skip this section.

We refer the reader to the last section in the lesson about type II super-
string to the discussion of bosonization/fermionization. There we discussed
that a theory of k left-moving boson paramerizing compactified directions
is equivalent to a theory 2k fermions with a sum over boundary conditions
determined by the compactification lattice.

This motivates introducing a different description of the heterotic strings
we have constructed. Indeed, we construct a string theory whose worldsheet
degrees of freedom (already in the light-cone gauge) are right moving fields
X i
R(σ− t), ψiR(σ− t), i = 2, . . . , 9 and left-moving fields X i

L(σ+ t), λAL(σ+ t),
with i = 2, . . . , 9 and A = 1, . . . , 32.

The quantization of these is standard: Bosons X i
L,R are periodic in σ and

give rise to integer-modded oscillators, fermions ψi can be NS or R and have
consequently half-integer or integer modded oscillators. Finally fermions λA
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can also be NS or R, but in contrast with the preivous λA’s with different
boundary condition can coexist in the same sector (recall the ψ’s must be all
NS or all R in order not to violate spacetime Lorentz invariance).

With these ingredients, we can construct two possible modular invariant
partition functions, which have the familiar GSO projection on the right-
moving piece. They define two consistent heterotic string theories, which will
turn out to be the two heterotic strings constructed above, but described in
2d fermionic language.

The two partition functions have the structure

Z(τ) = (4πα′τ2)
−4 |η(τ)|−16 Zψ(τ)Zλ(τ) (8.32)

with two possible opctions for Zλ

i) Zλ(τ) =

ϑ

[
0
0

]16

+ ϑ

[
0

1/2

]16

+ ϑ

[
1/2
0

]16

+ ϑ

[
1/2
1/2

]16

η(τ)16

ii) Zλ(τ) =




ϑ

[
0
0

]8

+ ϑ

[
0

1/2

]8

+ ϑ

[
1/2
0

]8

+ ϑ

[
1/2
1/2

]8

η(τ)8




2

(8.33)

They differ in the way the 32 fermions λA are grouped. It is possible to use the
expressions of the ϑ functions as infinite sums and write the above partition
functions as sums over momenta in the Spin(32)/Z2 and E8×E8 lattices, thus
showing the equivalence with the bosonic formulations above. We have recov-
ered exactly the same heterotic string theories starting from a different world-
sheet formulation (related to the previous by bosonization/fermionization).

It is however interesting to construct the spectrum directly in the fermionic
formulation. We review it now, with special emphasis on the massless sector.

The right-moving sector is very familiar, and works exactly as one of the
sides of the type II superstring. At the massless level, we obtain NS states
ψ̃i−1/2|0〉 in the 8V of SO(8) and R states in the 8C .

For the left-moving sector, we treat the two possible cases separately.
The SO(32) heterotic in fermionic language
We start with i), the partition function Zλ has the structure

tr HNS
(1 + (−)F ) + trHR

(1 + (−)F ) (8.34)
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Hence the 32 fermions are all with NS or all with R boundary conditions. In
each sector there is an overall GSO projection.

NS sector
The mass formula is given by

α′m2
L/2 = NB +NF − 1 (8.35)

There are no fermion zero modes, so the vacuum is non-degenerate; the
Hilbert space is obtained by applying negative modding oscillators on it.
The GSO projection requires the number of fermion oscillators to be even
for physical states. The lightest states are

State α′m2
L/2

|0〉 −1
αi−1|0〉 0

λA−1/2λ
B
−1/2|0〉 0

The latter states correspond to antisymmetric combinations of the in-
dices A and B. Therefore and for future convenience we associate them
to the generators of an SO(32) Lie algebra (whose generators in the vector
representation are given by antisymmetric matrices).

As before, the left-moving tachyon cannot be level-matched with any
right-moving state and does not lead to spacetime tachyon states.

R sector The mass formula is given by

α′m2
L/2 = NB +NF + 1 (8.36)

There are 32 fermion zero modes, so the vacuum is 216-fold degenerate, split
in two chiral spinor irreps of the underlying SO(32) symmetry (acting on
the ΛA). The GSO projection selects states with even number of fermion
oscillators on one of them, and states with odd number of fermion oscillators
on the other. All states in the R sector are however massive, hence we will
not be too interested in them.

The total spectrum is found by glueing left and right moving states in a
level-matched way. The states

8V × αi−1|0〉 ; 8C × αi−1|0〉 ; (8.37)

reproduce the 10d N = 1 supergravity multiplet 1 + 28V + 35V + 8S + 56S.
The states

8V × λA−1/2λ
B
−1/2|0〉 ; 8C × λA−1/2λ

B
−1/2|0〉 ; (8.38)
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reproduce 10d N = 1 vector multiplets with gauge group SO(32) (as can be
guessed by noticing that we have 32× 32/2 states associated with antisym-
metric combinations of indices in the vector of SO(32).

Hence we have reproduced the (massless) spectrum of the SO(32) het-
erotic superstring.

The E8 × E8 heterotic in fermionic language
We now study ii), the partition function Zλ has the structure

[
tr HNS

+ trHR
(1 + (−)F )

]2
(8.39)

Hence the 32 fermions are split in two sets of 16, which we denote λA, λA
′
.

They have equal boundary conditions within each set, but with independent
boundary conditions. For each set of 16 fermions: the NS boundary condi-
tions imply the groundstate is unique, and GSO requires an even number of
fermion oscillators to be applies; the R boundary conditions imply a 28-fold
degenerate groundstate, split as two chiral spinor irreps of the underlying
SO(16), denoted 128 and 128’, with GSO requiring even number of fermion
oscillators acting on 128 and odd number on 128’.

With this information we can construct the complete left-moving spec-
trum. The lightest states which will finally level-match with right-moving
ones are the massless ones, so we look only at these

NS16NS16

The mass formula is

α′m2
L/2 = NB +NF − 1 (8.40)

The massless states are

State Remark
αi−1|0〉 8V of SO(8)

λA−1/2λ
B
−1/2|0〉 Adj. of SO(16)

λA
′

−1/2λ
B′

−1/2|0〉 Adj. of SO(16)′

R16NS16

The vacuum is 27-fold degenerate due to the 16 R fermion zero modes.
The mass formula is

α′m2
L/2 = NB +NF (8.41)
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The massless states are the groundstates, which transform as 128 of the
SO(16)

NS16R16

Similarly to the above, the massless states are the groundstates, which
transform as 128 of the SO(16)′

R16R16

In this sector even the groundstate is massive.

The total massless spectrum is obtained by tensoring the right-moving
8V + 8C with the above left handed states. It is easyy to recover the 10d
N = 1 supergravity multiplet by tensoring the right-moving 8V +8C with the
left-moving 8V . On the other hand, by tensoring the right-moving 8V + 8C
with the left-moving SO(8) singlets we obtain 10d N = 1 vector multiplets
with gauge group E8×E ′

8. The gauge group can be guessed by rememebering
that the adjoint of E8 decomposes as an adjoint plus a 128 of SO(16). Hence
we recover the complete massless spectrum of the E8 × E8 heterotic.

8.3 Spacetime Non-susy heterotic string the-

ories

There are other ways to construct modular invariant partition functions,
beyond the factorized proposal used above. These are more easily constructed
using the fermionic formulation of superstrings (a bosonized formulation is
also possible, but more involved since it would require lattices mixing the
internal bosons and spacetime fermionic degrees of freedom).

Without aiming at a general classification, let us simply give one example
of such a modular invariant partition function

1

η4 η16


ϑ

[
0
0

]4

ϑ

[
0
0

]16

− ϑ

[
1/2
0

]4

ϑ

[
1/2
0

]16

−

ϑ

[
0

1/2

]4

ϑ

[
0

1/2

]16

− ϑ

[
1/2
1/2

]4

ϑ

[
1/2
1/2

]16

 (8.42)

The interpretation in terms of the GSO projection is that we correlate the
(−1)F quantum number of the right moving fermions with the (−1)F quan-
tum number of the internal left-moving fermions.

Schematically the spectrum at the massless level is
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Sector State α′m2 SO(8) internal
NS-NS |0〉 ⊗ ψI−1/2|0〉 −2 1 32

ψ̃i−1/2|0〉 ⊗ αi−1|0〉 0 1 + 28V + 35V 1

ψ̃i−1/2|0〉 ⊗ ψI−1/2ψ
J
−1/2|0〉 0 8V SO(32)

Notice that the left moving R states has only massive modes, so by level
matching the NS-R, R-NS and R-R sector have only massive modes. The
theory contains the graviton, 2-form and dilaton field, as well as SO(32)
gauge bosons. The theory is spacetime non-supersymmetric, and contains
tachyons, transforming in the 32 of SO(32). As in other cases of tachyons in
closed string theories, the fate of this instability is not known. Finally, the
theory contains fermions, but all of them are massive. Overall, the theory is
not too interesting, and is given just as an example of non-supersymmetric
heterotic strings.

This heterotic string can also be constructed in the bosonic formulation,
by reading off the required lattice from the above partition function. Note
as we said that the lattice would involve the internal bosons as well as the
bosonization of the right moving fermions.

We conclude by pointing out that all 10d non-supersymmetric heterotic
theories contains tachyons, except for the so-called SO(16) × SO(16) het-
erotic. Details on this can be found in [71] (although discussed in a language
perhaps not too transparent).

8.4 A few words on anomalies

Anomaly cancellation in theories with chiral 10d spectrum is an astonishing
example of self-consistency of string theory. Therefore it is an interesting
topic to be covered. We leave its discussion for the evaluation project.

8.4.1 What is an anomaly?

Let us start giving a set of basic facts about anomalies, directed towards
understanding in what situations they may appear. A complete but formal
introduction may be found in [50].

When a classical theory has a symmetry which is not present in the
quantum theory, we say that the symmetry has an anomaly or that the theory
is anomalous. Namely, what happens is that quantum corrections generate
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terms in the effective action which are not invariant under the symmetry.
Since the classical lagrangian was invariant, such terms cannot be removed
with local counterterms, and the quantum theory is not invariant.

In the path integral formalism of quantum field theory, the lack of invari-
ance of the quantum theory (the anomaly) arises from the non-invariance
of the measure of the functional integration (this is Fujikawa’s method of
computing anomalies).

Notice that if there exists some regularization which preserves a classi-
cal symmetry of the classical theory, then the symmetry is not anomalous.
Namely, the regularized theory is still invariant under the symmetry, so reg-
ularized quantum corrections preserve the symmetry, and when the cutoff is
taken to infinity the symmmetry is still preserved. Hence the only symme-
tries which can be anomalous are those for which no symmetry-preserving
regularization exists.

This has the important consequence that only chiral fields can contribute
to anomalies. The contribution from non-chiral fields can always be reg-
ularized by using the Pauli-Villars regularization, which preserves all the
symmetries of the system.

This implies that anomalies can arise only in even dimensions 3 D = 2n
because only then there exist chiral representations of the Lorentz group.
Anomalies arise from very precise diagrams, they appear only from contri-
butions at one loop (and not at higher order, this is Adler’s theorem), in a
diagram of one loop of chiral fields (usually fermions) with n+1 external legs
of the fields associated to the symmetry (gauge bosons for gauge symmetries,
gravitons for diffeomorphism invariance (gravitaional anomalies), and exter-
nal currents for global symmetries). For instance, in 10d theories, anomalies
arise from hexagon diagrams (see fig 8.1 with external legs corresponding to
gravitons and/or gauge bosons, if they are present in the theory.

We will center on gauge anomalies, which are lethal for the theories.
Namely, in preserving unitarity of the theory it is essential that unphysical
polarization modes decouple, and this happens as a consequence of gauge
invariance. If an anomaly spoils the gauge invariance in the quantum theory,
the latter is inconsistent (non-unitary, etc). Namely, by scattering physical
polarization modes we can create unphysical ones by processes mediated by

3There exists different class of anomalies, called global anomalies (what I mean here
is different from anomalies for global symmetries), which are different from the ones we
study here and may also exist in odd dimensions; for instance the parity anomaly in odd
dimensions.
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Figure 8.1: Different hexagon diagrams contributing to gravitaional, gauge and
mixed anomalies.

the anomaly diagram. Hence, the latter must vanish in order to have a
consistent unitary theory.

Anomalous gauge variations of the effective action can be obtained from
the so-called anomaly polynomial I which is a formal (2n + 2)-form con-
structed as a polylnomial in the gravitational and gauge curvature 2-forms,
R and F , resp. It is therefore closed and gauge invariant. For instance, in
a 10d theory with gravitons and gauge bosons, the anomaly polynomial is a
linear combination of things like trR6, trR4trR2, trF 6, trF 4trF 2, (trF 2)3,
etc, with wedge products implied. Coefficients of the anomaly polynomial
are determined by the spectrum of chiral fields of the theory. The anomalous
variantion of the 1-loop effective action under a symmetry transformation
with gauge parameter λ is of the form

δλSeff =
∫
I(1) (8.43)

where I (1) is an n-form, obtained by the so-called Wess-Zumino descent pro-
cedure, as follows. Since the anomaly polynomial I is closed, it is locally
exact and can be written as I = dI (0), with I (0) a (2n + 1)-form. It can be
shown that the gauge variation of I (0) under any symmetry transformation
is closed, hence it is also locally exact and we can write δλI

(0) = dI (1), where
λ is the gauge parameter and I (1) is the above n-form. Hence we have

I = dI (0) ; δλI
(0) = dI (1) (8.44)

To give one simple example, consider a 4d U(1) gauge theory with n chiral
fermions carrying charge +1. The anomaly polynomial is given by I = nF 3.
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We then have I (0) = nAF 2 and δλI
(0) = n dλF 2, hence I (1) = nλF 2, leading

to the familiar form of the 4d anomaly.

Notice that the fact that the anomaly is a topological quantity is related
to the fact that it is determined by the spectrum of chiral fermions. The
latter is unchanged by continuous changes of the parameters of the theory,
like coupling constants, etc, hence so is the anomaly, i.e. it is a topological
quantity.

The fact that all anomalies in a theory can be derived from a unique
anomaly polynomial implies that the anomalies for diverse symmetries (and
for diagrams involving different kinds of gauge fields) obey the so-called Wess-
Zumino consistency conditions. Roughly speaking, they imply that if a gauge
variation wrt a symmetry ‘a’ generates a term involving the gauge curvature
of a symmetry ‘b’, then a gauge variation of ‘b’ should generate terms in-
volving the curvature of ‘a’. This is clear from the fact that the diagram
mediating the anomalies contains external legs of both ‘a’ and ‘b’.

8.4.2 Anomalies in string theory and Green-Schwarz
mechanism

In string theory, the spacetime theory is often chiral, for instance type IIB
or heterotic superstrings in 10d (also type I, see next lectures).

From the string theory viewpoint, the theory is however finite and gauge
invariant. This implies that the underlying string theory is providing a reg-
ularization of the corresponding effective field theory containing the chiral
fields. From this viewpoint it is clear that string theory should lead to theo-
ries free of gauge and gravitational anomalies (In fact, the relation between
modular invariance (ultimately responsible for finiteness of string theory)
and absence of anomalies has been explored in the literature [51]).

In type IIB theory, the fields contributing to the gravitational anomalies
are the 8S, 56S and 35C , i.e. the fermions and the self-dual 4-form. With this
matter content there is a miraculous cancellation of all terms in the anomaly
polynomial, which then automatically vanishes. The theory is therefore non-
anomalous [52].

In heterotic theories, the field content also leads to some miraculous can-
cellations of terms in the anomaly polynomial. For instance, the fact that
the gauge group has 496 generators leads to the absence of trF 6 terms. This
is called cancellation of the irreducible anomaly. However, even after these
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IR limit +

Figure 8.2: The low-energy limit of the six-point function for gravitons and gauge
bosons contains two contributions, the familiar field theory hexagon, and a dia-
gram of exchange of closed string modes at tree level with tree and one-loop level
couplings to external legs.

miracles, the anomaly polynomaly still is non-vanishing, but has a special
structure, it is of the form

I ' trF 4 (trF 2 − trR2) (8.45)

This residual anomaly, known as reducible anomaly, is cancelled by a special
contribution to the six-point function of gauge bosons and gravitons, which
does not have the standard field theory hexagon interpretation. As is shown
in figure 8.2, the contribution to the 1-loop amplitude with six external legs
lead to two kinds of low-energy contributions. One of them is the familiar
field thery hexagon diagram, of massless particles running in a loop. The
second is however of the form of an exchange of massless modes along a tree
level diagram, and a subsequent 1-loop coupling to some gauge fields.

The existence of the second contribution was noticed by Green and Schwarz
4, who provided the right field theory interpretation for it. The massless
mode propagating along the tube is the 2-form B2 (or its dual B6) which has
couplings to the curvatures as follows

∫

10d
B2 ∧ trF 4 ;

∫

10d
B6 ∧ (trF 2 − trR2) ; (8.46)

which arise at tree level and 1-loop respectively. The last coupling is often
expressed by saying that B2 obeys the modified Bianchi identity

dH3 = trF 2 − trR2 (8.47)

4In fact, they noticed it in type I, which is similar to the SO(32) heterotic at the field
theory level.
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Using these couplings, the gauge variation of the effective action is

δ
∫
10dH3 ∧ (trF 4)(0) =

∫
10d H3 ∧ δ(trF 4)(0) =

∫
10d H3 ∧ d(trF 4)(1) = (8.48)

∫
10d dH3 ∧ (trF 4)(1) =

∫
10d (trF 2 − trR2)(trF 4)(1) ' ∫10d [ (trF 2 − trR2)(trF 4) ](1)

The total anomalous variation therefore vanishes. This is the so-called Green-
Schwarz mechanism. This is very remarkable, indeed so remarkable that
triggered a lot of interest in string theory since the mid 80’s.



Chapter 9

Open strings

In this lecture we discuss open strings. The motivation is clear: they are
strings of a kind very different from the ones we have studied up to now, so
it is interesting to analyze their main features. Moreover, it is essential to
have some familiarity with open strings to construct the type I superstring
(see next lecture) since it contains sectors of open strings.

9.1 Generalities

Open strings are string with endpoints; they are described by worldsheets
with boundaries, see figure 9.1

The basic interaction between open strings is that two endpoints glue
together; the basic interaction vertex corresponds to two open strings joining
into a single one, figure ??a). Notice that the endpoints that glue together
may belong to the same open string, so that this basic interaction also im-
plies the existence of a vertex of two open strings joining into a closed one,
figure ??b). This has the remarkable consequence that theories with open
strings necessarily contain closed strings (notice that we know that
there exist theories of closed strings with no open strings; i.e. closed strings
may be consistent by themselves, but open string theories necessarily must
be coupled to closed string theories).

The worldsheet geometry forces us to include two sectors (open strings
and closed strings) in the theory. The total spectrum of spacetime particles
is given by the spectrum of oscillation modes of the closed string plus the
spectrum of oscillation modes of the open string.

165
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b)a)

Figure 9.1: Open strings have endpoints. As open strings move in time they
sweep out a worldsheet with boundaries.

sphere disk torus annulus/
cylinder

etc

Figure 9.2: .

Any amplitude is obtained by summing over geometries of 2d surfaces
interpolating between in and out states. This genus expansion contains con-
tributions from surfaces with handles and boundaries, which is weighted by
a factor of g−χs where χ = 2− 2g− nb, with g, nb the number of handles and
boundaries. Some examples are given in fig 9.2.

Finally, we would like to make the following important remark. The fact
that open strings couple to closed strings implies that the local structure of
the worldsheet of open strings is the same as that of closed strings. This im-
plies that the local 2d dynamics for open and closed strings must be the same
(with the only differences arising, as we will see, from boundary conditions
on the 2d fields).

A related issue is that there exist diagrams which admit two different
interpretations, regarded as open string diagrama or closed string diagramas.
Namely, the annulus can be regarded as vacuum diagram of open string states
running in a loop, or as a tree level diagram of closed string appearing from
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and disappearing into the vacuum. Both interpretations are possible because
the local structure of the worldsheet is the same for open and closed strings.
Both interpretations are related by a relabeling of the worldsheet coordinates
σ, t. The requirement that a single geometry can receive both interpretations
is a strong consisntency condition known as open/closed duality.

9.2 Open bosonic string

For this analysis we follow section 1.3 of [55]. This is an open string whose
local worldsheet dynamics is described by 26 2d bosons Xµ(σ, t) and a 2d
metric gab(σ, t), with the Polyakov action

SP = − 1

4πα′

∫

Σ
d2ξ (−g)1/2 gab(σ, t) ∂aX

µ ∂bX
νηµν (9.1)

The corresponding closed string sector is therefore the closed bosonic string.
Here we center on the quantization of the open string sector, that is quan-
tization of the above 2d field theory living on the interval (with boundary
conditions to be specified below).

9.2.1 Light-cone gauge

The gauge freedom of the 2d theory is fixed in the same way as we did for
the closed bosonic string. Again we have several steps

1. Reparametrization of t
Fix the t reparametrization freedom by setting the so-called light-cone

condition

X+(σ, t) = t (9.2)

2. Reparametrization of σ
For slices of constant t, define a new spatial coordinate σ ′ for each point

of the slice, as the (diffeomorphism and Weyl) invariant distance to one of
the endpoints

σ′ = c(t)
∫ σ

σ0

f(σ, t) dσ (9.3)

where

f(σ) = (−g)−1/2 gσσ(σ, t) (9.4)
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and c(t) is a σ independent coefficient used to impose that the total length
of the string is fixed, a constant in t which we call `. Notice that, in contrast
with closed string, there is a preferred reference line (so we do not impose
level matching constraints to get physical states). In what follows σ ′ will be
denoted simply σ.

3. Weyl invariance
Now we use Weyl invariance to impose that

g = −1 ∀σ, t (9.5)

The gauge fixing conditions imply, just like for the closed bosonic string, that

∂σgσσ = 0 (9.6)

The quantization is very similar to quantization of the closed bosonic
string, and the result is exactly the same local dynamics (e.g. hamiltonian).
The reader satisfied with this explanation is welcome to jump to eq. (9.17).

9.2.2 Boundary conditions

It is now convenient to obtain what kind of boundary conditions we need to
impose at σ = 0, `. To obtain them let us vary the action (9.1)

δSP = − 1

2πα′

∫

Σ
d2ξ gab ∂aX

µ ∂bXµ =

= − 1

2πα′

∫ ∞

−∞
dt
∫ `

0
dσ ∂a( g

ab δXµ ∂bXµ ) +
1

2πα′

∫

Σ
d2ξ δXµ ∂a( g

ab∂bXµ )

= − 1

2πα′

∫ ∞

−∞
dt ( gσb δXµ ∂bXµ ) |σ=`

σ=0 +
1

2πα′

∫

Σ
d2ξ δXµ ∂a( g

ab∂bXµ )(9.7)

The second term is the variation that leads to the equations of motion for
the 2d fields just like in the closed string. To recover them, we need the first
term to vanish. If δXµ is unconstrained 1 , we then need

gσb∂bX
µ(σ, t) |σ=`

σ=0 = 0 (9.8)

Using this for X+ = t, we get

gσt = 0 at σ = 0, `. (9.9)

1This is not the case for open string sectors describing lower-dimensional D-branes (to
be studied in later lectures).
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For the transverse coordinates X i we get

gσσ∂σX
µ(σ, t) |σ=`

σ=0 = 0 (9.10)

We cannot satisfy this equation by requiring gσσ = 0 at σ = 0, `, since (9.6)
would then imply gσσ ≡ 0 is non-dynamical, in contrast with the situation
in closed bosonic strings. Therefore we have to impose

∂σX
i |σ=0,` = 0 (9.11)

These are Neumann boundary conditions on both open string endpoints, so
this kind of open strings are also called Neumann-Neumann or NN.

9.2.3 Hamiltonian

The lagrangian in light-cone gauge is

L = − 1
4πα′

∫ `
0 dσ [−2 gtt∂tX

+ ∂tX
− + gtt∂tX

i ∂tX
i − 2 gσt ∂tX

+ ∂σX
− +

+2 gσt ∂σX
i ∂tX

i + gσσ ∂σX
i ∂σX

i ] =

= − 1
4πα′

∫ `
0 dσ [ gσσ (2 ∂tX

− − ∂tX i ∂tX
i) − 2 gσt (∂σX

− − ∂σX i ∂tX
i) +

g−1
σσ (1− g2

σt) ∂σX
i ∂σX

i ] (9.12)

Defining the center of mass and relative coordinates x−(t), Y −(σ, t)

x−(t) =
1

`

∫ `

0
dσ X−(σ, t)

X−(σ, t) = x−(t) + Y −(σ, t) (9.13)

we obtain

L = − `

2πα′ gσσ ∂tx
−(t) − 1

4πα′

∫ `

0
dσ [− gσσ ∂tX i ∂tX

i +

− 2 gσt (∂σY
− − ∂σX i ∂tX

i) + g−1
σσ (1− g2

σt) ∂σX
i ∂σX

i ] (9.14)

The Y −(σ, t) acts as a Lagrange multiplier imposing

∂σgσ,t(σ, t) = 0 ∀σ, t (9.15)

From (9.9) we get

gσ,t(σ, t) = 0 ∀σ, t (9.16)
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The lagrangian becomes

L = − `

2πα′ gσσ ∂tx
−(t) +

1

4πα′

∫ `

0
dσ [ gσσ ∂tX

i ∂tX
i − g−1

σσ ∂σX
i ∂σX

i ]

exactly as for closed strings. Following the computations there, the hamilto-
nian then reads

H =
`

4πα′p+

∫ `

0
dσ [ 2πα′ Πi Πi +

1

2πα′ ∂σX
i ∂σX

i ] (9.17)

9.2.4 Oscillator expansions

From the above hamiltonian, the equations of motion for the 2d fields X i(σ, t)
read

∂ 2
t X

i = ∂ 2
σX

i (9.18)

where we have again set ` = 2πα′p+. Again, the general solution will be a
superposition of left- and right-moving waves X i

L(σ + t), X i
R(σ − t). These

have the general oscillator expansion

X i
L(σ + t) =

xi

2
+

pi
2p+

(t + σ) + i

√
α′

2

∑

ν

αin
n
e−πi ν (σ+t)/`

X i
R(σ − t) =

xi

2
+

pi
2p+

(t− σ) + i

√
α′

2

∑

ν

α̃in
n
eπi ν (σ−t)/` (9.19)

with ν a modding to be fixed by the boundary conditions. Notice that for
convenience the exponents we use differ from those in closed strings in a
factor of two.

Now we have to impose the boundary conditions

∂σX
i
L + ∂σX

i
R = 0 at σ = 0, ` (9.20)

We compute

∂σX
i
L + ∂σX

i
R = i

√
α′

2

iπ

`

∑

ν

[
−αiνe−πiν(σ+t)/` + α̃iνe

πiν(σ−t)/`
]

(9.21)

Imposing the boundary condition at σ = 0 we obtain

αiν = α̃iν (9.22)
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The boundary conditions for open strings relate the left and right movers,
which are no longer independent. This alos means that the Hilbert space
of an open string will be exactly like one of the sides (say the left-moving
sector) of a closed string (the right-moving one not being an independent
one). Notice that this also means that open strings can couple only left-right
symmetric closed string sectors; for instance, there are no heterotic open
strings.

Imposing the boundary condition at σ = ` we obtain

αiν sin πν = 0 (9.23)

Which implies ν ∈ Z
The hamiltonian in terms of the oscillator modes reads

H =
pipi
2p+

+
1

2α′p+

[∑

n>0

[αi−nα
i
n

]
+ E0 (9.24)

with E0 = 24× (−1/24) = −1. This is exactly the hamiltonian for the left-
moving sector of the closed bosonic string, except for a factor of two arising
from that in the oscillator expansion.

9.2.5 Spectrum

The spectrum is obtained just like the left-moving sector of the closed string
theory. The spacetime mass formula is

α′m2 = NB − 1 with NB =
∑

n>0

αi−nα
i
n (9.25)

We define the vacuum by αin|0〉o = 0 for n > 0, and construct the Hilbert
space by applying creation oscillators to it. The lightest modes are

State α′m2 SO(24)
|0〉o −1 1

αi−1|0〉o 0 24
(Notice that we get the right Lorentz little group for the massless parti-

cles). We obtain a 26d U(1) massless gauge boson and a neutral tachyonic
26d scalar.

To the open string states we have to add the closed string states. Recall
thay are given by
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State α′m2 SO(24)
|0〉c −4 1

αi−1α̃
j
−1|0〉c 0 24× 24

where |0〉c is the closed string vacuum. This leads to the 26d closed string
tachyon and the massless 26d graviton, 2-form and dilaton.

We would like to briefly mention that, in contrast with the closed string
tachyon, there is a general consensus on the meaning of the open string
tachyon. It signals an instability because we are expanding the theory around
a maximum of the potential for this field. In order to correct this, we should
look for a minimum of the tachyon potential and expand the theory around
it. The potential indeed has a minimum, and very surprisingly the proposal
is that the theory sitting at this minimum is just the closed bosonic string
theory, with no open string sector.

The intuition underlying this proposal by A.Sen (and which is a bit ad-
vanced for this lecture) is that the open string sector is associated to an
underlying objetc which is filling spacetime (a D25-brane). The open string
tachyon signals an instability of this object, which decays and disappears.
The theory left over is just closed string theory with no open string sector.

Although open string sectors of the bosonic theory are ‘unstable’ in this
sense, it is useful to study them to learn more about string theory, and
as background material for other open string sectors without this kind of
tachyons.

9.2.6 Open-closed duality

In this section we would like to study how theories with open strings deal
with ultraviolet regimes. Consider the simplest 1-loop open string diagram,
namely the vacuum to vacuum amplitude given by the annulus. This cor-
responds to an open string evolving for some time 2T` and glueing back to
itself, see figure B.1a.

This can be computed easily as a trace over the open string Hilbert space.
An important difference with respect to the torus in the closed bosonic string
is that now we have a fixed reference line, we cannot glue back the open string
with a shift in σ; hence we do not have the analog of τ1. One could imagine to
glue back the strin up to an exchange of the roles of the two string endpoints,
but this would lead to a worldsheet with the topology of the Moebius string,
rather than an annulus. Such worldsheets exist for unoriented open strings,



9.2. OPEN BOSONIC STRING 173
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a) b)

Figure 9.3: The annulus diagram regarded in the open and in the closed string
channel.

which couple to unoriented closed string. Since the closed string theories we
have studied are oriented, so are our open strings, and we will not consider
Moebius strips. In next lecture, type I superstring is an unoriented string
theory and will contain such diagrams.

Let us evaluate the annulus amplitude. It is given by a sum over all
possible annulus geometries, namely integrating over the parameter T we
have

Z =
∫ ∞

0

dT

2T
Z(T ) (9.26)

with

Z(T ) = tr Hop.
e−2T`Hop. (9.27)

Recalling

Hop. =

∑
i p

2
i

2p+
+

1

2α′p+
(NB − 1) (9.28)

we have

Z(T ) = tr mom. e
−2πα′T

∑
i
p2

i tr osc. e
−2πT (N−1) (9.29)

Defining q = e2πi(iT ), the traces will organize in modular functions with
parameter τ = iT . Computing the traces in a by now familiar way we have

Z =
∫ ∞

0

dT

2T
(8π2α′T )−12 η(iT )−24 (9.30)
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2T

/2T

a) b)

Figure 9.4: Open-closed duality. An open string propagating a time 2T` is geo-
metrically the same as a closed string propagating a time T ′` with T ′ = 1/(2T ).

Open-closed duality is the fact that the annulus diagram can be regarded,
in a dual channel, as a diagram where closed strings appear from and dis-
appear into the vacuum, at tree level, see figure B.1b). Notice that the
ultraviolet regime in the open string channel corresponds to the infrared in
the closed string channel, see figure 10.7. Hence the ultraviolet regime is
mapped to an infrared regime due to the appearance of a dual channel once
stringy energies are reached.

In order to see more manifestly how the amplitude (9.30) can be regarded
as a closed string one, notice that in exchanging the roles of σ and t in the
annulus there is a redefinition of the new σ to bring it back to the light-
cone convention (total length equal to ` for closed strings) and hence the
closed string propagates for a time T ′` with T ′ = 1/(2T ). Using the modular
transformation properties

η(i/(2T ′)) = (2T )1/2 η(2iT ′) (9.31)

we can write

Z =
∫ ∞

0

dT ′

2T ′ (8π2α′)−12 η(2iT ′)−24 (9.32)

The same amplitude now has the structure of a sum over closed string states
with some peculiarities: there is not power-like dependence on T ′, meaning
that the closed states are created out of the vacuum with zero momentum
(due to momentum conservation); also, there is no analog of τ1 since the
closed string does not come back to itself; finally, due to the absence of
integration over τ1 (because there is no τ1) the level matching on closed states
has to be imposed explicitly, this leads to the argument of the oscillator η
functions to be doubled.
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Figure 9.5: Open string interaction vertex with Chan-Paton factors.

9.3 Chan-Paton factors

We now turn to the discussion of an essentially new feature of open strings.
It is consistent to have more than one kind of open string sector in a string
theory. The most general possibility is to introduce a discrete degree of
freedom, in one out of N possible states, at each string endpoint. Hence,
each open string is characterized by two indices, a, b, with a, b = 1, . . . , N ,
denoted Chan-Paton indices, specifying in which states the endpoints are.
Notice that the labels are ordered for oriented open strings.

These degrees of freedom are non-dynamical, so the label of an endpoint
simply propagates unchanged along the endpoint worldline. The rules for
interactions are clear, there is one label per boundary, and one should sum
over all possible labels in internal boundaries. The basic interaction vertex
is shown in figure 9.5.

The quantization of open strings with Chan-Paton factors is straightfor-
ward. Since Chan-Paton indices are non-dynamical, they do not enter in
the hamiltonian, and the quantization of each ab sector proceeds as for a
single open string without Chan-Paton factors. The existence of the indices
only implies that there are N 2 states of each kind. The lightest states are as
follows

State α′m2 SO(24)
|0〉ab −1 1

αi−1|0〉ab 0 24

where |0〉ab denotes the groundstate of the ab open string. Hence we
obtain N2 gauge bosons and N 2 scalar tachyons. The N 2 gauge bosons Aab

can be seen to correspond to a gauge group U(N). This can be seen by
analyzing their interactions as follows, see fig 9.6.



176 CHAPTER 9. OPEN STRINGS

a) b)

a a b
b

a b b b

ba
c)

aa a b

ba

Figure 9.6: Interactions between open string with Chan-Paton factors.

• The gauge bosons Aaa, Abb for a 6= b do not interact among themselves,
since they do not have common indices, fig 9.6a. This means that the corre-
sponding generators of the gauge group commute. In fact, they generate a
U(1)N Cartan subalgebra.
• The gauge boson Aab interacts with, i.e. is charged under Aaa, Abb, as

shown in figures 9.6b,c. The orientations of the boundary are inherited from
the orientation on whe worldsheet. The orientations imply that 9.6b, c differ
by a sign. Fixing a convention, we say that Aab carries charge +1 and −1
under Aaa, Abb.

Since charge under Cartan generators correspond to weights, and since
weights in the adjoint representation (in which gauge bosons must transform)
are roots, we obtain that the gauge group has N 2 −N non-zero roots of the
form

(+,−, 0, . . . , 0) (9.33)

Going back to the lecture on group theory, we see that these are the non-zero
roots of U(N).

Performing a similar discussion it is easy to see that all states in the open
string tower transform in the adjoint representation of U(N).

An alternative way to understand the appearance of U(N) is to consider
general states, linear combinations of the basic states | 〉ab

| 〉 =
∑

ab

λab| 〉ab (9.34)

where the matrix of coefficients λ is hermitian. These hermitian matrices are
providing an N -dimensional representation of the U(N) generators. Notice
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that a single Chan-Paton index a can be thought of as transforming in the
fundamental or antifundamental representation of the U(N) group, depend-
ing on whether it sits at the endpoint where the string starts from or ends
at.

It is very remarkable that the simple non-dynamical Chan-Paton degrees
of freedom lead to the rich dynamics of non-abelian gauge symmetry from the
viewpoint of spacetime. Also very remarkably, we have uncovered a brand
new way to obtain non-abelian gauge symmetries in string theory.

As a final comment, it is easy to see that open-closed duality is satisfied
for any choice of the Chan-Paton rank N . The annulus amplitude is exactly
as the above up to a multiplicity factor of N 2. Upon going to the closed
channel, this implies there is an additional factor of N on the disk diagrams
creating or annihilating the closed string from or into the vacuum.

Notice finally that the number of open string tachyons increases with N .
Hence the more open string sectors the theory has, the more unstable it
is in this sense. As with the single open string case, condensation of these
tachyons leads to the disappearance of the open string sectors, leaving behind
just the closed bosonic string theory.

9.4 Open superstrings

Let us try to consider describing open superstrings. We know that they
will couple to some closed superstring, which must be of the kind studied in
previous lectures. Since the local 2d worldsheet must be left-right symmetric,
the natural possibility to be considered is open string theories coupling to
type IIB closed string sectors.

At the end of this section we will see that in superstrings there is an
additional consistency condition, called RR tadpole cancellation condition,
which is not satisfied by the models we are about to construct. Nevertheless,
the material we cover will turn out to be useful for the construction of type
I theory, which is consistent, in next lecture.

9.4.1 Hamiltonian quantization

In the light-cone gauge the dynamical 2d fields are X i
L(σ + t), ψiL(σ + t),

X i
R(σ − t), ψiR(σ − t), with i = 2, . . . , 9. The quantization of the bosonic
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piece works exactly like in the open bosonic string, and will not be reviewed
here.

Centering on the 2d fermions, let us simply state, without entering into
details, that there are two possible boundary conditions which lead to the
correct equations of motion locally on the worldsheet. The possibilities are

ψiL = e2πiρ ψiR at σ = 0

ψiL = e2πiρ
′

ψiR at σ = ` (9.35)

with ρ, ρ′ = 0, 1/2. Redefining ψiR(σ− t)→ e−2πiρ′ψiR(σ− t) we can trivialize
the condition at σ = `, hence we are left with two possible sectors, which we
call NS and R

NS ψiL = −ψiR at σ = 0 R ψiL = ψiR at σ = 0
ψiL = ψiR at σ = ` ψiL = ψiR at σ = `

The mode expansion in both cases reads

ψiL(σ + t) = i

√
α′

2

∑

ν

ψiν e
−πiν(σ+t)/`

ψiR(σ − t) = i

√
α′

2

∑

ν

ψ̃iν e
πiν(σ−t)/` (9.36)

For NS boundary conditions, we have

σ = 0
∑

ν

(ψiν + ψ̃iν) e
−πiνt/` = 0 → ψiν = −ψ̃iν

σ = `
∑

ν

ψiν cos πν e−πiνt/` = 0 → ν ∈ Z +
1

2
(9.37)

For R boundary conditions, we have

σ = 0
∑

ν

(ψiν − ψ̃iν) e−πiνt/` = 0 → ψiν = ψ̃iν

σ = `
∑

ν

ψiν sin πν e−πiνt/` = 0 → ν ∈ Z (9.38)

So left and right movers are linked together. NS fermions are half-integer
modded and R fermions have integer moddings. Everything behaves as with
the left moving sector of a superstring.
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9.4.2 Spectrum for NS and R sectors

Being careful with the factor of 2 from the different exponent in the oscillator
expansions, the hamiltonian and mass formula are similar to the left moving
ones in a superstring. They are given by

H =

∑
i p

2
i

2p+
+

1

2α′p+
(NB + NF + E0 )

α′m2 = NB + NF + E0 (9.39)

with E0 = −1/2, 0 for NS, R sectors.
In the NS sector, we take the groundstate annihilated by positive modding

operators

αn|0〉 = 0 , ψn−1/2|0〉 = 0 , for n > 0 (9.40)

and build the Hilbert space by applying negative modding oscillators to it.
The lightest states are

State α′m2
L/2 SO(8)

|0〉 −1/2 1
ψi−1/2|0〉 0 8V

In the R sector, we define the groundstates as annihilated by positive
modding operators

αn|0〉 = 0 , ψn|0〉 = 0 , for n > 0 (9.41)

The groundstate is degenerate due to fermion zero modes, and hence forms
a representation of the Cliffor algebra generated by them. Introducing the
operators A±

a = ψ2a
0 ± iψ2a+1

0 , and the state |0〉 annihilated by the raising
operator, the groundstates are

|0〉 A+
a1 |0〉

A+
a1
A+
a2
|0〉 A+

a1
A+
a2
A+
a3
|0〉

A+
1 A

+
2 A

+
3 A

+
4 |0〉 (9.42)

The two columns correspond to the two chiral irreps of SO(8), 8S and 8C
respectively. Finally the spectrum is obtained by applying negative modding
oscillators to these groundatates. The lightest modes are the groundstates
themselves

State α′m2
L/2 SO(8)

R 1
2
(±,±,±,±) #− = even 0 8S

1
2
(±,±,±,±) #− = odd 0 8C
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9.4.3 GSO projection

A natural question is now how (or whether) to combine NS and R sectors in
constructing the open string spectrum (as was required by modular invariance
in closed superstrings). Clearly, the fact that the open strings we want to
construct couple to type IIB closed string imposes a constraint on the physical
spectrum of the open string. Indeed, the physical spectrum of the closed
sector had a GSO projection; if no constraint is imposed on the open string
spectrum, it would be possible to create unphysical closed string states (with
the wrong GSO behaviour) by scattering open string states.

In other words, open/closed duality (the fact that the open 1-loop annulus
diagram can be regarded as a closed string amplitude (with only GSO pro-
jected states propagating) requires the open string sector to have a specific
mixture of NS and R boundary condition, i.e. a GSO projection.

Indeed, it turns out that the GSO projection in the open string sector
is exactly that on one of the sides in a type II superstring. Namely, it
eliminates the NS groundstate, and the 8S R groundstate. Hence the open
string tachyon disappears, and the only massless states are a 10d U(1) gauge
boson and a 10d chiral fermion. They fill out a vector multiplet of 10d N = 1
supersymmetry.

The complete spectrum is given by this open string spectrum, plus the
closed type IIB string spectrum, which at the massless level is 10d N = 2
supersymmetry. This supersymmetry in the closed sector is not a symmetry
of the full theory, and it would be broken to N = 1 by interactions with open
strings.

Let us finish by mentioning that addition of Chan-Paton indices is straight-
forward and leads to the same result as for bosonic open strings, namely
the gauge group becomes non-abelian U(N) and all states transform in the
adjoint representation. This leads to a new situation, very different from
heterotic, with non-abelian gauge symmetries and charged fermions. So it in
principle provides an interesting starting point for model building of theories
similar to the Standard Model (see future lectures on D-branes worlds).

9.4.4 Open-closed duality

Let us verify that the annulus constructed in the open string channel indeed
reproduces a GSO projected closed string amplitude in the dual channel.
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The annulus amplitude is

Z =
∫ ∞

0

dT

2T
Z(T ) (9.43)

with

Z(T ) = trHop.
e−2T`Hop. = tr mom.e

−2πα′T
∑

i
p2

i tr bos. e
−2πT (NB−EB

0 ) ×
×

(
trNS,GSO e

−2πT (NF −EF
0 ) − tr R,GSO e

−2πT (NF −EF
0 )
)

(9.44)

We have

tr mom.e
−2πα′T

∑
i
p2

i = (8π2α′T )−4

tr bos. e
−2πT (NB−EB

0 ) = η(iT )−8

tr NS,GSO e
−2πT (NF −EF

0 ) =
1

2

(
trNSq

NF +EF
0 + trNS(q

NF +EF
0 (−)F

)
=

1

2
η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4



tr R,GSO e
−2πT (NF−EF

0 ) =
1

2

(
tr Rq

NF +EF
0 + tr R(qNF +EF

0 (−)F
)

=

1

2
η−4


ϑ

[
1/2
0

]4

− ϑ

[
1/2
1/2

]4

 (9.45)

In total

Z(T ) =
1

2
(8π2α′T )−4 η−8 η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

± ϑ
[

1/2
1/2

]4

 (2iT )(9.46)

It is clear that replacing T = 1/(2T ′) and using the modular properties
of the eta and theta functions we recover a correctly GSO projected closed
string amplitude.

9.4.5 RR tadpole cancellation condition

Although everything looks fine, clearly there must be something wrong in
the above construction. In previous lectures we mentioned that the field
content of type IIB theory is free of gravitational anomalies in a very intricate
and miraculous manner. Here we are seemingly constructing a bunch of
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Figure 9.7: Disk diagram leading to a tadpole term for some closed string mode.

theories which include the anomaly free type IIB field content, plus a bunch
of additional chiral fields arising from the open string sectors.

The additional sets of fields in these theories are anomalous, so it is not

possible that these theories with open string sectors are consistent.
Indeed we are going to learn that in theories with open superstrings there

is a consistency condition which we had not satisfied, and which renders
inconsistent all the above theories unless N = 0, namely unless open string
sectors are absent.

Let us discuss the physical idea, since the computations will be done in
some more detail in the lecture on type I superstrings. The key idea is that
the theory contains tadpole interactions due to disk diagrams of the kind
shown in figure 9.7. From the spacetime viewpoint, these are terms in the
effective action, which are linear in the closed sector field, schematically

Q
∫
d10xϕ(x) (9.47)

with Q the coefficient of the disk tadpole, and ϕ the corresponding closed
string field.

It is possible to compute explicitly in string theory which closed string
fields get this kind of tadpoles, but much can learnt from simple considera-
tions. First, the terms should be Poincare invariant in order to appear in the
effective action. In the RR sector, massless fields are p-forms in spacetime,
for all possible even p degrees. The only p-form for which the tadpole term
is Poincare invariant is the 10-form C10. This field is very peculiar, since its
field strength would be an 11-form which is identically zero in a 10d space-
time. Hence, and although it has a vertex operator in string theory, it has
not kinetic term. The only place where it appears in the spacetime action is
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in fact the tadpole term. Hence we have

SC10 = Q
∫

M10

C10 (9.48)

The equation of motion for this field is therefore

Q = 0 (9.49)

Namely, rather than a condition on the field, it is a consistency condition on
the theory. It requires that the RR tadpole is absent from the theory. This
is the RR tadpole cancellation condition.

It is possible to check that the coefficient of the tadpole diagram is non-
zero if there are open string sectors. Indeed, the standard way to compute
the disk (see lecture on type I) is to compute the annulus and take the
infinite T ′ limit in the closed string channel, where the amplitude factorizes
as the square of the disk. Recalling that with N Chan-Paton factors, the
annulus goes like N 2, the disk and hence the tadpole is proportional to N .
Consequently (9.49) requires N = 0, namely no open string sectors.

This is our result. The derivation was a bit crude, in particular since it
involved spacetime considerations. Nevertheless the result is robust and has
been derived (in a very technical way) purely from worldsheet consideration
[54].

We would like to conclude with two comments. In addition to the RR
tadpole, there is also a tadpole for NSNS fields. This tadpole is not a dan-
gerous one, since all fields in the NSNS sector have kinetic terms, hence
their equations of motion impose conditions on the fields and not consis-
tency conditions on the theory 2. This is analogous to open bosonic strings,
where disk tadpoles exist for fields with kinetic terms, hence do not signal
inconsistencies.

Finally, let us mention what theories are affected by the inconsistency.
The precise statement is that it is not possible to couple open strings to type
IIB closed string in a 10d Poincare invariant way. In further lectures we
will encounter consistnte situations with open superstrings, which avoid the
above problem: either because the open strings are unoriented and couple to
an unoriented version of type IIB theory (but not to just type IIB theory);

2In any event, supersymmetry relates NSNS and RR tadpoles, so that often in imposing
RR tadpole cancellation conditions one obtains NSNS tadpole cancellation, although the
latter is not required for consistency.
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or beacuse the open string sectors do not preserve 10d Poincare invariance
(see lecture on D-branes).



Chapter 10

Type I superstring

10.1 Unoriented closed strings

10.1.1 Generalities

Consider a closed oriented string theory which is left-right symmetric, e.g.
closed bosonic string theory or type IIB theory. Consider modding it out,
quotienting, by the operation Ω, worldsheet parity, that exchanges left and
right movers. Namely, construct the quotient theory, where states related by
left-right exchange are considered equivalent

|a〉L ⊗ |b〉R |a〉R ⊗ |b〉R (10.1)

This operation is called orientifolding the theory by Ω (this is also called
gauging the global symmetry Ω).

The genus expansion in the quotient theory is drastically different from
the original one. Consider for instance 1-loop vacuum diagrams. As usual we
have the torus, which corresponds to closed string states AL×BR which evolve
and are glued back to the original state. In theories where states related by Ω
are considered equivalent, there is a new diagram. It corresponds to starting
with a closed string state AL × BR letting it evolve and glueing it back to
the original up to the action of Ω. This is shown graphically in figure 10.1
where we can see the worldsheet is a non-orientable surface, a Klein bottle.
The result generalizes to other amplitudes as the statement that the genus
expansion of unoriented theories contains non-orientable worldsheets.

A general worldsheet (including oriented and unoriented ones) can be
described as a sphere with an arbitrary number of handles and crosscaps. A

185
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a) b)

Figure 10.1: Two pictures representing the Klein bottle. In b) we construct it as
a rectangle with vertical sides identified with the same orientation and horizontal
sides glued with the reversed orientation, as suggested by the arrow.

crosscap Klein bottle etc

Figure 10.2: Several examples of non-orientable surfaces constructed by glueing
crosscaps to a sphere.
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crosscap can be described as cutting a small disk in the surface and identifying
antipodal points in the resulting boundary to close back the surface. Several
non-orientable surfaces are shown in figure 10.2. In theories with open string
sectors (see later) the genus expansion contains worldsheets with boundaries.
Recalling the discussion in the review lectures, an amplitude mediated by a
worldsheet with g handles, nc crosscaps and nb boundaries is weighted by a
factor of e−ξφ, where φ is the dilaton vev and ξ = 2 − 2g − nc − nb is the
Euler characteristic of the worldsheet.

The spectrum of the unoriented theory is obtained from the spectrum of
the ‘parent’ oriented theory very simply. Namely, one takes the original spec-
trum and keeps only the Ω invariant states (or linear combinations of states).
The same result is obtained from our description of the genus expansion: One
way to obtain the spectrum of a theory is to see what states contribute in
the one-loop vacuum amplitude. The sum over the two contributions, the
torus and the Klein bottle, can be written in terms of the original Hilbert
space of states as

trHoriented
(. . .) + tr Horiented

(. . . Ω),=

= tr Horiented
[. . . 1

2
(1 + Ω)] (10.2)

the piece 1
2
(1 + Ω) is a projector that only keeps Ω invariant states, so that

only the later contribute to the amplitude. For non-invariant states, the
contributions from the torus and Moebius strip cancel each other; the sum
over topologies projects out those states.

10.1.2 Unoriented closed bosonic string

Let us obtain the precise action of Ω on closed string states in a systematic
way (to be used in other cases as well). The action of Ω on the 2d bosonic
field X(σ, t) is to transform it into a field X i′ = ΩX iΩ−1 such that

X i′(σ, t) = X i(`− σ, t) (10.3)

Introducing the oscillator expansion

X i(σ, t) = xi +
pi

p+
t + i

√
α′

2

∑

n6=0

[
αin
n
e−2πi n(σ+t)` +

α̃in
n
e2πi n(σ−t)` +

]
(10.4)
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we obtain

xi
′
= xi ; pi

′
= pi ; αin

′ = α̃in ; α̃in
′ = αin (10.5)

which corresponds to an exchange of the left and right movers, as expected.
The quotient theory is obtained by taking the vacuum of the original

theory

αin|0〉 = 0 ; α̃in|0〉 = 0 ∀n > 0 (10.6)

and applying left and right oscillators forming Ω invariant states. The space-
time mass of these states is given by the original formula

α′m2/2 = NB + ÑB − 2 (10.7)

The lightest modes are

State α′m2/2 Lorentz rep
|0〉 −2 scalar

α
(i
−1α̃

j)
−1|0〉 0 graviton∑

i α
i
−1α̃

i
−1|0〉 0 dilaton

We see that the 2-form of the original theory is odd under Ω and is
projected out. The complete spectrum is easily obtained.

This concludes the construction of our theory, which can be checked to
be completely consistent. In the following sections we try to construct an
unoriented version of the (type IIB) superstring.

10.1.3 Unoriented closed superstring theory IIB/Ω

The worldsheet theory is in this case described by the 2d bosonic and fermionic
fields X i(σ, t), ψi(σ, t). The bosonic fields are discussed exactly as above. On
the fermionic fields, the action of Ω is such that

ψi
′
(σ, t) = ψi(`− σ, t) (10.8)

Using the oscillator expansion

ψi(σ, t) = i

√
α

2

∑

r∈Z

[
ψir+ν e

−2πi (r+ν)(σ+t)/` + ψ̃ir+ν e
2πi (r+ν)(σ−t)/`

]
(10.9)
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where ν = 1/2, 0 for NS and R fermions, we obtain

ψir+ν
′ = ψ̃ir+ν ; ψ̃ir+ν

′ = ψir+ν ; (10.10)

We can now obtain the spectrum of the unoriented theory, which is simply
obtained by taking the Ω invariant states of the original theory. There is an
interesting subtlety in the action of Ω on RR states; since the left and right
moving pieces in this sector are spacetime spinors, they anticommute, so that
a state AL×BR is mapped by Ω to AR×BL = −BL×AR. The Ω invariant
states are therefore of the form AL×BR −BL ×AR. Notice also that states
in the NS-R sector must combine with states in the R-NS sector to form
invariant combinations.

The light spectrum is given by

Sector State SO(8) Field

NS-NS ψ
(i
−1/2|0〉 ⊗ ψ

j)
−1/2|0〉 1 + 35v dilaton, graviton

NS-R+R-NS ψi−1/2|0〉 ⊗ 8̃C + 8C ⊗ ψ̃i−1/2|0〉 56S + 8S gravitinos

R-R [8C ⊗ 8̃C ] 28C 2-form

This spectrum corresponds to the gravity multiplet of 10d N = 1 super-
gravity. Notice in particular that the orientifold projection kills one linear
combination of the two gravitinos of the original N = 2 supersymmetric type
IIB theory.

This theory as it stands is clearly not consistent. A theory whose spec-
trum is just the gravity multiplet of 10d N = 1 theory has 10d gravitational
chiral anomalies. Clearly we have missed an important consistency condition
in the construction of the theory.

The consistency condition is RR tadpole cancellation. Unoriented theo-
ries contain a diagram, given by a crosscap with an infinite tube attached
to it (see fig. 10.3), which leads to a tadpole for certain massless fields. In
particular there is a tadpole for a RR field, which due to 10d Poincare invari-
ance, must be the non-propagating 10-form C10 (which can be seen to survive
the orientifold projection). This RR tadpole renders the theory inconsistent.

The fact that the problem in constructing a theory of just unoriented
closed strings is very similar to the problem of constructing a theory of open
strings coupled to type IIB theory leads to the following suggestion. One
can attempt to construct a theory free of RR tadpoles by considering the Ω
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RR

a) b)

RR

Figure 10.3: Crosscap diagram leading to a tadpole term for some closed string
mode.

RR RR
aΣ

a
+ 0=

Figure 10.4: Cancellation of RR tadpoles from crosscap and disk diagrams.

orientifold of type IIB coupled to a sector of open strings. Namely, we can
attempt to construct a theory where the RR tadpoles for C10 arising from
open string sectors (disk diagrams) and unorientability (crosscap diagrams)
cancel each other. This is the so-called type I superstring theory.

In other words, the equation of motion from the action for the 10-form

SC10 = (Qcrosscap +Qrmdisks)
∫
C10 (10.11)

would be satisfied

Qcrosscap +Qdisk = 0 (10.12)

This is pictorially shown in figure 10.4. Open string sectors coupling to
unoriented closed string must be unoriented as well. Hence if one is able to
construct such a theory, it would be a theory of unoriented open and closed
strings. Hence we need to know a bit about unoriented open strings before
the final construction.
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10.2 Unoriented open strings

10.2.1 Action of Ω on open string sectors

As mentioned in previous lectures, the local structure on the 2d worldsheet
for open strings should be the same as for the corresponding closed sector.
Hence, the action on the bosonic coordinates is such that

X i′(σ, t) = X i(`− σ, t) (10.13)

Using the oscillator expansion for open strings,

X i(σ, t) = xi +
pi

p+
t + i

√
α′

2

∑

n

αin
n

cos
πnσ

`
e−πint/` (10.14)

we obtain

xi′ = xi ; pi′ = pi ; αin
′ = (−1)nαin (10.15)

The action on fermions is such that

ψi′(σ, t) = ψ
′

(`− σ, t) (10.16)

Using the expansion

ψi(σ, t) = i

√
α′

2

∑

r∈Z

[
ψr+νe

−πi(r+ν)(σ+t)/` + (−1)2ν ψr+νe
πi(r+ν)(σ−t)/`

]
(10.17)

with ν = 1/2, 0 for NS and R fermions, resp, we obtain

ψi′r+ν = (−1)r+νψr+ν (10.18)

It should be pointed out at this stage that there is a non-trivial action of Ω
on the open string NS groundstate, namely

Ω|0〉NS = e−iπ/2|0〉NS (10.19)

Finally, we also need to specify the action of Ω on the Chan-Paton indices
in cases where they are present. Clearly Ω exchanges the order of the labels
ab, since it reverses the orientation of the open string.
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A general state with fixed operator structure may be written as a linear
combination of the corresponding state in the different open string sectors,
of the form λab|ab〉. The N × N matrix λab is known as the Chan-Paton
wavefunction of the state. The action of Ω on Chan-Paton labels can be
encoded into an action on λ

λ
Ω−→ γΩλ

Tγ−1
Ω (10.20)

where γΩ is an N ×N unitary matrix or order two. There are two canonical
choices, distinguished by the symmetry of γΩ

i) γΩ = 1N

ii) γΩ =
(

0 i1N/2
−i1N/2 0

)
(10.21)

The first option i) is also often described as

γΩ =
(

0 1(N/2

1N/2 0

)
for N = even ; γΩ =




1
0 1(N−1)/2

1(N−1)/2 0


 for N = odd(10.22)

A more transparent interpretation of these actions on Chan-Paton labels
is as follows (we take N even for simplicity). Consider splitting the set of
labels into two sets, running from 0 to N/2 and from N/2+1 to N , and label
them by indices a, and a′. Denoting the Chan Paton index part of a state
by e.g. |ab〉, the actions above are

|ab〉 → |b′a′〉 ; |a′b′〉 → |ba〉
|ab′〉 → ±|ba′〉 ; |a′b〉 → ±|ba′〉 (10.23)

with +,− signs for symmetric or antisymmetric γΩ.

10.2.2 Spectrum

It is now easy to obtain the spectrum of the unoriented open string sector, by
simply keeping the states of the original theory invariant under the combined
action of Ω on the oscillator operators, the vacuum and the Chan Paton
labels. We center on the massless sector.

In the NS sector, the states λψi−1/2|0〉 transform as

λψi−1/2 |0〉
Ω−→ − γΩλ

Tγ−1
Ω ψi−1/2 |0〉 (10.24)
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Invariant states correspond to components of the matrix λ surviving the
projection

λ = −γΩλ
Tγ−1

Ω (10.25)

In case i), we obtain λ = −λT , so there are N(N − 1)/2 surviving gauge
bosons. This number, and the relation with antisymmetric matrices as gen-
erators, suggest that the gauge bosons fill out a gauge group SO(N).

In case ii), writing λ =
(
A B
C D

)
, the projection imposes A = −DT ,

B = BT , C = CT . There are N(N + 1)/2 gauge bosons, and this suggests
that the gauge group is USp(N).

In the R sector, the GSO projection selects the groundstate transforming
as 8C . The action of Ω turns out to introduce a minus sign on it, so the
projection condition on λ is again

λ = −γΩλ
Tγ−1

Ω (10.26)

Hence in cases i) and ii) we get 10d fermions in the adjoint representation
of SO(N) and USp(N) respectively. The NS and R sectors altogether give
an SO(N) or USp(N) vector multiplet of 10d N = 1 supersymmetry. So
the open string sector preserves the same amount of supersymmetry as the
unoriented closed string sector.

10.3 Type I superstring

As discussed above, the idea in the construction of type I superstring is to
add (unoriented) open string sectors to the unoriented closed string theory
in section 1, in such a way that the contribution of disks and crosscaps to
the 10-form RR tadpole cancels.

10.3.1 Computation of RR tadpoles

The idea
Instead of computing directly the disk and crosscap diagrams with in-

sertions of the massless RR field, there is an indirect but standard way of
computing them. In particular it is useful in making sure the disk and cross-
caps come out with the same normalization (which is clearly crucial to have
correct cancellation).
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a) RR

b)

= RR
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| |
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RR =
2

RR| |c)

Figure 10.5: Disk and crosscap tadpoles can be recovered in the factorization
limit of certain one-loop amplitudes, namely the annulus (a), the Moebius strip
(b) and the Klein bottle (c).

a)

+ + +

b)

+ +
RR

++ RR =

= +
2

T T T T

c) | |

Figure 10.6: The sum of four amplitudes factorizes as the square of the total disk
plus crosscap tadpole.

The idea is that since we are interested in computing e.g. the disk with
insertion of a massless field, this can be recovered from an annulus ampli-
tude with no insertions, in the limit in which it factorizes in the closed string
channel. this is shown in figure 10.5a). Similarly, the amplitude for a cross-
cap with insertion of massless fields can be recovered from the factorization
limit of diagrams in figure 10.5b,c. These diagrams, as we discuss later on,
correspond to a Moebius strip and a Klein bottle.

Indeed computing a sum of these diagrams of closed strings propagating
for some time T ′` between disks and crosscaps, as shown in figure 10.6a),
and taking the factorization limit T ′ → ∞ one recovers the expression for
the square of the total RR tadpole. This is pictorially shown in fig 10.6, and
holds very precisely in the explicit computation to be discussed later on.

These diagrams are most easily computed in the dual channel, where
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they reduce to traces over Hilbert spaces. The channel in figure 10.6 is
recovered by performing a modular transformation, after which we may take
the factorization limit. Let us consider the different surfaces

The annulus
The diagram with two disks is our old friend the annulus. It can be easily

computed as an ampiltude for an open string to travel for some time 2T` and
glue back to itself. Taking into account the trace over Chan-Paton indices,
it reads

ZA = N2
∫ ∞

0

dT

2T
trHopen e

−2T`Hopen (10.27)

The trace is over open oriented string states (since it is the sum over worl-
sheets that implements the orientifold projection, we do not have to impose
it explicitly). We have

tr mom.e
−2πα′T

∑
i
p2

i = (8π2α′T )−4

tr bos. e
−2πT (NB−EB

0 ) = η(iT )−8

tr NS,GSO e
−2πT (NF −EF

0 ) =
1

2

(
trNSq

NF +EF
0 + trNS(q

NF +EF
0 (−)F

)
=

1

2
η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4



tr R,GSO e
−2πT (NF−EF

0 ) =
1

2

(
tr Rq

NF +EF
0 + tr R(qNF +EF

0 (−)F
)

=

1

2
η−4


ϑ

[
1/2
0

]4

− ϑ

[
1/2
1/2

]4

 (10.28)

In total

Z(T ) =
1

2
(8π2α′τ2)

−4 η−8 η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

+ ϑ

[
1/2
1/2

]4

(10.29)

As shown in figure 10.7, in going to the dual channel we find a closed string
propagating between two disks during a time T ′` with T ′ = 1

2T
. We should

then replace T = 1
2T ′ in the above expression. To make the formula look like

an amplitude in the dual channel we should perform a modular transforma-
tion. Leaving the details for a second version of these notes, the amplitude
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2T

/2T

a) b)

Figure 10.7: An open string propagating a time 2T` is geometrically the same as
a closed string propagating a time T ′` with T ′ = 1/(2T ).

will read

ZA =
∫ ∞

0

dT ′

2T ′ Z̃A(2T ′) (10.30)

In this amplitude it is easy to identify the propagation of RR modes (upper
characteristic of the theta function is 1/2). Taking the limit T ′ →∞ in this
piece leads to

ZA → N2 (10.31)

This is proportional to the square of the RR disk tadpole.

Klein bottle
The Klein bottle amplitude corresponds to a closed string that propagates

for a time T` and is glued back to itself up to the action of Ω, see figure 10.1.
The measure is obtained from that of the torus noticing that Ω does not
allow for the τ1 parameter. The amplitude hence reads

ZK =
∫ ∞

0

dT

4T
tr Hclosed

e−T`Hclosed (10.32)

The sum is over the Hilbert space of closed oriented strings. However, states
non-invariant under Ω can be written as a sum over an Ω-even and an Omega-
odd state

|A〉 =
1

2
(|A〉+ Ω|A〉) +

1

2
(|A〉 − Ω|A〉)+ (10.33)

which have the same energy and different Ω eigenvalue. Hence their con-
tributions cancel in the trace. Consequently, only states direcly mapped to
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themselves by Ω can contribute. Since this states are exactly left-right sym-
metric, we can simply sum over left-moving states and double the energy of
each state. We obtain

ZK(T ) = tr mom.e
−πα′ T

∑
i
p2

i tr bos. e
−2πT (NB−EB

0 ) ×
×

(
trNS,GSO e

−2πT (NF −EF
0 ) − tr R,GSO e

−2πT (NF −EF
0 )
)
(10.34)

The result is

Z(T ) =
1

2
(4π2α′T )−4 η−8(2iT ) η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− ϑ

[
1/2
0

]4

+ ϑ

[
1/2
1/2

]4

 (2iT )(10.35)

The Klein bottle is topologically the same surface as a closed string prop-
agating between two crosscaps. This is shown in fig 10.8. In this dual closed
channel the closed string propagates for a time T ′` with T ′ = 1

4T
. Replacing

T in the amplitude and perform a modular transformation (for details, see a
forthcoming second version of these notes), the amplitude will read

ZK =
∫ ∞

0

dT ′

2T ′ Z̃K(2T ′) (10.36)

Extracting the contribution from RR modes and taking T ′ →∞ in leads to

ZK → (32)2 (10.37)

This is proportional to the square of the RR crosscap tadpole, with same
proportionality as in (10.31).

Moebius strip
The Moebius strip corresponds to an aa open string propagating from

a time 2T` and glueing back to itself up to the action of Ω. This kind of
diagram does not exist for ab states with a 6= b. The amplitude reads

ZM = ±N
∫ ∞

0

dT

2T
tr Hopen

(
e−2T`Hopen Ω

)
(10.38)

The sign is given by the action of Ω on aa states, it can also be written
tr (γ−1

Ω γTΩ) and is +,− for cases i), ii) above.
The trace is over open oriented string states. However, in analogy with

the Klein bottle, only states directly invariant under Ω contribute to the
trace.
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Figure 10.8: Take a Klein bottle as a rectangle with sides identified; cut it in
two pieces keeping track of how they were glued; then glue explicitly some of the
original identified sides. The result is the same surface now displayed as a surface
with two crosscaps.
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Figure 10.9: Take a Moebius strip as a rectangle with sides identified; cut it in
two pieces keeping track of how they were glued; then glue explicitly some of the
original identified sides. The result is the same surface now displayed as a surface
with one boundary and one crosscap.
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The explicit evaluation of this amplitude is easy, but involves slightly
more complicated combinations of theta functions than the previous ones.
We leave the details for a second version of these notes, and proceed the
discussion in a qualitative way.

As shown in figure 10.9, the Moebius strip is topologically the same sur-
face as a closed string propagating between a disk and a crosscaps. In this
dual closed channel the closed string propagates for a time T ′` with T ′ = 1

8T
.

Replacing T in the amplitude and perform a modular transformation, the
amplitude will read

ZM =
∫ ∞

0

dT ′

2T ′ Z̃M(2T ′) (10.39)

Extracting the contribution from RR modes and taking T ′ →∞ in leads to

ZK → ∓32N (10.40)

with −,+ corresponding to the cases i), ii) above. This is proportional to
the product of the RR disk and crosscap tadpoles, with same proportionality
as in (10.31).

RR tadpole cancellation
The sum of the four amplitudes in fig 10.6a in the factorization limit is

hence proportional to (N − 32)2. This implies that to obtain a consistent
theory of unoriented open and closed strings, we need the Chan-Paton indices
to run over 32 possible values

N = 32 (10.41)

and the Ω action on them, γΩ, to be a symmetric matrix. This is type I
superstring theory.

The spectrum of this theory is obtained straightforwardly. At the mass-
less level the closed string sector corresponds to the 10d N = 1 supergravity
multiplet, and the open string sector corresponds to 10d N = 1 vector mul-
tiplets with gauge group SO(32).

Sector Sector SO(8) Field
Closed NS-NS 1 + 35V dilaton, graviton

NS-R+R-NS 8S + 56S gravitino
R-R 28C 2-form

Open NS 8V SO(32) gauge boson
R 8C gauginos
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a) b) c)

Figure 10.10: Limits of the annulus leading to anomalies in type I theory; a)
corresponds to the familiar planar hexagon contribution to irreducible anomalies in
field theory, while b) corresponds to a non-planar hexagon field theory contribution
anomalies. c) corresponds to a Green-Schwarz diagram exchanging the closed
string 2-form field, and which contributes to reducible anomalies.

Notice that this spectrum if free of gravitational and gauge anomalies. For
this to be true, it is crucial that the gauge group is SO(32), as we already
saw in the discussion of anomalies in the heterotic theories. (interestingly
enough, the massless spectrum of the SO(32) and the type I string theories
are the same).

In the cancellation of mixed gauge - gravitational anomalies, it is crucial
the existence of a Green-Schwarz mechanism. Although at the level of the
effective action the description for type I is similar to the one for heterotic
(with the difference that the 2-form mediating the interaction is the RR one
in type I theory), the string theory origin of the relevant couplings is different.
In particular, both the BF 2 and BF 4 terms in type I string theory arise from
disk diagrams with open string state insertions (powers of F) and a closed
string B-field insertion, see figure 10.10.

10.4 Final comments

Just as with the other superstrings, there exist non-supersymmetric versions
of type I superstring. One posibility is to construct orientifold quotients of
the type 0 superstrings. We will not discuss these theories in our lectures.
Another possibility [?] is to perform a modified Ω projection of type IIB
theory which breaks the supersymmetries. We may discuss this theory later
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IIA 8 8IIB   I E x ESO(32)

Figure 10.11: .

on in these lectures, since it will be easier to describe it once we learn about
D-branes, orientifold planes and antibranes.

This concludes our discussion of the 10d superstring theories. At the mo-
ment the picture of string theory that we have is shown in fig 10.11. Five
different (spacetime supersymmetric) superstring theories, constructed in dif-
ferent ways and with different features. All of them provide theories which
describe gravitational (plus other) interactions in a quantum mechanically
consistent way. However this multiplicity is unappealing: we would like to
have a more unified description of how to construct consistent theories of
gravitational interactions.

In the following lectures we will see that this picture will be drasti-
cally modified once we learn about compactification, T-duality and non-
perturbative dualities. It turns out that the seemingly different string theo-
ries are intimately related, and seem to be just different limits of a unique
underlying theory.

It would be very nice if the non supersymmetric strings would also fit
into this unified picture. Although there are some ideas in the market, it is
much more difficult to find evidence for this proposal.
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Chapter 11

Toroidal compactification of
superstrings

11.1 Motivation

In this lecture we study toroidal compactification of the (spacetime super-
symmetric) superstring theories. The main motivation is to obtain theories
which reduce to 4d at low energies. Although the models obtained in this lec-
ture are not interesting to describe the real world (they are non-chiral), they
will be useful starting points for further constructions, like orbifolds. Also,
toroidal compactification illustrates, just as in bosonic theory, the very strik-
ing features of stringy physics. For instance, the phenomenon of T-duality in
will reveal that the seemingly different superstring theories are related upon
toroidal compactification.

11.2 Type II superstrings

In this discussion we follow section 13.1 of [55].

11.2.1 Circle compactification

Let us consider the type IIA, IIB theories compactified to 9d on a circle S1

of radius R. The 2d fermion sector is completely unchanged by the compact-
ification; the only effects of the compactification are

203
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i) the possibility of boundary conditions with non-zero winding w for the
2d bosonic fields, namely

X9(σ + `, t) = X9(σ, t) + 2πRw (11.1)

ii) the fact that momentum along x9 is quantized, p9 = k/R.

In a sector of momentum k and winding w, we have the mode expansion

XL(σ + t) =
x9

0

2
+
pL,9
2p+

(t+ σ) +
1

α′p+
NB

XR(σ − t) =
x9

0

2
+
pR,9
2p+

(t− σ) +
1

α′p+
ÑB (11.2)

with

pL =
k

R
+
wR

α′ ; pR =
k

R
− wR

α′ (11.3)

We have the spacetime mass formulae

M2
L =

p2
L

2
+

2

α′ (NB +NF + E0)

M2
R =

p2
R

2
+

2

α′ (ÑB + ÑF + Ẽ0) (11.4)

From these expressions we can obtain the spectrum of 9d states at any radius
R. For a generic R, the only massless states are in the sector of k = 0, w = 0.
These states correspond to the zero modes (zero internal momentum) of the
KK reduction of the effective field theory of 10d massless modes. Note that
these states are present in field theory because they have zero winding.

The proccess of KK reduction to 9d and keeping just the zero mode
amounts to simply decomposing the representations with respect to the 10d
SO(8) group into representations of the 9d SO(7) group. Working first with
e.g. the purely left moving sector, at the massless level we have

Sector State SO(8) SO(7)
NS ψi−1/2|0〉 8V 7 + 1

R (±1
2
,±1

2
,±1

2
,±1

2
) 8S 8

8C 8
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Notice that the chiral 10d spinors of different chirality reduce to the same
spinor representation of SO(7), which does not have chiral representations
(there is no chirality in odd dimensions).

In order to glue left and right movers, we may tensor the SO(8) repre-
sentions for left and right movers to get the 10d fields, and then decompose
with respect to SO(7), or decompose the left and right states with respect to
SO(7) representations and then tensor them. Both methods give the same
result, so we may use any of them at will.
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For type IIB theory, the massless 10d fields are the metric, 2-form and
dilaton, G, B, φ; two gravitinos and two spin 1/2 fields ψµα, ψα; the scalar
axion, a 2-form and a self-dual 4-form, a, B̃, A+

4 . We have the following set
of 9d massless states (See table 35 [124] for tensor products in SO(7)):

NS-NS
8V , 8V → 8V × 8V = 35V + 28V + 1
↓ ↓ ↓ ↓

7 + 1, 7 + 1 → 7× 7 = 27 + 21 + 1 Gµν , Bµν , φ
7× 1 + 1× 7 = 7 + 7 G9µ, B9µ

1× 1 1 G99

R-NS
8C , 8V → 8C × 8V = 56S + 8S
↓ ↓ ↓

8, 7 + 1 → 8× 7 = 48 + 8 ↓ ψµα, ψ9α

→ 8× 1 = 8 ψα
NS-R
8V , 8C → 8V × 8C = 56S + 8S
↓ ↓ ↓

7 + 1, 8 → 7× 8 = 48 + 8 ↓ ψµα, ψ9α

→ 1× 8 = 8 ψα
R-R

8C , 8C → 8C × 8C = 1 + 28C + 35C
↓ ↓ ↓ ↓

8, 8 → 8× 8 = 1 + 7 + 21 + 35 a, B̃9µ, B̃µν , A9µνρ

Here µ = 2, . . . , 8 runs in the seven non-compact directions transverse to the
light-cone.
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For type IIA theory, the massless 10d fields are the metric, 2-form and
dilaton, G, B, φ; two gravitinos and two spin 1/2 fields ψµα, ψα, ψµα̇, ψα̇; a
1-form and a 3-form A1 C3. We have the following set of 9d massless states
(See table 35 [124] for tensor products in SO(7)):

NS-NS
8V , 8V → 8V × 8V = 35V + 28V + 1
↓ ↓ ↓ ↓

7 + 1, 7 + 1 → 7× 7 = 27 + 21 + 1 Gµν, Bµν , φ
7× 1 + 1× 7 = 7 + 7 G9µ, B9µ

1× 1 1 G99

R-NS
8C , 8V → 8C × 8V = 56S + 8S
↓ ↓ ↓

8, 7 + 1 → 8× 7 = 48 + 8 ↓ ψµα, ψ9α

→ 8× 1 = 8 ψα
NS-R
8V , 8S → 8V × 8S = 56C + 8C
↓ ↓ ↓

7 + 1, 8 → 7× 8 = 48 + 8 ↓ ψµα, ψ9α

→ 1× 8 = 8 ψα
R-R

8C , 8S → 8C × 8S = 8V + 56V
↓ ↓ ↓

8, 8 → 8× 8 = 1 + 7 21 + 35 A9, Aµ, C9µν , Cµνρ
Several observations are in order:
• Notice that there is one additional scalar besides G99 (which defines the

compactification radius), namely A9. It would be interesting to describe the
compactification for an arbitrary background of this field. Unfortunately, it
is not known how to couple RR fields to the worldsheet 2d theory, so we
will be unable to do this. In later sections, in the compactification of several
dimensions, there appear additional scalars arising from the NS-NS sector.
For these it is known how to couple the background to the 2d theory, and the
latter is exactly solvable (still a free theory), so we will be able to describe
the compactification in a general background of these fields, in the complete
string theory.
• Notice that both type II theories lead to the same 9d massless spec-

trum. In particular, notice that chirality of type IIB theory is lost in toroidal
compactification, since there is no chirality in 9d. Notice also that the origin
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of the 9d fields in the RR sector is very different from the 10d viewpoint in
the IIA and IIB theories. The low energy effective theory for the massless
modes in either case is described by 9d supergravity with 32 supercharges
(which is a unique theory).
• The generalization to compactification to lower dimensions (here we

refer to square tori, and trivial B-field background, see later for non-triival
cases) is very easy. At the massless level, one simply decomposes the repre-
sentations 8V , 8S, 8C with respect to the surviving Lorentz group, and then
tensors them together. In particular it is possible to see that compactifica-
tion to 4d on T6 leads to the field content of N = 8 4d supergravity. Notice
that again this theory is non-chiral, so it is not useful to describe the real
world. The large amound of susy in lower dimensions is related to the fact
that compactification on tori does not break any supersymmetry. This will
motivate to discuss more involved compactifications in later sections (e.g.
Calabi-Yau compactification).
• There is no point (besides R = 0 or R = ∞) at which states become

light. At R → ∞ we have a tower of states of zero winding and arbitrary
momentum which become very light. This corresponds to the decompacti-
fication limit of the theory. As R → 0 we instead have a tower of states of
zero momentum and arbitrary winding which become light. It is natural to
think that this corresponds to the decompactification limit of a dual theory,
where momentum is the original winding, etc, just as in the bosonic string
theory. We study this in next section

11.2.2 T-duality for type II theories

Recall from the bosonic theory that the effect of T-duality is to relate a theory
compactified on a circle of radius R with a theory compactified on a circle of
radius R′ = α′/R, in such a way that states of momentum, winding (k, w)
are mapped to states of momentum, winding (k′, w′) = (w, k). Equivalently,
starting with a 2d field theory of left- and right-moving bosons XL(σ + t),
XR(σ − t), with a spacetime geometry spanned by X(σ, t) = XL + XR, T-
duality related it to a theory on a spacetime geometry spanned by X ′9(σ, t) =
X9
L −X9

R, Xµ(σ, t) = Xµ
L +Xµ

R.
In type II theory we also have the 2d fermions. In order to be consistent

with 2d susy, we require that the T-dual theory is described also by the
fermion field ψ′9(σ, t) = ψ9

L(σ + t)− ψ9
R(σ − t).

Hence, T-duality acts as spacetime parity on the right-movers. It is then
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intuitive that at the level of the spacetime spectrum, it will flip the chirality of
the R groundstate, exchanging 8C ↔ 8S. Namely, it flips the GSO projection
on the right movers. Hence, starting with type IIB theory compactified on
radius R the T-dual will describe type IIA theory compactfied on radius
R′ = α′/R. This is T-duality for type II theories. Notice that it implies that
the spectrum of massless fields at generic radius must be the same for both
theories; the full spectrum is the same only for R, R′ related by the T-duality
relation.

The flip in the GSO projection can be derived more explicitly as follows.
Recall that to build the R groundstate one forms the linear combinations of
fermion zero modes

A±
a = ψ2a

0 ± iψ2a+1
0 (11.5)

So T-duality acts as A±
4 ↔ A′∓

4 . In the original theory, one defines a state
|0〉 satisfying A−

a |0〉 = 0 and the states surviving the GSO are e.g.

|0〉 , A+
a1
A+
a2
|0〉 , A+

1 A
+
2 A

+
3 A

+
4 |0〉 (11.6)

In the T-dual theory, one would define a state |0〉′ by Aa
′−|0〉′ = 0. In terms

of the original operators we have A−
a |0〉′ = 0 for a = 1, 2, 3 and A+

4 |0〉′ = 0.
Hence we have

|0〉′ = A+
4 |0〉 (11.7)

This implies that the (−1)F eigenvalue of |0〉′ is opposite to that of |0〉. This
implies the GSO projection is opposite in the T-dual. Indeed, the surviving
states (11.6) read, in the T-dual

A+
a |0〉 , A+

a1A
+
a2A

+
a3 |0〉 (11.8)

From the viewpoint of the T-dual theory, we are choosing the opposite GSO
projection.

It is easy to check the effect that T-duality has on the 10d fields, by
comparing the 9d spectra. For instance, for bosonic fields

IIA
T↔ IIB

Gµν , Bµν ↔ Bµν , Gµν

A9, Aµ ↔ a, B̃9µ

C9µν , Cµνρ ↔ B̃µν , A9µνρ (11.9)
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The beautiful conclusion of T-duality is that IIA and IIB theories are
much more intimately related than expected. In fact, they can be regarded
as different limits of a unique theory, namely type II compactificaion on S1

in the limits of R→ 0 and R→∞.

11.2.3 Compactification of several dimensions

In this section we study compactification on a d-dimentional torus Td. These
compactified theories contain more additional scalar fields, which correspond
to 10d fields with some internal indices. Hence the vaccuum expectation value
of these scalars correspond to specifying the backgrounds for the metric and
other fields in the internal manifold.

We are interested in studying the set of possible toroidal compactifica-
tions, that is, the set of vevs that these scalar fields can acquire. This is
called the moduli space of (toroidal) compactification. Unfortunately, it is
not known how to quantize the 2d theory exactly if backgrounds for RR fields
are turned on. So we will restrict to turning on backgrounds for the NS-NS
fields, namely the metric and 2-form 1

We describe Td by periodic coordinates xi ' xi + 2πR, and define its
geometry by a constant metric tensor Gij. We also introduce a background
for the 2-form, Bij, which must be constant so as not to induce cost in energy
(for constant B, its field strength vanishes).

The light-cone gauge-fixed action for an arbitrary metric background
reads (see equation after (27) in lecture on quantization of closed bosonic
string)

LG = −p+∂tx
−(t) +

1

4πα′

∫ ∞

0
dσ Gij (∂tX

i∂tX
j − ∂σX

i∂σX
j ) (11.10)

where we have used p+ = `
2πα′ gσσ, and set ` = 2πα′p+, so gσσ = 1.

To this we must add the term that describes the interaction of the string
with the B-field, which reads

LB =
1

4πα′

∫ ∞

0
dσ εabBij ∂aX

i∂bX
j =

1

2πα′

∫ ∞

0
dσ Bij ∂tX

i∂σX
j(11.11)

1The moduli spaces including RR backgrounds can be studied in the supergravity
approximation; we postpone this discussion to coming lectures, since the analysis is most
useful to study non-perturbative properties of string theory.
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In total we have

L =
1

2π

∫ ∞

0
dσ

[
1

2α′ Gij (∂tX
i∂tX

j − ∂σX
i∂σX

j ) +
1

α′ Bij ∂tX
i∂σX

j
]

(11.12)

The presence of the backgrounds and the periodicity of the coordinates xi

do not modify the oscillator piece for the 2d bosons. We are already familiar
with this fact for the metric background, from our experience with circle
compactifications. For backgrounds of the B-field, this follows because the
lagrangian term in LB is a total derivative

εab∂aX
i∂bX

jBij = ∂a(ε
abX i∂bX

jBij) (11.13)

so it is insensitive to the 2d local dynamics, and feels only the topology of
the 2d field configuration (namely, the winding number).

Thus it is enough to work with the zero oscillator number piece in the
mode expansion of the 2d bosons. In a sector of momenta and winding
ki, w

j ∈ Z this reads

X i(σ, t) = xi0 + ẋi t +
2πR

`
wi σ (11.14)

where ẋi will be related to ki below. Plugging this ansatz into the lagrangian,
we get

L =
`

2π

[
1

2α′ Gij (ẋiẋj − (
2πR

`
)2 wiwj ) +

1

α′ Bij ẋ
i 2πR

`
wj
]

(11.15)

The canonical momentum conjugate to xi is

pi =
∂L

∂ẋi
=

`

2πα′ (Gijẋ
j +Bijw

j 2πR

`
) (11.16)

It is quantized in units of 1/R, namely pi = ki/R. This leads to

ẋi =
Gij

p+
(
kj
R
− R

α′Bjlw
l ) (11.17)

and

X i(σ, t) = xi0 +
Gij

p+
(
kj
R
− R

α′Bjlw
l ) t+

R

α′p+
wiσ (11.18)
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Splitting between the left and right movers, we have

X i
L(σ + t) =

xi0
2

+
pL
2p+

(t+ σ)

X i
R(σ − t) =

xi0
2

+
pR
2p+

(t− σ) (11.19)

with

pL,i =
ki
R

+
R

α′ (Gij − Bij)w
j

pR,i =
ki
R

+
R

α′ (−Gij −Bij)w
j (11.20)

and mass formulae read

M2
L =

2

α′ (NB +NF + E0) +
p2
L

2

M2
R =

2

α′ (ÑB + ÑF + Ẽ0) +
p2
R

2
(11.21)

Narain lattice
The 2d-dimensional lattice of momenta (pL, pR) has two very special prop-

erties. It is even with respect to the Lorentzian (d, d) signature scalar product

(pL, pR) · (p′L, p′R) = α′ ∑

i

(piLpL,i − piRpR,i) = 2
∑

i

(kiw′
i + wik′i) ∈ Z(11.22)

and it is self-dual. These two properties ensure that the 1-loop partition
function for the theory is modular invariant. Namely, the partition function
has roughly speaking the structure

Z(τ) = . . .
∑

(k,w)

qα
′p2

L
/2 qα

′p2
R
/2 = . . .

∑

(pL,pR)

qα
′p2

L
/2 qα

′p2
R
/2 (11.23)

It is easy to see that the even and self-duality properties ensure that this is
invariant under τ → τ+1 and τ → −1/τ , resp. So each choice of background
fields determines a (lorentzian) even and self-dual lattice of momenta (pL, pR).
This is the so-called Narain lattice.

Conversely, any choice of ((d, d) lorentzian) even and self-dual lattice Γd,d
can be used to define a consisten modular invariant toroidal compactification
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pR

pL

pR

pL

Figure 11.1: Heuristic picture of the relation between lattices and physical theo-
ries. Although the two lattices are related by a rotation in 2d spcace, the physics is
sensitive to the independent values of pL and pR, and therefore not invariant under
the rotation. Physics is not invariant under the mathematical isomorphism that
relates the two lattices. The rotation parameters encode the background fields.

of type II theory, by simply using the vectors in the lattice to provide the
sectors of momenta (pL, pR) in the theory.

This description, first introduced by Narain [58] in the heterotic context,
is useful to provide a complete classification of all possible toroidal compact-
ifications (which correspond to free worldsheet theories). Hence they allow
to compute the moduli space of such compactifications, as follows.

A general theorem in mathematics states that all possible (d, d) lorentzian
even self-dual lattices are isomorphic, namely any two such lattices differ by
an SO(d, d) rotation. This does not mean that there is a unique physical com-
pactification, because the physics is not invariant under arbitrary SO(d, d)
transformations. In particular, the spacetime mass of a state with momenta
(pL, pR) depends on p2

L + p2
R, which is only SO(d)×SO(d) invariant. This is

illustrated in figure 11.1. Hence, physically different theories are classified by
elements in the coset SO(d, d)/[SO(d)× SO(d)]. This is (almost, see below)
the moduli space of compactifications. Note that it has dimension d2.

It would be interesting to be able to provide an interpretation of a com-
pactification defined by these abstract lattices, in terms of background fields
as those introduced above. In fact, the number of background fields is also
d(d + 1)/2 (for Gij) plus d(d − 1)/2 (for Bij), namely a total of d2. This
suggests that any abstract lattice corresponds to a particular choice of back-
ground fields.

In fact we can be even more specific: The background fields themselves
are the rotation parameters in SO(d, d)/[SO(d)× SO(d)]. For instance, it is
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easy to show that the lattice of momenta for generic Bij

(pL,i, pR,i) = (
ki
R

+
R

α′ (Gij − Bij)w
j ;
ki
R

+
R

α′ (−Gij −Bij)w
j ) (11.24)

are related to the lattice of momenta for Bij = 0

(pL,i, pR,i) = (
ki
R

+
R

α′ Gij w
j ;
ki
R
− R

α′ Gij w
j ) (11.25)

by the rotation matrix

MB =

(
δ ji − 1

2
B j
i

1
2
B j
i

−1
2
B j
i δ ji + 1

2
B j
i

)
(11.26)

which is in SO(d, d) because MB = exp 1
2

(−B B
−B B

)
. Similarly, the mo-

menta for genericGij can be related to the momenta for cubic metricGij = δij
via an SO(d, d) rotation

MG =
(

cosh S sinh S
sinhS coshS

)
= exp

1

2

(
0 S
S 0

)
(11.27)

where Sij is a symmetric matrix.
From either viewpoint we reach the conclusion that the moduli space

of compactifications with these backgrounds is SO(d, d)/[SO(d) × SO(d)].
In fact, this statement needs some refinement. In the description in terms
of abstract lattices, it is clear that there may exist some finite SO(d, d)
transformations, not in SO(d)×SO(d), which leave the lattice Γ invariant as
a whole, although acting non-trivially on the individual points (pL, pR). Since
the lattice defines the physics, we should mod out by those transformations.
They correspond to rotation matrices with integer entries, and generate a
group denoted SO(d, d;Z). Therefore the complete moduli space is

SO(d, d)/[SO(d)× SO(d)× SO(d, d;Z)] (11.28)

These latter transformations act nontrivially on the winding and momentum
quantum numbers, and also relate theories with different backgrounds. They
include large diffeomeorphisms of Td, large gauge transformations of the Bij,
and also T-dualities (sign flips of right-moving momenta). For this reason,
SO(d, d;Z) is often called the T-duality group.
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Some observations are in order
• States in the theory must form representations of the T-duality group:

Since it leaves the theory invariant, there must be sets of states which are
shuffled among themselved by the action of the symmetry. They thus lie in
representations of the group. Representations of SO(d, d;Z) are easy to con-
struct from representations of SO(d, d) by restriction. To give one example
of this discussion, the d states ki = 1, wj = 0 and the d states ki = 0, wj = 1
form a 2d-dimensional representaion of SO(d, d;Z), which is the representa-
tion obtained from restriction of the vector representation of SO(d, d).
• Again, we recall that toroidal compactifications contain more moduli

than those discussed here. The inclusion of the additional backgrounds leads
to large moduli spaces. They cannot be computed in full-fledged string the-
ory, but can be computed in the supergravity approximation (which is reliable
since the large amount of supersymmetry protects the structure of moduli
space to a large extent).
• Finally, there will be enlarged duality groups, which act nontrivially

on the states and on the backgrounds. A novelty, to be studied in later
lectures, is that these enlarged duality groups act nontrivially on the string
coupling, and therefore relate weakly coupled and strongly coupled regimes
of string theory. The corresponding duality multiplets therefore contains
perturbative string states (such as strings with momentum and winding)
and non-perturbative states (the so-called branes) Hence dualities provide an
extremely useful tool to study non-perturbative phenomena in string theory.

11.3 Heterotic superstrings

In the discussion we follow section 11.6 of [71]

11.3.1 Circle compactification without Wilson lines

This is the simplest compactification, although not the most generic one
(additional background fields, Wilson lines, are turned on in later sections).
We simply take spacetime to be M9×S1 (so we make one coordinate periodic,
x9 ' x9+2πR) and turn on no background for the 10d gauge fields. As usual,
the compactification only modifies the theory by the inclusion of winding
sectors, and the restriction to quantized momenta in the compact direction.
Therefore, different sector of the theory will be labelled by left and right
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moving momenta

pL,R =
k

R
± R

α′ w (11.29)

as well as the internal 16d lattice left moving momenta P I in the E8 × E8

or Spin(32)/Z2 lattices. Defining the internal left moving 16d dimensionful

momenta PL =
√

2/α′ P , the mass formulae are given by

M2
L =

P 2
L

2
+
p2
L

2
+

2

α′ (NB − 1)

M2
R =

p2
R

2
+

2

α′ (ÑB + ÑF + Ẽ0) (11.30)

The spectrum of massless states at a generic radius (in particular at large
radius) is the pL = pR = 0 sector. This corresponds to k = w = 0, hence we
recover the zero modes of the (field theory) KK reduction from 10d to 9d.
States are just the group theory decomposition of the massless states in 10d.
We have
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NS
8V , αi−1|0〉 → 8V × 8V = 35V + 28V + 1
↓ ↓ ↓ ↓

7 + 1, 7 + 1 → 7× 7 = 27 + 21 + 1 Gµν , Bµν, φ
7× 1 + 1× 7 = 7 + 7 G9µ, B9µ

1× 1 1 G99

R
8C , αi−1|0〉 → 8C × 8V = 56S + 8S
↓ ↓ ↓

8, 7 + 1 → 8× 7 = 48 + 8 ↓ ψµα, ψ9α

→ 8× 1 = 8 ψα
NS

8V , αI−1|0〉 → 8V × 1 = 8V
↓ ↓

7 + 1, 1 → 7 + 1 AI
µ, A

I
9

8V , |PI〉P 2=2 → 8V × 1 = 8V
↓ ↓

7 + 1, 1 → 7 + 1 AP,µ, AP,9
R

8C , αI−1|0〉 → 8C × 1 = 8C
↓ ↓

8, 1 → 8 ψI

8C , |PI〉P 2=2 → 8C × 1 = 8C
↓ ↓

8, 1 → 8 ψP

The first set of states is the gravity multiplet of 9d supergravity with 16
supersymmetries. The second set of states are 9d vector supermultiplets
with respect to 16 supersymmetries, namely 9d gauge bosons, gauginos and
real scalars in the adjoint of the gauge group, which is E8× E8 or SO(32).
Hence the 10d gauge group from the internal lattice is unbroken. In addition,
there is the usual U(1)2 gauge group arising from the familiar KK mechanism
from the 10d graviton and B-field.

The generalization to lower dimensions is very easy, one simply needs to
decompose the fields with respect to representations of the corresponding
Lorentz group. Notice that in any of these compactifications chirality is
lost. In particular, compactifications to 4d lead to theories with 4d N = 4
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supersymmetry, which are automatically non-chiral.

Notice that in the above construction (i.e. without gauge field back-
grounds) the pattern of enhance gauge symmetries at special values of R is
exactly like in bosonic string theory. That is, the generic U(1)2 gauge sym-
metry from the graviton and B-field enhance to SU(2)2 at R =

√
α′. Notice

that there are no values of R for which the enhancement of the group involves
both the U(1)2 and the original 10d group. This will be different when we
include Wilson lines.

Finally, we would like to mention that the E8×E8 and SO(32) heterotic
theories are self-T-dual. The E8×E8 heterotic theory on a circle of radius R
is equivalent (up to relabeling of k and w) to the E8×E8 heterotic theory on
a circle of radius R′ = α′/R (and similarly for the SO(32) heterotic theory).
This would suggest that the two heterotics are not as intimately related as
type IIA and IIB theories. We will see that they are: if one considers the
more general case of compactifications with Wilson lines, there are T-dualities
relating compactifications of the two heterotic theories.

11.3.2 Compactification with Wilson lines

The compactifications discussed above are not the most general circle com-
pactifications. Note that the resulting 9d theory had additional scalars be-
sides G99, namely the scalar fields Aa

9 in the adjoint of the gauge group. A
vev for these scalars corresponds to turning on backgrounds for the internal
components of the gauge fields, the so-called Wilson lines. In this section we
discuss Wilson lines, first in the context of field theory, then in the context
of heterotic string theory.

11.3.3 Field theory description of Wilson lines

Consider the following toy model of compactification from 5d to 4d. Con-
sider a gauge theory with gauge group G in a spacetime M4 × S1, with S1

parametrized by the periodic coordinate x4 ' x4 + 2πR.

We also turn on a constant backbround for the internal component of
the gauge bosons Aa

4. Locally, this is pure gauge, namely it could be gauge
away, but the gauge parameter would not be a single-valued in S1 and thus
would not define a global function. For instance, for G = U(1), the gauge



11.3. HETEROTIC SUPERSTRINGS 219

background can be locally gauge away with a gauge transformation

Aµ → Aµ + ∂µλ with λ = −〈A4〉x4 (11.31)

and λ is not globally well defined on S1.
The gauge non-triviality of the gauge background can be encoded in the

gauge-invariant object, called the Wilson line, defined by

W a = exp i
∫

S1
Aa = exp(2iπRAa

4) (11.32)

Notice that Aa
4 is periodic with period 1/R. It is convenient to define Ãa4 =

2πRAa4 which has period 1.
From the 4d viewpoint, the Wilson lines or gauge backgrounds of this

kind are interpreted as giving a vacuum expectation value to the 4d fields
Aa4, which are 4d scalars transforming in the adjoint of the gauge group.

This makes it clear that, using global transformations in the gauge group,
one can always diagonalize the hermitian matrix of vevs. This means that
one can always rotate within the gauge group to a configuration where the
gauge backgrounds are non-zero only for Cartan generators. We will denote
the gauge background in this basis by AI

4, with I = 1, . . . , rankG. This is a
vector of Wilson line vevs.

We are interested in obtaining the spectrum of light 4d fields. To obtain
them we should expand the 5d action around the background defining the
compactification (namely, the circle geometry and the gauge background).
The 5d action for the gauge fields roughly reads

S5d =
∫

M4×S1
trFMNFMN (11.33)

with

FMN = ∂[MAN + [AM ,AN ] ; AM =
∑

a

AaM ta (11.34)

The terms |[AM ,AN ]|2 in the compactification lead to 4d mass terms for
gauge bosons |[Aµ,A4]| ' tr(Aa

µA
a
µ)W

2 unless the generators associated with
the gauge bosons commute with the generators associated with the gauge
background. This is called the commutant of the subgroup where the gauge
background was turned ont. To understand better which gauge bosons sur-
vive, we describe their generators in the Cartan-Weyl basis.
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Gauge bosons of Cartan generators always have zero mass terms in 4d
(since they always commute with the background, because it is embedded in
Cartan generators as well). The rank of the 4d gauge group is the same as
for the 5d group.

For non-Cartan generators, associated with some non-zero root α, the
corresponding gauge boson survives in the massless sector if the commutator
vanishes

[〈HI〉, Eα] = αIA
I
4 = 0 (11.35)

Namely we obtain massless 4d gauge bosons for α · A4 = 0. Recalling the
periodicity in AI

4, careful analysis leads to the slightly more relaxed α·Ã4 ∈ Z.
Recalling that the αI are integer, and the AI

4 are continuous parameters,
it is clear that generically the only surviving massless gauge bosons are the
Cartan generators, generically the 4d group is broken to U(1)r, with r =
rank G. For special choices of Wilson line (i.e. at particular points in Wilson
line moduli space) we will obtain enhanced non-abelian gauge symmetries.
For instance, for zero Wilson lines the 4d group equal to G. Turning on small
wilson lines starting from a point of enhanced symmetry, breaks the gauge
group. From the viewpoint of the 4d theory this is understood as a Higgs
effect due to the scalars in the adjoint of the enhanced gauge group.

To give a simple example, consider G = U(n), and consider that the
Wilson line along x4 corresponds to (AI4) = (0, . . . , 0, a). For generic a, the
only elements of SU(n) that preserve the background (commute with the
Cartan with Wilson line) are the U(n− 1) rotations in the first n− 1 entries,
times the total trace U(1). The unbroken group is U(n− 1)× U(1).

There is an alternative description of what fields remain massless in the 4d
theory in the presence of Wilson lines, which is valid not just for gauge bosons
but for any 5d field ψ charged under the 5d gauge group. Recalling that in
a gauge theory all derivatives must be promoted to covariant derivatives,
involving the gauge field, and that derivatives are related to momenta, it is
clear that the natural momentum in the fifth direction x4 is not associated
to ∂4, but to

D4ψ = ∂ψ + qIA
I
4ψ

P4 = (k + qIÃ
I
4)/R (11.36)

with k ∈ Z.
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The 4d mass of the KK modes of this field is given by m2 = P 2
4 , for varying

k. Clearly we obtain 4d massless fields only if q · Ã4 ∈ Z. This generalizes the
condition on gauge bosons, which is recovered by recalling that the roots αI

are simply the charges of the gauge bosons under the corresponding Cartan
generator.

Before concluding, we would like to mention how this generalizes to com-
pactification of several dimensions, i.e. Td compactifications. In this case,
we can turn on gauge backgrounds along any of the internal directions, Aa

i .
Now in order to turn on this background without any cost in vacuum en-
ergy (so that we are still describing a vacuum of the theory) we have to
avoid that backgrounds in different directions contribute to the energy via
the commutators [Ai,Aj] in the higher dimensional gauge kinetic term. This
implies that backgrounds in the different direction commute among them-
selves. (From the viewpoint of the 4d theory, it implies a conditions on the
corresponding scalar vev, which is condition of minimization of the scalar
potential). On the other hand, it means that the corresponding matrices
(in the gauge indices) can be simultaneously diagonlized, i.e. the complete
background can be rotated to the Cartan generators. Therefore, the most
general configuration of Wilson lines corresponds to backgrouns AI

i for the
Cartan generators. Clearly, the basic rule is that we obtain massless fields
for states with charge vector qI satisfying q · Ãi ∈ Z, for any i = 1, . . . d.
Namely, each Wilson line acts independently.

In later sections we will see how this effective field theory description
arises in string theory, at least in the limit of large radii.

11.3.4 String theory description

Narain lattice
In order to discuss compactification with Wilson lines in string theory,

is to couple the gauge background to the 2d worldsheet theory. Happily, in
the presence of constant gauge backgrounds the 2d theory is still free, and
so exactly solvable. The gauge backgrounds AI

i in a T d compactification can
be seen to couple e.g. to the 2d bosons through a term

SA =
∫
d2ξ εab ∂aX

i ∂bX
IAIi (11.37)

The complete action is quadratic, a free theory.
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The canonical quantization of the complete lagragian in the presence of
backgrounds Gij, Bij and AIi is discussed in [59]. This is analogous to our
study of type II compactification on Td, but there is a subtlety in that the 2d
fields XI are constrained to be purely left moving. The use of Dirac method
of quantization of constrained systems implies a subtle additional piece in
the canonical momenta. Skipping the details, the result for the left and right
moving momenta in this compactifications are given by

P I
L =

√
2

α′ (P I + RAIi w
i )

pL,i =
ki
R

+
R

α′ (Gij − Bij)w
j − P IAIi −

R

2
AIiA

I
j w

j

pR,i =
ki
R

+
R

α′ (−Gij − Bij)w
j − P IAIi −

R

2
AIiA

I
j w

j (11.38)

The formulae are given by

M2
L =

P 2
L

2
+
p2
L

2
+

2

α′ (NB − 1)

M2
R =

p2
R

2
+

2

α′ (ÑB + ÑF + Ẽ0) (11.39)

The lattice of momenta (11.38) is even with respect to the Lorentzian scalar
product P I

LP
I
L
′+piLp

′
L,i−piRp′R,i, and self-dual. This ensures that the partition

function for these theories is modular invariant for any choice of background
fields, so they define consistent vacua of the theory.

As in type II compactifications, we are interested in the structure of the
set of vacua of these theories, namely the moduli space for the scalars in
the compactified theory. Following Narain, any Td compactification can be
defined in terms of an abstract (16+d, d) lorentzian even and self-dual lattice
Γ16+d,d of momenta. Mathematical theorems ensure that (p, q) lorentzian
even self-dual lattices exist iff p − q is a multiple of 8, which is fortunately
satisfied in our case. Also, for d > 1 all (16 + d, d) even self-dual lattices are
isomorphic, up to a rotation in SO(16+d, d). Again, this does not mean that
all physical compactifications are equivalent, because the physics (e.g. the
mass formulae) is invariant only under SO(16 + d)× SO(d). Therefore, the
set of inequivalent Td compactifications of the theory is the coset SO(16 +
d, d)/[SO(16 + d)× SO(d)].

This space has dimension (16 + d)d, so a vacuum of the compactified
theory is defined by (16 + d)d parameters. In fact, this is the number of
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parameters that define a background configurations, namely d2 from Gij, Bij

and 16d from the Wilson lines AI
i . In fact, it is possible to see that these

background fields are indeed the SO(16+d, d) rotation parameters. Namely,
the momenta (11.38) for generic values of Bij, A

I
i are related to those for

Bij=0, A
I
i = 0

P I
L =

√
2

α′ P
I

pL,i =
ki
R

+
R

α′ Gij w
j

pR,i =
ki
R
− R

α′ Gijw
j (11.40)

by the matrix

MB,A =




δ iJ
√

2
α′A

i
J −

√
2
α′A

i
J

−
√

2
α′A

I
j δ ij − 1

2
B i
j − α′

4
AIjA

I,i 1
2
B i
j = α′

4
AIjA

I,i

−
√

2
α′A

I
j −1

2
B i
j − α′

4
AIjA

I,i δ ij + 1
2
B i
j = α′

4
AIjA

I,i


(11.41)

which is an SO(16 + d, d) rotation since

MB,A =




0
√

2
α′A

i
J −

√
2
α′A

i
J

−
√

2
α′A

I
j −B i

j B i
j

−
√

2
α′A

I
j −B i

j B i
j


 (11.42)

As in type II, the momenta for generic Gij are related to those for cubic
metric by a rotation

MG =
(

coshS sinhS
sinh S cosh S

)
= exp

1

2

(
0 S
S 0

)
(11.43)

As in type II, we should be careful in constructing the moduli space, since
there may exist finite SO(16 + d, d) transformations which leave a lattice of
momenta invariant, although acting non-trivially on individual states. These
transformations form the group SO(16 + d, d;Z) and corresponds to large
diffeomorphisms of Td, shifts on Bij, A

I
i by whole periods, and T-dualities.

Since theories related by these rotations are physically equivalent, the moduli
space has really the structure

SO(16 + d, d)/[SO(16 + d)× SO(d)× SO(16 + d, d;Z)] (11.44)
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This result will be useful in the discussion of non-perturbative dualities in
compactifications of heterotic theories, etc, in later lectures.

Spectrum
At generic R the spectrum of light states is easily computed. For instance

we obtain massless states from the decomposition of 8V × αi−1|0〉 and 8C ×
αi−1|0〉, which lead to the 4d N = 4 supergravity multiplet. Notice that
it includes gauge bosons arising from the 10d metric and 2-form with one
internal index.

We also get massless states from the decomposition of (8v +8C)×αI−1|0〉,
they correspond to 4d N = 4 U(1)16 vector multiplets. Finally, states with
nonzero 16d momentum lead to massless states if pL = pR = 0, P 2

L = 4/α′.
This can only be achieved in the wi = 0 sector where

P I
L =

√
2

α′ P
I

pL,i =
(ki − P · Ãi

R

pR,i =
(ki − P · Ãi

R
(11.45)

(11.46)

So massless states correspond to P 2 = 2, P · Ãi ∈ Z. This result, valid for
generic R (and thus also for large R) reproduces the field theory analysis,
as should be the case. These modes correspond to the KK reduction of the
10d N = 1 vector multiplets in the presence of Wilson lines. For generic
Wilson lines the non-abelian gauge bosons do not survive and the 4d gauge
symmetry is simply U(1)16.

On the other hand, by tunning some backgrounds, it is possible to achieve
situations where some vector in the lattice of momenta satisfies

P 2
L + p 2

L = 4/α′ (11.47)

leading to some enhancement of the gauge symmetry breaking due to states
(8V + 8C)× |PL, pL〉. One simple particular case is tunning the Wilson lines
to zero.

Notice that in general the new massless states at enhances symmetry
points involve non-zero spacetime winding and momentum. This means that
they are charged under the U(1)2d gauge bosons arising from the 10d metric
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and 2-form, in addition to being charged under the U(1)16 from the internal
16d ‘space’. The complete non-abelian group gathers Cartan generators of
very different origin in 10d language!. The general recipe is that any non-
abelian (simply laced2) group of rank ≤ 16 + 2d can appear as the gauge
group in a corner of moduli space of Td compactifications.

As a final comment, let us mention that moving away from such points
(of enhanced gauge symmetry) in moduli space corresponds to a Higgs effect
from the viewpoint of the lower dimensional effective field theory. This is
similar to what we saw for the bosonic theory.

T-duality of E8 × E8 and SO(32) circle compactification
The fact that the moduli space of e.g. S1 compactifications of heterotic

string theory is connected implies that a single theory in 9d can receive
two interpretations, as compactification of E8 × E8 heterotic on a radius
R with Wilson lines AI

i , and as compactification of SO(32) heterotic on a
different radius R′ with different Wilson lines AI

i
′. Both compactifications

are physically equivalent, although look different in 10d language. They
are hence related by T-duality transformation. In this section we study the
simplest example of these T-dualities (we follow section 11.6 of [71]).

Consider compactification of E8 × E8 and SO(32) heterotic theories on
S1’s of radii R and R′ repectively, with G99 = 1, G′

99 = 1. The momenta
lattice read

P I
L =

√
2

α′ (P I + RAI wi )

pL,R =
k

R
± R

α′ w − P · A − R

2
A · Aw (11.48)

and similarly for primed parameters. Consider the choice of Wilson lines

(ÃI) = (
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
; 0, 0, 0, 0, 0, 0, 0, 0)

(ÃI ′) = (1, 0, 0, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0) (11.49)

for E8 × E8 and SO(32), resp.
The T-duality is the statement that these two theories are equivalent if

R = α′/(2R). To show this one would have to see that the two Narain lattices
are exactly the same. This can be done [60], but is a bit involved, so we will
be happy by just showing the matching of some subsets of states.

2A group is simply laced if all its roots have length square equal to 2).
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For instance, it is easy to see that in either case the gauge group is defined
by the surviving non-zero root vectors

(±,±, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0) ; (0, 0, 0, 0, 0, 0, 0, 0;±,±, 0, 0, 0, 0, 0, 0)

satisfying P · A ∈ Z. They correspond to a group SO(16)× SO(16) in both
cases.

We can also match other states. Let us consider states uncharged under
the 10d gauge group, i.e. neutral under SO(16)×SO(16), which have PL = 0
and so P I = −R̃AIjwj. Using the particular form of the vectors P I for the
lattices, it can be seen that this condition requires that w is even, w = 2m.
Hence, the spacetime left and right moving momenta are

pL,R =
k

R
± wR

α′ +
wR

2

A · A
R2

=
k + 2m

R
± 2mR

α′ (11.50)

and similarly for primed quantities. Defining k̃ = k + 2m, we get

pL,R =
k̃

R
± 2mR

α′

p′L,R =
k̃′

R′ ±
2m′R′

α′ (11.51)

We see that the two theories are equivalent for R′ = α′/(2R), k̃′ = m,
m′ = k̃. E8 × E8 heterotic theory and SO(32) heterotic theory can be
considered different (decompactification) limits of this 9d theory. We then
have a picture similar to that of type II theories.

11.4 Toroidal compactification of type I su-

perstring

In this section we study type I superstring compactified on a circle. Gener-
alization to Td is analogous and will be mentioned only briefly.

Recall thet type I theory is a theory of unoriented closed and open strings.
We have the 10d massless fields G, B, φ, and SO(32) gauge bosons (and
superpartners). This field content is the same as for the SO(32) heterotic,
which means that in the large R regime the results (which are well described
by field theory in this regime) will agree with those in heterotic theory. The



11.4. TOROIDAL COMPACTIFICATION OF TYPE I SUPERSTRING227

string theory description, however, will be very different, and the stringy
features, like gauge enhancement or T-duality will be very different.

Before entering the detailed discussion, let us point out that in a general
toroidal compactification it is possible to turn on background for the RR 2-
form B; however, it is not known how to couple such backgrounds to the 2d
worldsheet theory. Hence, the only backgrounds we will be able to describe
exactly in the string theory are metric and Wilson line backgrounds.

11.4.1 Circle compactification without Wilson lines

We start discussing the simplest case of compactification on a circle of radius
R, with zero gauge background. We have to describe the closed and open
string sector independently.

Closed string sector
The toroidal compactification of the closed sector of type I is simply the

Ω projection of the toroidal compactification of type IIB theory. In type IIB
theory on a circle, different sectors of the theory are characterized by the
momentum and winding, k and w, which define the mode expansion of the
compactified direction (for clarity we omit the index in X9)

XL(σ + t) =
x0

2
+

pL
2p+

+
1

α′p+
NB

XR(σ − t) =
x0

2
+

pR
2p+

+
1

α′p+
ÑB (11.52)

The effect of Ω on k, w is easy to find out, by recalling that it maps X to
XΩ such that

XΩ(σ, t) = X(−σ, t) (11.53)

This implies that Omega acts by x0 → x0, k → k, w → −w.
Hence Ω-invariant states are linear combinations of states in opposite

winding sectors, schematically |w〉+|−w〉. This implies that winding number
is not a well defined quantum number for states in this theory. This will be
a relevant point in understanding some features of the T-dual version.

In the w = 0 sector, Ω relates states within this sector. This implies that
we get the usual projection on the operator piece of the states; namely in the
NSNS sector the states of the form

ψi−1/2|w = 0〉 ⊗ ψ̃j−1/2|w = 0〉 (11.54)



228CHAPTER 11. TOROIDAL COMPACTIFICATION OF SUPERSTRINGS

survive only by taking the symmetrized product, exactly as in the original
10d theory. Indeed it is easy to check that the w = 0 sector gives the KK
reduction of the massless fields in the original 10d theory.

In sectors of w 6= 0 (these are massive states, but we are interested
in discussing them at this point), there exist Ω-invariant combinations of
winding excitations of these states both in symmetrized and antisymmetrized
prodcucts. For instance, in the NSNS sector the state

ψ
[i
−1/2|w〉 ⊗ ψ̃

j]
−1/2|w〉+ ψ

[i
−1/2| − w〉 ⊗ ψ̃

j]
−1/2| − w〉 (11.55)

survives. It can be considered as a winding excitation of the field Bij since it
is in a sense left-right antisymmetric. Nevertheless it is invariant under Ω due
to the additional action on winding number. The observation that winding
excitations of Ω-odd 10d massless fields are Ω invariant will be relevant in
the discussion of the T-dual picture.

In any event, the spectrum of states massless at generic R is obtained
by the Ω-invariant states in the k = 0, w = 0 sector of the IIB theory. As
expected, this is simply the zero modes of the KK reduction of the 10dN = 1
supergravity multiplet.

Notice that since the parent IIB theory did not have any enhanced sym-
metries at special values of R, neither does the closed sector of type I theory.

Open string sector

(We start the discussion in compactfications without Wilson lines; inclu-
sion of the latter will be discussed in later sections.)

A key difference between the compactification of open string sectors and
closed string sectors is the absence of winding. As shown in figure 11.2, open
strings can always unwind in a compact dimension. This agrees with the fact
that winding was defined using the periodicity in σ for closed strings, and
this does not exist in open strings.

Hence, the only effect of the circle compactification in the open string
sector is that the internal momentum is now quantized and equal to k/R.
Since there is no winding, compactification of open strings is very much like
KK compactification in field theory.

We have the mode expansion for 2d bososn

X(σ, t) = x0 +
k

Rp+
+ oscillators (11.56)
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a) b)

Figure 11.2: Open strings with NN boundary conditions in a compact direction
cannot wind around it. String seemingly wrapped on the internal circle are in the
same topological sector as strings with no winding.

leading to the mass formula

m2 =
1

α′ (NB +NF + E0) +
k2

R2
(11.57)

Thus massless states correspond to k = 0 and reproduce the zero modes of the
KK reduction of the 10d massless fields. Namely SO(32) gauge bosons, one
real scalar in the adjoint representation, and fermion superpartners. States
with non-zero k are the KK replicas of these zero modes. Again, there are
no special values of R at which new states become massless.

11.4.2 T-duality

In this section we study the T-dual of the type I theory, also called type I’
theory.

Closed string sector

Again, the closed string sector presents an infinite tower of states (with
k = 0 and arbitrary w) which become light as R → 0. This suggests the
existence of a T-dual theory, which becomes decompactified in this limit. In
this section we find out the structure of this T-dual theory, which is related
to the original one by

Original T-dual
R R′ = α′/R
k, w k′ = w, w′ = k
XL, ψL XL, ψL
XR, ψR X ′

R = −XR, ψ′
R = ψR



230CHAPTER 11. TOROIDAL COMPACTIFICATION OF SUPERSTRINGS

(the action is only on the coordinate along the compact direction 9, on
which we are T-dualizing).

In the closed string sector, the dual theory described by (X ′, ψ′) cor-
responds to type IIA theory (since T-duality flips the right moving GSO
projection) compactified on a circle of radius R′ = α′/R, and modded out by
an orientifold projection. The orientifold action on X ′ can be obtained by
reading the Ω action on left and right movers

XΩ
L (σ + t) = XR(−σ − t) ; XΩ

R(σ − t) = XL(−σ + t) ; (11.58)

and constructing XΩ′ = XΩ
L −XΩ

R and X ′ = XL −XR. We obtain

XΩ′(σ, t) = XΩ
L (σ + t)−XΩ

R(σ − t) = XR(−σ, t)−XL(−σ + t) = −X ′(−σ, t)(11.59)

Hence the T-dual is type IIA theory on a circle modde out by an orientifold
action ΩR, where R is a geometric action x9 → −x9. It is easy to verify that
the action (11.59) on the mode expansion is to flip the momentum and leave
winding invariant, as should be the case for the T-dual of Ω.

Recalling our lecture on unoriented strings, recall that we claimed that
one can mod out a theory by Ω only if it is left-right symmetry (i.e. IIB
theory). Here we are modding by ΩR and this can be done only if the theory
is left-right symmetric up to a GSO shift (i.e. IIA theory).

Notice that R has fixed points at two diametrically opposite point in
the dual circle, see figure 11.3. These are regions where the orientation of a
string can flip. They are 9-dimensional subpaces of 10d space, and are called
orientifold 8-planes, O8-planes for short (they involve 8 spatial plus one time
direction).

The existence of these special points implies that the compactification
violates translation invariance. This is not strange, since staes in the original
model did not have winding as a good quantum number; hence in the T-
dual, momentum is not a good quantum number, so there are violations of
translation invariance in the internal coordinate.

Finally, let us mention that states are in general linear combinations of
states of the original theory in sectors of opposite internal momentum. In the
k = 0 sector this implies the usual projection, and that only ΩR even states
arise. However, in sectors of k 6= 0 there exist momentum excitations of fields
which are ΩR odd in the 10d theory. This has the interesting consequence
that such 10d fields are not identically vanishing in the model, but rather
propagate in the ‘bulk’, away form the orientifold planes. The orientifold
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Figure 11.3: O8-planes in type I’ theory.

projection impose the boundary condition that 10d ΩR odd fields vanish at
the O8-plane location, and so lead to no zero modes. Hence, in the bulk the
theory is still locally type IIA theory, and it is the O8-planes that project
out part of the zero modes (although KK excitations survive).

Open string sector
We now study the open string sector in the T-dual version. The local 2d

dynamics of the T-dual open string sector should be that of an (orientifold
version of) type IIA theory. In particular, it implies that the interior of open
string worldsheets propagates in 10d. However, since the original open string
sector does not have winding number in x9, the T-dual open string sector
has no momentum in x9. This implies that such fields propagate only in 9d.

The resolution to this seeming paradox can be understood by finding out
the boundary conditions for the open strings in the T-dual. In the original
theory we have Neumann boundary conditions at the open string endpoints

∂σX(σ, t)|σ=0,` = 0

∂σXL(σ + t)|σ=0,` + ∂σXR(σ − t)|σ=0,` = 0 (11.60)

This can be written as

∂tXL(σ + t)|σ=0,` − ∂tXR(σ − t)|σ=0,` = 0 (11.61)

Namely, in terms of the T-dual coordinate X = XL −XR

∂tX
′(σ, t)|σ=0` = 0 (11.62)
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Figure 11.4: Open strings in type I’ have endpoints at a fixed position in x9,
although their ‘inside’ can still move in 10d.

These are Dirichlet boundary conditions (the corresponding open strings are
said to have DD boundary conditions in x9). They imply that the open string
endpoints cannot move from a fixed value of the coordinate x9, so the open
string states are forced to move in 9d only. However the inside of the open
string can still move in 10d. See figure 11.4.

One may question whether this is consistent. For instance, the open
string sector is not translational invariance in x9, but neither is the under-
lying closed string sector, so this is not worrisome. Another issue is that we
obtained Neumann boundary conditions as some correct boundary conditions
to recover the familiar equations of motion for the 2d theory in the inside of
the open string worldsheet. In fact, we can check that Dirichlet boundary
conditions do the job as well. Recall that the variation of the Polyakov action
is

δSP = − 1

2πα′

∫

Σ
d2ξ gab∂aX

µ∂bδX
µ =

= − 1

2πα′

∫ ∞

−∞
de (gabδXµ∂bXµ)|σ=`

σ=0 +
1

2πα′

∫

Σ
d2ξ δXµ g

ab∂a∂bX
µ(11.63)

Dirichlet boundary conditions in x9 imply that δX9 = 0 at σ = 0, `. Hence
DD boundary conditions on x9 and NN boundary conditions on the remaining
coordinates ensure that the first term in the second line vanishes and we
recover the correct 2d dynamics in the interior of the open strings.

It is interesting to notice that the mode expansion for the T-dual coordi-
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nate X ′(σ, t) contains a winding term and no momentum

X ′(σ, t) =
2πR′

`
w′σ + osc. (11.64)

which is indeed allowed by DD boundary conditions. Pictorially, existence
of winding for open strings with endpoints stuck at points in x9 is manifest
in figure 11.4. Notice that the endpoints of all open strings are necessarily
located at the same point in S1. This can be seen directly from the above

X ′(σ = `, t)−X ′(σ = 0, t) = 2πRw′ (11.65)

so the open strings stretch whole periods of x9, such that endpoints always
lie at x9 = 0. This is true regardless of the Chan-Paton indices carried by
the string. The presence of wilson lines in the original picture will modify
this last fact, as we show later on.

A very intuitive picture, which becomes even more useful in more com-
plicated situations (like with non-trivial Wilson lines in the original picture),
is to consider that the model contains some objects, spanning the 9d hyper-
plane at x9 = 0, called D8-branes, and on which open strings are forced to
end. In fact, the precise picture is that there exist one such D8-brane for
each possible value of the Chan-Paton index (32 D8-branes for the T-dual of
type I). An open string endpoint with Chan-Paton index a must end on the
ath D8-brane. In the present situation, all 32 D8-branes are sitting at the
same location in x9.

The open string spectrum is easy to recover in this language. In the
massless sector, we have open strings with all possible combinations of Chan-
Paton factors (i.e. ending on the 32 D8-branes in all possible ways). This
would lead to a 9d U(32) vector multiplet with respect to the 16 unbroken
supersymmetries. Since the open strings are sitting on top of an orientifold
plane, we have to keep ΩR invariant states, leading to a 9d SO(32) vector
multiplet with respect to the 16 unbroken supersymmetries.

Notice that this gauge sector propagates in a 9d subspace of spacetime,
while gravity and other fields still propagate in 10d. The possibility of con-
structing models of this kind has led to the brane-world idea, the proposal
that perhaps the Standard Model that we observe is embedded in a brane
which spans a subpace in a full higher dimensional spacetime. This would
lead to the existence of extra dimensions which are detectable only using
gravitational experiments. We will learn more about branes, and model
building with them in later lectures.
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11.4.3 Toroidal compactification and T-duality in type

I with Wilson lines

As in heterotic theories, upon compactification there exist 9d scalars tran-
forming in the adjoint representations of the gauge group. Their vevs parametrize
the possibility of turning on constant backgrounds for the internal compo-
nents of the gauge fields. In this section we study the modifications they
introduce for type I.

Clearly the closed string sector is insensitive to the presence of Wilson
lines, since it contains states neutral under the gauge symmetry. The only
modifications occur in the open string sector. To describe them, we need to
couple the gauge background to the 2d theory. This is easily done by recalling
the rule that an open string endpoint with Chan-Paton a has charge ±1 under
the U(1) gauge boson arising in the sector of aa open strings. This implies
that the worlsheet action must be modified by a boundary term

∆S =
∫
dt − iqaAai ∂tXµ (11.66)

Before the orientifold projection, there are 32 U(1) gauge bosons, which are
paired by the orientifold action. In terms of this parent U(32) original theory,
the most general wilson line consistent with the Ω action is

(Aai ) =
1

2πR
(θ1, θ2, . . . , θ16;−θ1,−θ2,− . . . , θ16) (11.67)

After the orientifold action, the surviving Cartans are linear combinations of
the above; in terms of the U(1)16 Cartan subalgebra of SO(32) the wilson
line is described by

(AIi ) =
1

2πR
(θ1, θ2, . . . , θ16) (11.68)

Although the latter expression is more correct, it is sometimes more intu-
itive to use (11.67) to display the Chan-Patons and their orientifold images
explicitly.

The Wilson line has the only effect of shifting the internal momentum, as
discussed above in field theory terms. Namely, for an open string in the ab
Chan-Paton sector (and so, with charges (+1,−1) under U(1)a × U(1)b, we
have

p =
k

R
+
θa − θb
2πR

(11.69)
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here we are using the notation (11.67), so θa+16 = −θa. The spacetime mass
formula for these states is

m2 = (
k

R
+
θa − θb
2πR

)2 +
1

α′ (NB +NF − 1) (11.70)

For generic R and θa, the gauge group is broken to U(1)16, since only aa
states are able to lead to massles modes. When several, say N eigenvalues
θa coincide and are not zero or π, then there are additional massless fields,
leading to U(N) gauge bosons and superpartners. Finally, when n eigenvalues
vanish or are equal to π, the gauge symmetry is SO(2n).

The moduli space of compactifications is difficult to obtain, and there is
no analog of the Narain lattice. Hence, without further ado, we turn to the
discussion of T-duality.

T-duality
The T-dual closed string sector in still given by type IIA theory on a circle,

modded out by ΩR. The T-dual of the open strings is slightly modified by
the Wilson lines. By simply mapping the mode expansion of the original
into the mode expansion of the T-dual, we find that the dual coordinate has
shifted winding

X ′(σ, t) = const. +
2πR′

`
w′σ +

2πR′

`

(θa − θb)
2π

σ + osc. (11.71)

This implies that the open string endpoints of ab strings are at different
locations in x9

X ′(σ = `, t)−X ′(σ = 0, t) = 2πR′ w′ + θaR
′ − θbR

′ (11.72)

The mass formula for ab strings is

m2 =
R

α′ (w +
θa
2π
− θb

2π
)2 +

1

α′ (NB +NF − E0) (11.73)

In more intuitive terms, recall our description of an endpoint with Chan-
Paton a as ending on the ath D8-brane. What we have found is that θaR

′ is
the location in x9 of the ath D8-brane. The ab open strings start on the ath

and end on the bth D8-brane, so their length is θaR−θbR, modulo the period
2πR. This stretching contributes to the mass of the corresponding state. See
figure 11.5.
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Figure 11.5: Open string endpoints in the T-dual of type I with Wilson lines
are fixed on D8-branes at different positions in the circle. Their stretching is
determined by the location of the D8-branes.

The D8-brane picture makes the gauge symmetry enhancements clear.
Generically the D8-branes are located at different positions, so the generic
gauge symmetry is U(1)16 (since only aa strings have zero stretching). When
several, say N θa’s coincide, several D8-branes overlap, and the corresponding
ab strings are massless, leading to U(N) gauge symmetries. Finally, if N θa
are zero or π, D8-branes and their orientifold images coincide on top of an
O8-plane, leading to SO(2N) gauge symmetry.

It is interesting to re-interpret the RR tadpole cancellation conditions in
the T-dual language. In this case, the crosscap diagrams are located on top
of the O8-planes, and in a sense compute the RR charge of these objects (the
strength of their coupling to the RR 9-form (dual to the original 10-form).
The disk diagrams are located on top of the D8-branes, and compute the
RR charge of these objects. RR tadpole cancellation condition corresponds
to the requirement that the fluxlines of the RR 9-form have nowhere to go
in the internal space, which is compact, so the total charge must vanish (see
fig11.6). This is Gauss law in a compact space 3 . It is possible to compute
these tadpoles as we did for type I, and obtain that each O8-plane has −16
times the charge of a D8-brane. Hence we have 2× (−16) + 32× 1 = 0.

3Equivalentely, one can check that the KK reduction of the 9-form has a zero mode,
which corresponds to a 9-form in 9d, which has no kinetic term. RR tadpole cancellation
can be recovered as the consistency condition for its equations of motion. This description
is more analogous (T-dual) to the one used in type I.
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Figure 11.6: Schematic picture of the interpretation of RR tadpole cancellation
as charge cancellation in a compact space.

We conclude with some relevant observations
• The generalization of this idea to further T-dualities is clear. In the

closed string sector the orientifold action acquires an additional geometric
piece inverting the T-dualized coordinate. Hence, in general we will find
theories obtained from toroidal compactification of type IIA/B modded out
by Ωg, where g is a geometric action flipping r coordinates, with r even/odd
for IIB/IIA. This introduces 2r O(9− r)-planes, which can be seen to carry
32/2r units of RR charge. In order to cancel the RR tadpoles, we introduce
32 D(9− r)-branes, which can be at arbitrary locations, but respecting the
Z2 symmetry imposed by g.
• The original type I theory also admits a description in terms of O-planes

and D-branes. The Ω projection can be said to introduce an O9-plane (which
fills spacetime completely), and the open strings (which can end anywhere in
10d space) can be said to end on D9-branes (which fill spacetime completely).

We should not worry too much about understanding all the details of
D-branes at this point. Such objects will reappear in a different way in
subsequent section. In fact they correspond to new non-perturbative states
in type II string theory. This can be understood already in our picture:
recalling that the bulk of spacetime is described by type IIA theory, if one
takes the decompactification limit in which the O8-planes go off to infinity,
keeping the D8-branes in the middle of the interval, we are roughly left with
non-compact type IIA theory in the presence of D8-branes, see figure 11.7.
This shows that there exist states in type IIA string theory which are not
obtained as perturbative excitations of the type IIA string. Rather, this
states should be regarded as a non-perturbative state, analogous in many
respects to a soliton. We will come back to these states in later lectures.
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Figure 11.7: The decompactification limit of type I’ keeping the D8-branes at
finite distance produces type IIA theory with a topological defect (domain wall)
given by the D-brane.
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11.5 Final comments

Let us summarize this lecture by emphasizing that we have shown an ex-
tremely intimate relation between the different string theories, once we start
compactifying them. See figure B.1.

This is all very nice, but we should recall that we started out studying
string theory as a theory with the potential to unify the interactions we
observe in Nature. The theories we have obtained have too much super-
symmetry to allow for chirality, so they are quite hopeless as theories of our
world. Therefore, we will turn to the study of other compactifications in
subsequent lectures.



Chapter 12

Calabi-Yau compactification of
superstrings. Heterotic string
phenomenology

12.1 Motivation

We have seen that toroidal compactification leads to 4d theories at low en-
ergies. However, it is too simple to lead to anything realistic, similar to the
Standard Model of Particle Physics. The fact that toroidal compactification
does not break any of the supersymmetries of string theory implies the 4d
theories are non-chiral. We are missing an essential ingredient of Particle
Physics.

Thus we have to consider more general compactifications with background
geometry M4 × X6, where X6 is a compact curved manifold 1. Since the
background metric is not flat, the worldsheet 2d theory is interacting, and
not exactly solvable. Hence one usually works at leading order in the 2d
expansion prameter, which is α′/r2, where r is a curvature length scale in
spacetime. This corresponds to working at low energies, in the supergravity
limit, and is a good approximation if all curvature length scales of X6 are
large compared with the string length. This is essentially a point particle
limit, and the stringy physics will be hidden in the α′ corrections, which are

1We also include in our ansatz that backgrounds for other bosonic fields are trivial, e.g.
we do not consider compactifications with field strength fluxes for p-form fields, which
only very recently have been considered in the literature.

239
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very difficult to obtain.
It should be pointed out, though, that there exist some abstract exactly

solvable 2d conformal field theories, known as Gepner models, which are
proposed to describe (exactly in α′) the physics of string theories on spaces of
stringy size. Also, in next lecture we will study orbifolds, which are in a sense,
simple versions of non-trivial spaces, which still lead to free 2d worldsheet
theories (with sectors of non-trivial boundary conditions).

12.1.1 Supersymmetry and holonomy

We are interested in compactifications which preserve some 4d supersym-
metry. Compactifications breaking all the supersymmetries would be very
interesting but
• often contain instabilities, appearing as tachyonic fields in 4d.
• lead to a too large 4d cosmological constant to be of any phenomeno-

logical use to describe the real world.
Nevertheless, it is important to realize that assuming supersymmetry is

also an oversimplification if one is interested in describing the real world,
which is not exactly supersymmetric. Upon breaking supersymmetry (by
some of the mechanisms in the market) the above two problems rearise 2.

Finally, it is possible to see that the conditions imposed on X6 by super-
symmetry ensure that the background satisfies the supergravity equations of
motion, it is a good vacuum of the theory. This can be found in the main
reference for this lecture [61].

What are the conditions on X6 in order to have some unbroken 4d su-
persymmetry? Recall from our discussion of Kaluza-Klein reduction that 4d
fields visible at low energies are zero modes, constant in the internal space.
Similarly, gauge symmetries visible at low energies correspond to gauge trans-
formations constant over the internal space. Analogously, supersymmetries
unbroken in the low energy 4d physics correspond to (local) supersymme-
try parameters (which are spinors ξ(xµ, xi) in M4 × X6) which are covari-
antly constant in X6 (with the connection inherited from the metric), i.e.
∇X6

ξ(xi) = 0.
Recalling now the discussion of the holonomy group of a Riemannian

manifold, we can obtain a conditions on X6 to admit covariantly constant

2Yes, it is a bit disappointing that for the moment string theory has not given a strong
proposal to solve the cosmological constant problem, despite many attempts.
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spinors. Clearly, a covariantly constant spinor is a singlet under the holon-
omy group (of the spinor bundle with the spin connection), since it does not
change under parallel transport around a closed loop. This implies that the
holonomy group of a Riemannian manifold IX6 leaving some 4d susy unbro-
ken is not generic. The generic holonomy for a metric in a 6d manigold is
SO(6), and spinors transform in the representation 4 or 4 under it (depend-
ing on their chirality 3), hence there is no singlet, and no covariantly constant
spinor. For metrics of SU(3) holonomy, spinors transform as 3 + 1 or 3 + 1,
hence there are components which are singlets under the holonomy group,
corresponding to covariantly constant spinors. The decomponsition of a susy
parameter in 10d under the holonomy and 4d Lorentz groups follows from
the following chain

SO(10) → SO(6)× SO(4) → SU(3)× SO(4)
16 (4, 2) + (4′, 2′) (3, 2) + (3, 2′) + (1, 2) + (1, 2′)

In the last column only the SU(3) singlet components lead to 4d super-
symmetries, while the others are broken by the compactification.

The surviving supersymmetries can also be verified by looking at the KK
reduction of 10d gravitinos under the holonomy group. This is described by
the following chain. The 10d gravitinos are in the say 56S of SO(8), which
arises from a product 8V ×8C . Decomposing with respect to SO(6)×SO(2),
we have 8V → 60 + 1±1 and 8C = 41/2 + 4−1/2, where subindices denote the
SO(2) charges. We are interested in 4d gravitinos, which have spin 3/2 with
respect to SO(2); these fields are obtained from the product 1±1×(41/2+4−1/2,
and decompose under SU(3)× SO(2) as 1±1 × (31/2 + 3−1/2 + 11/2 + 1−1/2).
Clearly only the latter lead to 4d gravitinos unbroken by the compactification.
It is possible to check that one 10d gravitino leads to one 4d gravitino if the
holonomy group of the compactification manifold is SU(3).

The generalization of the above statements to other dimensions is that
compactification on a 2n-dimensional manifold with SU(n) ⊂ SO(2n) holon-
omy preserves some supersymmetry.

3The Lie algebras of SO(6) and SU(4) are the same, and the spinor representations
of SO(6) are the fundamental and antifundamental of SU(4), so they are often written 4
and 4.
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Figure 12.1: Charts covering a complex manifold.

12.1.2 Calabi-Yau manifolds

A 2n-dimensional manifold admitting a metric with spin connection of SU(n)
holonomy is a Calabi-Yau manifold.

This definition is difficult to use in order to determine whether a manifold
is Calabi-Yau, since in principle one needs an explicit construction of the
metric. This is very difficult: in fact there is no known explicit metric for
any (non-trivial) compact Calabi-Yau, explicit metrics are knonw only for a
few examples of non-compact spaces. Happily the existence of a metric with
this property is guaranteed for manifolds satisfying the following (simplest to
check) topological conditions: the manifold must be Kahler and (its tangent
bundle must) have vanishing first Chern class.

To understand better the meaning of these conditions, we need some
background information on complex differential geometry.

An n-dimensional complex manifold is a topological space M , together
with a holomporphic atlas, i.e. a set of charts (Uα, z(α)) where z(α) are maps
from Uα to some open set in Cn, such that i) the Uα cover M , ii) on Uα

⋂
Uβ,

the map

z(β) ◦ z−1
(α) : z(α)(Uα

⋂
Uβ) −→ z(β)(Uα

⋂
Uβ) (12.1)

is holomorphic (namely ∂z(β)/∂z(α) = 0. See figure 12.1.
Notice that a complex n-dimensional manifold can always be regarded as

a real 2n-dimensional differential manifold, by simply splitting the complex
coordinates into its real and imaginary parts. On the other hand,a real
2n-dimensional manifold M can be regarded as an n-dimensional complex
manifold only if it admits a globally defined tensor of type (1, 1), J n

mdx
m⊗∂n

satisfying
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i) J n
mJ

l
n = −δ lm

(this is used to define local complex coordinates dzi = dxi + iJ i
l dy

l and
dzi = dxi − iJ i

l dy
l)

ii) The Niejenhuis tensor vanishes

Nk
ij = ∂[jJ

k
i] − J p

[i J
q
j]∂qJ

k
p = 0 (12.2)

which ensures that the local complex coordinates have holomorphic transition
functions. Such a J is called a complex structure 4.

Notice that a given real differential manifold can admit many complex
structures. A familiar example is provided by the 2-torus, which admits a
one (complex) dimensional family of complex structures, parametrized by a
complex number τ ; the two real coordinates x, y can be combined to form a
complex coordinates via dz = dx+ τdy.

In a complex manifold, p-forms and their cohomology classes (and p-
chains and their homology classes) can be refined according to their number of
holomorphic and antiholomorphic indices 5. For instance, the 3-cohomology
group splits as

H3(M) = H (3,0)(M) +H (2,1)(M) +H (1,2)(M) +H (0,3)(M) (12.3)

where H (p,q) corresponds to forms with p holomorphic and q antiholomorphic
indices (spanned by a basis dzi1 ∧ . . .∧dzip ∧dzj1∧ . . .∧dzjp . The dimensions
of the H (p,q) are denoted hp,q and known as Hodge numbers; although to
define them we have introduced a complex structure, they do not depend on
the particular complex structure chosen, so they are topological invariants of
M .

A metric in a complex manifold is called hermitian if it is of the form

ds2 = gijdz
idzj (12.4)

namely has non-zero components only for mixed indices. Such metric can be
used to lower one index of the complex structure tensor and thus define the
(1, 1) form

J = gijdz
i ∧ dzj (12.5)

4Manifolds with tensors J satisfying i) but not ii) are called almost complex, and J is
called almost complex structure.

5In fact, this can be done even for almost complex manifolds.
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A hermitian metric is called Kahler metric if the associated (1, 1)-form
satisfies

dJ = 0 (12.6)

The (1, 1)-form is known as Kahler form. A manifold which admits a Kahler
metric is called a Kahler manifold; this is a topological property of the man-
ifold.

Notice that the Kahler form defines a non-trivial cohomology class in
H(1,1)(M). It defines a cohomology class because it is closed. We can show
that the class is non-trivial because (12.5) implies

∫

M
J ∧ . . . ∧ J =

∫

M

√
det g dz1dz1 . . . dzndzn = Vol(M) (12.7)

which would be vanishing if J is exact (since J = dA would imply
∫
J . . . J =∫

d(AJ . . . J) = 0).
The Kahler form is very interesting since it characterizes the overall vol-

ume of the manifold M . In particular, α′ corrections are in fact weighted by
the adimensional parameter α′/r2, where r is an overall size determined by
the Kahler form.

Returning to the issue of holonomy, the crucial property of Kahler mani-
folds is that the Christoffel connection induced by the Kahler metric leads to
a parallel transport that does not mix holomorphic and antiholomorphic in-
dices. This implies that the holonomy group is in a U(n) subgroup of SO(2n),
as is manifest e.g. by splitting the basis of tangent space in holomorphic and
antiholomorphic elements

(∂z1 , . . . , ∂zn ; ∂z1, . . . , ∂zn) (12.8)

The U(1) part of the holonomy can be seen to be associated to the Ricci
tensor, so the manifold must admit a Kahler and Ricci-flat metric to have
SU(n) holonmy. A necessary topological condition for this is that the first
Chern class c1(R) of the tangent bundle is trivial. Calabi conjectured this to
be also a sufficient condition, as was finally proved by Yau (hence the name
Calabi-Yau for such spaces).

Yau’s theorem states that, given a complex manifold with c1(R) = 0
and Kahler metric g with Kahler form J , there exists a unique Ricci-flat
metric g′ with Kahler form J ′ in the same cohomology class. It provides, as
promised, a topological way of characterizing manifolds for which a SU(n)
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holonomy metric exists (without constructing it explicitly). This facilitates
the classification and study of Calabi-Yau spaces, in fact tables with many
hundreds of such spaces exist in the literature.

Yau’s theorem also provides a characterization of the parameters that
determine the SU(n) holonomy metric. For a given differential manifold M
we should

i) specify the parameters that define a complex structure on this real
manifold to make it a complex manifold. This set of parameters spans what
is called the compelx structure moduli space, and can be computed to have
(complex) dimension h2,1(M).

ii) for fixed complex structure, specify the parameters which define the
Kahler class. This set of parameters is known as Kahler moduli space, and
clearly has (real) dimension h1,1(M).

The complete moduli space of Calabi-Yau metrics in a given differential
manifold M is (locally) the product of these.

We would like to point out that the condition for supersymmetry which
we have used is valid to lowest order in α′. In particular, one can imagine
that there could be higher order α′ corrections that modify the ’equation of
motion’ condition Ricci=0. However, there are diverse arguments (see [62])
showing that in differential manifolds, satisfying the topological conditions
of being Kahler and have zero first Chern class, there exists some underlying
2d interacting field theory which is conformal exactly in α′. In other words,
the leading α′ proposal for the metric can be consistently completed to an α′

exact one.

The Calabi-Yau condition implies certain structure of Hodge number. For
6d manifolds admitting a metric of holonomy SU(3) (and not in a proper
subgroup like SU(2)), often referred to as Calabi-Yau threefolds, they read

h0,0 1
h1,0 h0,1 0 0

h2,0 h1,1 h0,2 0 h1,1 0
h3,0 h2,1 h1,2 h0,3 1 h2,1 h2,1 1
h3,1 h2,2 h3,1 0 h1,1 0
h3,2 h2,3 0 0
h3,3 1

where equality of some Hodge numbers is due to duality between H (p,q)

and H (3−p,3−q). Due to its shape, this diagram is known as Hodge diamond.
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We conclude with some examples. In one complex dimension, the only
compact Calabi-Yau space actually has trivial holonomy, it is the 2-torus.
In two complex dimensions, there is only one topological space admitting
SU(2) holonmy metrics, known as K3 (complex) surface. Although a lot
is known about the topology of this space, no explicit metrics are known.
In three complex dimensions, there exist many compact Calabi-Yau spaces.
One of the simplest is the quintic, which can be described as the (complex)
hypersurface

f5(z1, . . . , z5) = 0 (12.9)

in P5, the (four) complex (dimensional) projective space 6. Here f5(z1, . . . , z5)
denotes a degree 5 polynomial (so that it is homogeneous and well-defined in
P5). The general such polynomial (up to redefinitions) depends on 101 com-
plex parameters, which determine the complex structure of the Calabi-Yau.
Also, there is one Kahler parameter determining the overall size of P5 and
hence of the quintic. Its Hodge diamond has therefore h2,1 = 101, h1,1 = 1.

12.2 Type II string theories on Calabi-Yau

spaces

We now study what kind of theories arise from compactification of type II
string theories on SU(3) holonomy spaces.

12.2.1 Supersymmetry

Type II theories have two 10d gravitinos. Upon compactification on Calabi-
Yau threefolds we obtain two 4d gravitinos, which corresponds to 4d N = 2
supersymmetry. This is a non-chiral supersymmetry, so it appears for both
IIA and IIB theories. The massless supermultiplets that may appear are:

i) the gravity multiplet, containing a graviton, a gauge boson (gravipho-
ton), and two gravitinos of opposite chiralities

ii) the vector multiplet, containing a gauge boson, a complex scalar and
a Majorana fermion, all in the adjoint representaion of the gauge group

6This is the set of points (z1, . . . , z5) ∈ C
5 with the equivalence relation (z1, . . . , z5) '

(λz1, . . . , λz5) with λ ∈ C− {0}.
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iii) the hypermultiplet, containing two complex scalars (in conjugate rep-
resentations) and two Weyl fermions (in the same representation with oppo-
site chiralities).

This structure makes it sufficient to determine the bosonic fields after
compactification; the fermionic fields can be completed by using this multi-
plet structure.

12.2.2 KK reduction of p-forms

Since type II theories contain p-form fields in 10d, we need to know how to
perform their KK reduction. A p-form in 10d Cp(x

0, . . . , x9) can give rise to
4d q-forms via the ansatz

Cµ1...µqm1...mr
(x0, . . . , x9) = Cµ1...µq

(x0, . . . , x3)Am1...mr
(x4, . . . , x9)(12.10)

with q+r = p. The 4d q-form has a 4d mass given by the laplacian acting on
the internal piece. The laplacian is read off from the kinetic term of p-forms,
which is ∫

dC ∧ ∗dC =
∫

(dC, dC) =
∫

(C,∆C) (12.11)

and ∆ = dd† + d†d. Hence to get a massless 4d q-form we need to pick the
internal r-form Am1...mr

(x4, . . . , x9) to be a harmonic r-form in X6, namely
dA = 0, d†A = 0.

Since the number of linearly independent harmonic r-forms in IX6 is
br(X6), the dimension of Hr(X6,R), we obtain br independent q-forms in
the KK reduction of the 10d p-form Cp.

That is, the ansatz for the zero mode of Cp is

Cµ1...µqm1...mr
(x0, . . . , x9) =

br∑

α=1

Ca
µ1...µq

(x0, . . . , x3)Aam1...mr
(x4, . . . , x9)(12.12)

The 4d q-form is often written as
∫
Σa
Cp, where r of the indices of Cp are

integrated along the r-cycle Σa, dual of the r-form Aa.
We would like to emphasize the fact that out of a unique 10d field we

have obtained several 4d fields with same quantum numbers. This arises
simply because of the existence of several zero modes for a kinetic operator
in the internal space. That is, several zero energy resonance modes of a 10d
field in the 6d ’cavity’ given by the internal space. As we will see later on,
this beautiful mechanism is a possible origin of family replication in heterotic
models reproducing physics similar to the Standard Model.
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12.2.3 Spectrum

We now have enough tools to directly determine the spectrum of type IIA/B
compactifications on Calabi-Yau threefolds with Hodge numbers (h1,1, h2,1).
We just need to recall that the number of scalars obtained from the KK
reduction of the metric is h1,1 real scalars plus h2,1 complex scalars. These
arise because the metric depends on these numbers of complex and Kahler
and complex structure parameters, so the internal kinetic operator for 10d
gravitons should have the corresponding zero energy directions. It is impor-
tant to note that Calabi-Yau threefolds do not have isometrical direction,
thus the KK reduction of the 10d metric does not lead to 4d gauge bosons.
Finally, p-forms are KK reduced as above. To simplify notation we denote
Σa the non-trivial (1, 1, )-cycles, σ̃a their dual (2, 2)-cycles, Λb and Λ̃b the
(2, 1)- and (1, 2)-cycles, and ω, õmega the (3, 0)- and (0, 3)-cycles.

Recall that the bosonic fields for 10d type IIA are the graviton G, the
NSNS 2-form B, the dilaton φ, and the RR 1-forms A1 and 3-form C3

IIA Gravity h1,1 Vector h2,1 Hyper Hyper
G → gµν h1,1 2h2,1

B → ∫
Σa
B c

φ → φ
A1 → A1

C3 → ∫
Σa
C3

∫
Λa
C3,

∫
Λ̃a
C3

∫
ω C3,

∫
ω̃ C3

Here c is the scalar dual to the 4d 2-form bµν , i.e. dc = ∗4ddb. In total, we
get the N = 2 4d supergravity multiplet, h1,1 vector multiplets (with abelian
group U(1)h1,1) and h2,1 +1 hypermultiplets (neutral under the gauge group).

The bosonic fields for 10d type IIA are the graviton G, the NSNS 2-form
B, the dilaton φ, and the RR 0-form a, 2-form B̃ and 4-form C+

4 (with self
dual field strength).

IIB Gravity h2,1 Vector h1,1 Hyper Hyper
G → gµν 2h2,1 h1,1

B → ∫
Σa
B c

φ → φ
a a

B̃2 → ∫
Σa
B̃ c̃

C+
4 → ∫

ω C
+
4

∫
Λb
C+

4

∫
Σa
C+

4
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Note that the self duality dC4 = ∗dC4 reduces the number of independent
integrals of C+

4 that can be taken.

In total, we obtain the N = 2 4d supergravity multiplet, h2,1 vector
multiplets (with abelian gauge group) and (h1,1 +1) hypermultiplets (neutral
under the gauge group).

12.2.4 Mirror symmetry

Consider two Calabi-Yau threefolds X and Y, such that (h1,1, h2,1)X =
(h2,1, h1,1)Y. Then the low energy spectrum of type IIA on X and type
IIB on Y are the same.

This suggest more that a coincidence. The mirror symmetry proposal is
that for each Calabi-Yau threefold X there exists a mirror threefold Y such
that type IIA string theory on X is exactly equivalent to type IIB string
theory on Y. This of couse implies the above relation between their Hodge
numbers, but much more, since the claim implies equivalence of the two
theories to all orders in α′, i.e. including stringy effects (there are proposal
for equivalence also to all orders in the spacetime string coupling constant).

There is a lot of evidence in favour of this proposal. For instance, classifi-
cation of large classes of Calabi-Yau threefols show that they appear in pairs,
for each X there is some Y, with the right relation of Hodge numbers. Obvi-
ously, this is necessary but not sufficient for mirror symmetry. Nevertheless
it is a compelling piece of evidence.

More convincing is the explicit construction of two different Calabi-Yau
geometries starting from a unique 2d interacting conformal field theory, by
two different geometric interpretation of the 2d fields. See [78].

The mirror symmetry proposal has very interesting implications. It im-
plies an exact matching of the complex structure moduli space of X with
the Kahler moduli space of Y (with the Kahler parameters complexified by
the addition of scalars arising from B-fields), exactly in α′. This has led to
remarkable predictions in mathematics, as follows. A non-renormalization
theorem of N = 2 4d supersymmetry ensures that the structure (metric) of
the vector multiplet moduli space is independent of scalars in hypermulti-
plets, and vice versa. Recall that α′ corrections are controlled by a Kahler
parameter, which for type IIB(IIA) is a hypermultiplet (vector multiplet)
scalar. This implies that in the compactification of type IIB on Y the vector
multiplet moduli space, i.e. the complex structure moduli space, does not
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suffer α′ corrections, and the result obtained in the supergravity approxima-
tion is α′ exact. Mirror symmetry proposes that this is exactly the vector
multiplet moduli space of type IIA on the mirror X; this is the Kahler mod-
uli space of X, and it suffers from α′ corrections. Mirror symmetry is giving
us a tool to resum all the α′ corrections to the metric in the Kahler moduli
space of IIA on X via its equivalence with the complex structure moduli
space of IIB on Y, which is exactly computable from classical geometry in
supergravity. The α′ corrections on the Kahler moduli space of IIA on X are
interesting, because a non-renormalization theorem ensures that there are
no perturbative (in the α′ expansion) corrections; on the other hand, there
are non-perturbative (in the α′ expansion) corrections, due to worldsheet in-
stantons: these are processes mediated by configurations where the closed
string wraps around a holomorphic 2-cycle in X. Mirror symmetry allows
to compute these contributions from the mirror, and to extract from this
the number of holomorphic 2-cycles in the Calabi-Yau threefold X. These
numbers are very difficult to compute from other mathematical means, and
easily derived from mirror symmetry. Hence mirror symmetry has attracted
the attention of many mathematicians.

12.3 Compactification of heterotic strings on

Calabi-Yau threefolds

In this section we study the more interesting (and difficult) compactification
of heterotic theory on Calabi-Yau threefolds. They will lead to models with
potential phenomenological application, in the sense that they are similar to
the physics of Elementary Particles we observe in Nature.

Notice that since we work in the supergravity approximation, heterotic
SO(32) and type I compactifications will be very similar. Also both heterotics
require the same tools for this compactification, hence (for historical reasons,
and also because they lead to nicer models with the particular ansatz we
make (standard embedding)), we center on compactifications of the E8 ×E8

heterotic.

12.3.1 General considerations

The original massless 10d fields of the theory are the metric G, the 2-form B,
the dilaton φ, and the gauge bosons Aa in E8 × E8, plus the fermion super-
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parters of all these. We compactify the corresponding supergravity theory on
M4×X6. Clearly, the condition that we get some unbroken 4d supersymme-
try, in particular some 4d gravitino, implies that X6 must be a Calabi-Yau
threefold. We see that starting with a single 10d gravitino we will end up
with a single 4d gravitino, namely the 4d theory has N = 1 supersymmetry.
This is very nice, since it is a low enough degree of supersymmetry to allow
for chiral fermions. On the other hand, we know that N = 1 supersymme-
try is considered one of the most promising extensions beyond the Standard
Model.

One difference of heterotic compactifications, compared with type II com-
pactifications, are the presence of the 10d nonabelian gauge fields. Hence in
the compactification there is the possibility of turning on a non-trivial back-
ground for their internal components Am(x4, . . . , x9). More formally, we need
to specify not just a compactification manifold, but also a gauge bundle (a
principal G-bundle, with G ⊂ E8 × E8) over the internal space X6. Such
bundles are also constrained in order to lead to unbroken 4d susy in the gauge
sector of the theory (see below).

Before discussing the bundles in more detail, let us wonder whether we
really need non-trivial bundles, or else compactifications with trivial gauge
bundle are consistent. The answer is that such compactifications are incon-
sistent if the Calabi-Yau is non-trivial (i.e. is not a six-torus). To see this,
recall the Green-Schwarz terms in the 10d action, that we mentioned in the
discussion of heterotic (or type I) 10d anomalies. In particular, there is a
term of the form ∫

10d
B6 ∧ (trF 2 − trR2) (12.13)

where F and R are the curvatures of the gauge and tangent bundle, and B6

is the dual to the NSNS 2-form, dB6 = ∗dB2. This leads to an action for B6

which can be written∫

10d
H3 ∧ dB6 +

∫

10d
B6(trF

2 − trR2) (12.14)

where H3 is the field strength for B2. This leads to the equations of motion

dH3 = trF 2 − trR2 (12.15)

Taking this equation in cohomology (both sides are closed), the left hand
side is exact so corresponds to the zero class. We get

[trF 2] = [trR2] namely c2(E) = c2(R) (12.16)
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the second Chern class of the gauge bundle must equal that of the tangent
bundle. The latter is trivial only for the six-torus, so consistency of the
equations of motion requires the internal gauge bundle to be non-trivial.

Thus we need to specify a connection in a non-trivial principal G-bundle
to have a consistent compactification. The requirements on this connection
in order to have unbroken 4d supersymmetry is that the curvatures obey the
conditions

Fij = 0 ; Fij = 0 ; gijFij = 0 (12.17)

Again, explicit solutions to these equations are difficult to find. However,
there is a theorem (by Donaldson, Uhlenbeck and Yau) which guarantees the
existence of a solution for gauge bundles satisfying the (simpler to check,
since they are almost topological) conditions

i) The complexified vector bundle (with fiber given by the vector space of
complex linear combinations of the basis vectors) is holomorphic (i.e. transi-
tion functions are holomorphic).

ii) The bundle is stable. This is a complicated to state condition, which
in physics terms ensures that the gauge field configuration is stable against
decay into product of bundles.

The classification or even the construction of stable holomorphic bundles
over a Calabi-Yau is a difficult task even for mathematicians, so we will not
say much about this.

Happily, there is a very natural gauge bundle that satisfies the above
conditions, and can be used for any Calabi-Yau manifold, therefore leading
to a 4d N = 1 supersymmetric compactification. It amounts to taking
the gauge bundle to be isomorphic to the tangent bundle, and the gauge
connection to be the same, at each point, to the spin connection. This is
called the standard embedding, or embedding the spin connection on the
gauge degress of freedom.

Note that since F = R it automatically satisfies the condition c2(F ) =
c2(R). Also note that due to the Calabi-Yau property, the tangent bundle
has holonomy SU(3), so the non-trivial part of the gauge bundle is embedded
in an SU(3) subgroup of one of the E8, i.e. H = SU(3).

We emphasize that the standard embedding is just a possible choice of
consistent gauge background in the heterotic compactification. Any other
choice of bundle, with different structure group, etc, would lead to equally
consistent models. In this lecture we however center on standard embedding
models for simplicity.
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12.3.2 Spectrum

Before entering the construction of the final 4d spectrum, recall the basic 4d
N = 1 supermultiplets.

i) the gravity multiplet, containing the 4d metric and one gravitino
ii) the vector multiplet, containing the gauge bosons and the gauginos

(Majorana fermions in the adjoint)
iii) the chiral multiplet, containing a complex scalar and a Weyl fermion,

both in some representation of the gauge group.
With this information it will be enough to determine just the spectrum

of bosons or of fermions.

The reduction of the 10d N = 1 sugra multiplet leads to the following
bosonic fields in 4d

Het Gravity h1,1 Chiral h2,1 Chiral Chiral
G → gµν h1,1 2h2,1

B → ∫
Σa
B c

φ → φ

Thus we get h1,1 + h2,1 + 1 chiral multiplets, neutral under the gauge
group.

In the compactification of the 10d N = 1 E8 × E8 vector multiplet, it
is easy to identify the resulting 4d vector multiplets. This can be done by
realizing that the gauge symmetries surviving in 4d are those gauge trans-
formations in E8 × E8 which leave the background invariant. Thus the 4d
gauge group is the commutant of the subgroup H with non-trivial gauge
background turned on.

For the standard embedding H = SU(3), embedded within one of the
two E8’s. Thus, the other E8 is untouched and survives in the 4d gauge
group. About the E8 on which we embed the SU(3), the unbroken 4d gauge
group by realizing that E8 has a maximal rank subgroup E6×SU(3) and we
embed the gauge connection on the last factor. The adjoint representation
of E8 decomposes as (see below)

E8 → E6 × SU(3)

248 → (78, 1) + (1, 8) + (27, 3) + (27, 3) (12.18)

The generators commuting with SU(3) must be singlets under it, so the
unbroken 4d group is E6 (times E8).
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To verify the above decomposition, recall that the generators of E8 are 8
Cartans HI and the non-zero roots

(±,±, 0, 0, 0, 0, 0, 0) ;
1

2
(±,±,±,±,±,±,±, pm) (12.19)

(with an even number of minus signs in the second set).
The decomposition (12.18) is as follows

SU(3) → H1 −H2 , H1 +H2 − 2H3

(+,−, 0)
E6 H1 +H2 +H3 , H4 , H5 , H6 , H7 , H8

(0, 0, 0,±,±, 0, 0, 0)
1

2
(+,+,+,±,±,±,±,±)

1

2
(−,−,−,±,±,±,±,±)

(27, 3) (+, 0, 0,±, 0, 0, 0, 0, 0)

(−,−, 0, 0, 0, 0, 0, 0)

1

2
(+,−,−,±,±,±,±,±)

(27, 3) (−, 0, 0,±, 0, 0, 0, 0, 0)

(+,+, 0, 0, 0, 0, 0, 0)

1

2
(−,+,+,±,±,±,±,±) (12.20)

Thus we get 4d N = 1 vector multiplets of E6×E8. This is very interesting,
since the group E6 has been considered as a candidate group for grand unifi-
cation models. So in a sense, it is relatively close to the Standard Model (we
simply point out that slightly more complicated models, with other structure
group on the gauge bundle, can lead to gauge groups even closer to that of
the Standard Model).

Finally, we need to discuss the spectrum of chiral multiplets. To obtain
these it is more convenient to obtain the fermionic components that arise in
the KK reduction of the 10d gaugino. Let us discuss the general idea of how
to do this, before going to the particular case of the standard embedding.
For simplicity, we center on the E8 factor broken by the compactification, the
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corresponding gaugino transforms in the adjoint of the original gauge group
E8. In the breaking of the gauge group E8 → H × G4d, the adjoint of E8

suffers a general decomposition

E8 → H ×G4d

248
∑

i

(RH,i, RG,i) (12.21)

The ansatz for the profile of the 10d gaugino in the KK reduction is of the
form

λα(x
0, . . . , x9) =

∑
i

(
ξ
RH,i

4 (x4, . . . , x9)ψ
RG,i

−1/2(x
0, . . . , x3)+

ξ
RH,i

4
(x4, . . . , x9)ψ

RG,i

1/2 (x0, . . . , x3)
)

(12.22)

where ξ4, ξ4 are spinors of opposite chiralities in the internal 6d and ψ±1/2

as spinors of opposite chiralities in 4d. The singlet component of ξ gives rise
to the 4d gauginos.

As usual, the 4d mass of a chiral left handed 4d fermion ψ
RH,i

−1/2 in the
representation RG,i ofG4d is given by the eigenvalue of the kinetic operator on

the corresponding internal wavefuncion ξ
RH,i

4 . This is the 6d Dirac operator
for fermions in the 4, coupled to an H-bundle in the RH,i representation.
Hence we obtain a left handed chiral 4d fermion in the RG,i for each solution
of the equation

/DRH,i
ξ
RH,i

4 = 0 (12.23)

The number of fermions n−
RG,i

is hence the dimension of ker /DRH,i
.

In general, the number of zero modes of /DRH,i
is not given by a topological

quantity of X6 or the bundle. The reason is that the KK reduction of the 10d
gaugino can also lead to 4d right-handed chiral fermions in the representation
RH,i. The number n+

RG,i
of such zero modes is given by the dimension of

ker /D†
RH,i

. Since two 4d chiral fermions of opposite 4d chiralities and in the
same representation of the gauge group can couple to get a Dirac mass, they
can disappear from the massless spectrum. This can be triggered by a small
change of the geometry of the manifold or the gauge bundle, while staying in
the same topological sector. Therefore, the individual numbers of massless
chiral fermions n±

RG,i
are not topological. However, in all these processes

of Dirac mass generation, the difference between the two two numbers is
conserved. Indeed, it was known to mathematicians that the difference,

ind /DRH,i
= dim ker /DRH,i

− dim ker /D†
RH,i

(12.24)
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called the index of the Dirac operator (coupled to a suitable bundle) can be
expressed in terms of characteristic classes of the tangent and gauge bundles

ind /DRH,i
=
∫

X6
ch(F )

√
Â(R) (12.25)

where it is understood that one must expand the Chern character (computed
in the representation RH,i) and A-roof genus, and pick the degree 6 piece to
integrate it.

This is satisfactory enough, since we expect that generically vector-like
pairs of fermions pick up large masses, of the order of the cutoff scale (the
string scale or compactfication scale) since there is no symmetry or principle
that forbids it. Hence, the only fields that we see in Nature would be the
unpaired chiral fermions (this is a version of Georgi’s ’survival hypothesis’)

Returning to the case of the standard embedding, we are interested in
obtaining the (net) number or fermions in the 27 of E6. Since the gauge
connection is determined by the spin connection, the index theorem gives
the number of such 4d fermions in terms of just the topology of X6. It can
be shown that the index theorem gives

n−
27 − n+

27 = ξ(X6)/2 = h1,1 − h2,1 (12.26)

where ξ(X6) is the so-called Euler characteristic of X6. Therefore we get
this number of chiral multiplets in the 27 of E6. This is very remarkable
because in E6 grand unification the Standard Models families arise from
representaions 27, hence ξ/2 is the number of fermion families in this kind of
compactification. As we discussed above, this is a beautiful geometric origin
for the number of families, as they arise from different zero energy resonances
of a 10d field in the internal space! (see figure 12.2).

This number can be quite large in simple examples. For instance, for the
quintic Calabi-Yau we get a model with 100 families, far more than we would
like. In any event, there exist Calabi-Yaus where this number is small, and
can be even three.

Note that the KK reduction would also lead to other fields, like singlets
of E6 (arising from internal wavefunctions in the 8 of SU(3)). These can
be obtained from the index theorem, although the topological invariants are
much more difficult to compute, so we skip their discussion.
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Figure 12.2: The replication of chiral families has a geometric origin in heterotic
compactifications on Calabi-Yau spaces.

12.3.3 Phenomenological features of these models

Let us start by mentioning that far more realistic models have been con-
structed explicitly. In particular one can achieve smaller gauge groups, closer
to the Standard Model one, by adding Wilson lines breaking E6. All exam-
ples of heterotic compactification show some generic features, which can be
considered as predicitions of this setup (although there exist other ways in
which string theory can lead to something similar to the Standard Model,
with different phenomenological features).
• The string scale must be around the 4d Planck scale. The argument is

as follows. The 10d gravitational and gauge interactions have the structure

∫
d10x

M8
s

g2
s

R10d ;
∫
d10x

M6
s

g2
s

F 2
10d (12.27)

where Ms, gs are the string scale and coupling constant, and R10d, F10d are
the 10d Einstein and Yang-Mills terms. Upon Kaluza-Klein compactification
on X6, these interactions reduce to 4d and pick up a factor of the volume V6

of X6

∫
d4x

M8
s V6

g2
s

R10d ;
∫
d4x

M6
s V6

g2
s

F 2
10d (12.28)

From this we may express the experimental 4d Planck scale and gauge cou-
pling in terms of the microscopic parameters of the string theory configura-
tion

M2
P =

M8
s V6

g2
s

' 1019 GeV ;
1

g2
YM

=
M6

s V6

g2
s

' O(.1) (12.29)
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From these we obtain the relation

Ms = gYM MP ' 1018 GeV (12.30)

This large string scale makes string theory very difficult to test, since it
reduces to an effective field theory at basically any experimentally accessible
energy.
• This large cutoff scale makes the proton very stable, since in principle

baryon number violating operators are suppressed by such large scale.
• Gauge and gravitational interactions have a similar coupling constant

at the string scale, since they are controlled by the vev of the dilaton, which
is universal. This is in reasonable good agreement with the renormalization
group extrapolation of low energy couplings up in energy (assuming no exotic
physics beyond supersymmetry in the intermediate energy region).
• The compactification scale cannot be too small. In order to avoid

unobserved Kk replicas of Standard Model gauge bosons, the typical radius
of the internal space should be much smaller than an inverse TeV. Other
arguments about how the volume moduli modify the gauge couplings of string
theory at one loop suggest that the compactification scale should be quite
large to get weak gauge couplings. Usually one takes the compactification
scale close to the string scale.
• The Yukawa couplings are given by the overlap integral of the internal

wavefunctions of zero modes of the Dirac operator in X6. These are difficult
to compute, in particular for the more realistic models which do not have
standard embedding. So it is difficult to analyze the generic patterns of
fermion masses at the string scale.

Finally, let us mention that this construction is very remarkable. We have
succeeded in relating string theory with something very close to the observed
properties of Elementary Particles. However, the setup has several serious
problems, which are being addressed although no satisfactory solution exists
for the moment
• How to break supersymmetry without generating a large cosmological

constant?
• The models contain plenty of massless or very light fields, in particular

the moduli that parametrize the background configuration. How to get rid
of these?
• The vacuum selection problem. There is no criterion in the theory that

tells us that a background is preferred over any other. Is the string theory
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that corresponds to our world special in any sense? Or is it a matter of
chance or of anthropic issues that we see the world as it is?

Despite these open questions, we emphasize again the great achievement
that we have reviewed today. We have provided a class of theories unifying
gauge and gravitational interactions, and leading to 4d physics similar to the
physics observed in Nature!
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Chapter 13

Orbifold compactification

The basic reference for this lecture is [64]. See also [65].

13.1 Introduction

13.1.1 Motivation

We have seen that compactification on smooth Calabi-Yau spaces leads to
very interesting 4d theories. However, they require quite a lot of geometrical
tools, and the information one can extract is, in a sense, limited (because
of the need to use the supergravity approximation (lowest order in α′ ex-
pansion), and the difficulty in constructing explicit metrics, only topological
quantities can be reliably obtained).

In this lecture we discuss orbifold compactifications. They share many of
the features of compactification on smooth Calabi-Yau spaces (they can be
regarded as compactifications on singular Calabi-Yau’s), but are described
by free 2d worldsheet theories. Hence, the quantization of the string can
be carried out exactly in the α′ expansion, and one can compute quantities
explicitly, and including the stringy corrections. In this sense, orbifolds are
(almost) as simple as toroidal compactifications, but have the advantage of
leading to models with reduced supersymmetry. In this lecture we center on
6d orbifolds preserving 1/8 of the supersymmetries; namely i.e. leading to 4d
N = 2 supersymmetry for type II theories or to 4d N = 1 supersymmetry for
heterotic theories. The description of orbifolds of type I theory (also known
as type IIB orientifolds) is more technical and is not discussed (left for the

261
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P

θP

θP

Figure 13.1: T
2/IZ2 orbifold. The 2-torus is shown as the 2-plane modded by

discrete translations; hence the sides of the unit cell, shown in dashed lines, are
identified. The rotation θ maps each point to its symmetric with respect to the
origin. The action on the 2-torus is obtained by translating the points into the
unit cell. Crosses represent points fixed under the action of θ on T

2.

final projects).

13.1.2 The geometry of orbifolds

A toroidal orbifold (or just orbifold, for short) T6/Γ is the quotient space of
T6 by a finite isometry group Γ, which acts with fixed points.

One simple example, before going to the 6d case, is the 2d orbifold T2/Z2.
Consider a T2 parametrized by two coordinates x1, x2, with periodic identi-
fications xi ' xi + 1, and consider the Z2 action generated by the symmetry
θ : xi → −xi. The orbifold T2/Z2 is T2 with the identification of points
related by the action of θ. This is shown in figure 13.1.

The action θ has fixed points, namely points with coordinates (x1, x2)
equivalent to (−x1,−x2) up to periodicities. Namely obeying

(−x1,−x2) = (x1, x2) + n(1, 0) +m(0, 1) (13.1)

for some n,m ∈ Z. There are four such points, with coordinates (0, 0),
(0, 1/2), (1/2, 0) and (1/2, 1/2). These fixed points of the orbifold action
descend to conical singularities in the quotient space. This can be seen by
studying the local geometry near one of this points, which is a quotient space
R2/Z2, and can be regarded as the space obtained by taking a piece of paper,
cutting half of it, and glueing the two halves of the boundary to obtain a
cone. This is shown in figure 13.2. The idea generalizes to more complicated
higher-dimensional orbifolds.
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glue

R2
a) b) c)

Figure 13.2: The quotient R
2/Z2 has a conical singularity at the origin. This

can be seen by starting with the 2-plane (a), keeping points in the upper half
(b) (points in the lower half are their θ images, and performing the remaining θ
identification in the horizontal boundary (c).

Figure 13.3: A 2d lattice, admitting a Z2 symmetry (reflection with respect to
any point in the lattice. It is easy to cook up other 2d lattices with Z3 or Z4

symmetry.

Notice that to obtain a well-defined quotient, the discrete group must
be a symmetry of the torus. This is most easily checked by regarding the
d-dimensional torus as Rd modded out by translations in a lattice. The
group Γ should be a symmetry of the lattice. Such groups are said to act
crystallographically on the lattice, by analogy with crystallographic groups
in solid state physics. An example of a 2d lattice is shown in figure 13.3.

A very popular example is the 4d orbifold T4/Z2, with the generator θ of
Z2 acting by xi → −xi on the four coordinates of T4. The resulting quotient
space is a singular limit of the Calabi-Yau space K3, with 16 singular points,
locally of the form R4/Z2.

Clearly, one can form orbifold using other discrete groups. For instance,
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2T 2T 2T

Figure 13.4: The T
6/Z3 orbifold.

we will later on center on a 6d orbifold T6/Z3, where T6 is described by
three complex coordinates zi, with the periodic identifications zi ' zi + 1
and zi ' zi + e2πi/3. The generator θ of Z3 is an order three action given by

θ : (z1, z2, z3)→ (e2πi/3z1, e
2πi/3z2, e

−4πi/3z3) (13.2)

We have used e−4πi/3 instead of e2πi/3 for z3 in order to stick to the convention
(useful in later purposes) that the sum of the phases in the rotations add up
to zero. The orbifold action is a simultaneous rotaion by 120 degrees in
all three complex planes, as shown in figure 13.4. The action has 27 fixed
points which are points where the coordinates zi are either of the values 0,
(1+ e2πi/3)/3, (e2πi/3+ e4πi/3)/3. Each point is locally of the form C3/Z3.

Although it is possible to construct orbifolds where Γ is a non-abelian
discrete group, these are technically more involved and not specially illumi-
nating. So in this lecture we center on abelian Γ, and in particular to cases
Γ = ZN, generated by an action θ acting on three complex coordinates by

θ : (z1, z2, z3)→ (e2πiv1z1, e
2πiv2z2, e

2πiv3z3) (13.3)

with (v1, v2, v3) = (a1, a2, a3)/N and ai ∈ Z 1.
Orbifolds are not smooth manifolds, but are similar in many respects

to manifolds. Indeed, removing the singular points they are manifolds. In
fact one can define the holonomy group, and will be related to the amount
of supersymmetry preserved by the compactification, just like for smooth
manifolds. By parallel transporting a vector around closed loops which were
closed in the torus, the holonomies generated are trivial, because the metric

1An additional condition
∑

i ai = even, is required for the quotient space to be spin.
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2T Z3

v

vR

/

Figure 13.5: Holonomy on an orbifold: we start with the vector v and parallel
transport it along a loop (closed up to the θ action); the vector ends up rotated
by an action R which is isomorphic to θ.

on the torus is flat. However, there are loops in the quotient space that
surround the singular points, and are closed in the quotient altough they are
not closed in the ’parent’ torus. The holonomies around those loops are non-
trivial, and generate a holonomy group which is precisely Γ. This is shown
for Γ = Z3 in figure 13.5.

This suggests that 2n-dimensional orbifold preserving some supersymme-
try should be defined by discrete groups Γ whose geometric action is in a
subgroup of SU(n). For 6d orbifolds with Γ = ZN generated by the action
(D.1), the condition is v1 ± v2 ± v3 = 0 mod N , for some choice of signs
(the choice determines which susy (out of the many susys of the torus) is
preserved). We will stick to orbifolds obeying the condition

v1 + v2 + v3 = 0 mod N (13.4)

These orbifolds are simple versions of Calabi-Yau manifolds.
One easily checks that the T4/Z2 and T6/Z3 examples above are super-

symmetry preserving, while T2/Z2 is non-supersymmetric.

13.1.3 Generalities of string theory on orbifolds

One might think that a physical theory defined on an orbifold space could
be singular, due to the bad geometric behaviour at the singular points. In-
terestingly, string theory on orbifold spaces is completely non-singular and
well-behaved. This result follows from a very special set of states in string
theory (twisted states), which arise due to the extended nature of strings
(and would be absent in a theory of point particles).
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2T Z3/

Figure 13.6: Open string in a twisted sector in a Z3 orbifold.

To define string theory on an orbifold, we should regard the orbifold as a
quotient of the torus by a symmetry. Therefore, string theory on the orbifold
can be constructed by starting with string theory on the ’parent’ torus, and
imposing invariance under the discrete symmetry group, i.e. keeping only
states which are invariant under the action of Γ (on the Hilbert space of
string states). This sector is inherited from the spectrum of states in the
toroidal compactification, and is called untwisted. Clearly it is described by
a free 2d theory, because the metric is locally flat.

However, this is not the complete story. There exist additional closed
string sectors arising from strings which are closed in the orbifold, but do
not correspond to closed string in the ’parent’ torus. They correspond to
strings whose 2d fields have boundary conditions periodic, up to the action
of some element g ∈ Γ, for instance

X(σ + `, t) = (gX)(σ, t) (13.5)

this is shown in figure 13.6.
These sectors/states are known as twisted sectors/states. Notice that,

these sectors are localized in the neighbourhood of fixed points, so in a sense
are the sectors that carry the information that the orbifold space is not a
torus, but has some curvature concentrated at those points. Note however,
that the local 2d dynamics on the string is still the same as in the torus
(since the inside of these strings still propagates in a flat metric), and all
the non-triviality of the geometry enters simply in boundary conditions like
(13.5). This remarkable feature allows to quantize the 2d theory exactly in
α′, although it describes propagation of strings in a non-trivial geometry.
Note finally that twisted states exist because strings are extended objects,
they would be absent in a theory of point particles.
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Figure 13.7: Modular invariance of string theory on orbifolds requires the exis-
tence of twisted sectors.

The complete spectrum of the string theory on the orbifold is given by
the untwisted sector (states in the torus, projected onto Γ-invariant states),
and twisted sectors (one per element of Γ and per fixed point of the element).

Modular invariance
We would like to make a short and qualitative comment (although the

argument is also quantitatively correct) showing that twisted sectors are
absolutely crucial in order to have a consistent modular invariant theory,
i.e. a consistent worldsheet geometry. Hence, twisted states are crucial
in maintaining the good properties of string theory (finiteness, unitarity,
anomaly cancellation, etc), and making it smooth even in the presence of the
singular geometry. In a sense, we may say that α′ stringy effects (the very
existence of twisted states) corrects the singular behaviour of the geometry
and leads to smooth physics.

Let us describe the 1-loop partition function for the theory on T6 as a
torus, parametrized by σ, t, as in figure 13.7a. In order to construct the
theory on T6/ZN, let us insert a projector operator

P =
1

N
(1 + θ + . . . θN−1) (13.6)

in the t direction, which forces that only ZN-invariant states give a non-zero
contribution to the partition function. See fig 13.7b. Since only ZN-invariant
states propagate, this describes the partition function for the untwisted sec-
tor.

Now we can see that this contribution is not modular invariant. Let us
rewrite it as a sum of contributions with insertions of θk in the t direction,
and perform a modular transformation τ → −1/τ , which exchanges σ and t.
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Figure 13.8: Modular invariant partition function for an orbifold.

We obtain a sum of amplitudes with insertions of θk in the sigma direction,
see figure 13.7c. They correspond to closed strings which are periodic in
σ, up to the action of θk; that is, they are twisted strings. Clearly, the
complete modular invariant amplitude is as in figure 13.8, a sum over the
untwisted and twisted sectors, with projector insertions in t to ensure that
only ZN-invariant states propagate.

13.2 Type II string theory on T6/Z3

Let us consider the above described T6/Z3 orbifold, where the underlying
T6 background is described by three complex coordinates zi ' zi + Ri '
zi + Rie

2πi/3, and zero NSNS B-field. Recall that the generator θ of Z3 acts
by θ : zi → e2πivi with v = (1, 1,−2)/3.

We describe the 2d worldsheet theory (in the light-cone gauge) by the
following fields: Along the two real non-compact coordinates, we have 2d
bosons X2, X3 and 2d fermions ψ2, ψ3; to describe the three complex di-
mensions in T6, we have 2d bosons Z1, Z2, Z3 (and their conjugates Z ı) and
2d fermions Ψ1, Ψ2, Ψ3 (and their conjugates Ψı). The action of θ on these
2d fields is

Zi → e2πivi Zi ; Ψi → e2πivi Ψi (13.7)

Let us consider the untwisted sector. The spectrum is obtained by simply
taking the spectrum of the theory on T6 and keeping states invariant under
the Z3 action. In the theory on T6, different sectors are labelled by the mo-
mentum and winding along the internal dimensions. For the corresponding
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2d fields we have the following expansion

Zi(σ, t) = zio +
ki

Rip+
t +

2πRi

`
wi σ +

= i

√
α′

2

∑

n6=0

[
αin
n
e−2πi n(σ+t)/` +

α̃in
n
e2πi n(σ−t)/`

]
(13.8)

where all the coefficients in the mode expansion (z0, k, w, α’s, α̃’s) are

complex, and the expansion for Z i involve the complex conjugates.

The action of θ on the coefficient of the mode expansion are

zi0 → e2πivizi0 ; ki → e2πiviki ; wi → e2πiviwi

αin → e2πiviαni ; α̃in → e2πivi α̃in (13.9)

ans similarly for the 2d fermionic coordinates.

Untwisted states in the orbifold are obtained by taking suitable Z3 invari-
ant linear combinations. For sectors of non-zero momentum and/or winding,
such states are roughly of the form

O|k, w〉+ (Oθ)|θk, θw〉+ (Oθ2)|θ2k, θ2w〉 (13.10)

where O is a generic sausage of operators, and superscript θk implies taking
its image under θk. The zero momentum and winding sectoris not mixed
with other sector by θ, so one is constrained to use only operators O which
are directly Z3 invariant. The mass formula for all these states is given by
the same expression as for T6.

We will be interested in massless states. As usual, they arise from the
sector of zero momentum and winding, so the spectrum is obtained by con-
structing the left and right vacua, and applying left and right moving oper-
ators whose phase transformation under θ cancel each other.

Consider the massless states in the left moving NS sector. They are

State SO(8) weight Z3 phase
ψ2
−1/2|0〉, ψ3

−1/2|0〉 (0, 0, 0,±) 1

Ψi
−1/2|0〉 (+, 0, 0, 0) e2πi/3

Ψi
−1/2|0〉 (−, 0, 0, 0) e−2πi/3
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The phase picked up by the different states 2 can be also described as
e2πi r·v, where r is the above SO(8) weight and v = (v1, v2, v3, 0).

For left handed states in the R sector (with GSO projection selecting the
8C as vacuum), we have

SO(8) weight Z3 phase
1
2
(+,+,+,−) 1

1
2
(−,−,−,+) 1

1
2
(−,+,+,+) e2πi/3

1
2
(+,−,−,−) e−2πi/3

Performing the same computation for the right movers (with opposite
GSO on the R sector, since we are working on type IIA), the massless un-
twisted states are

2This arises naturally if one bosonizes the internal 2d fermions into 2d bosons φi com-
pactified on a lattice of SO(8) weights. The phase rotation of the 2d fermions becomes a
translation of the corresponding bosons, which carry a lattice momentum r.
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NSNS
Left ⊗ Right e2πi r·v e2πi r̃·v 4d field

(0, 0, 0,±)⊗ (0, 0, 0,±) 1 1 Gµν , Bµν, φ
(+, 0, 0, 0)⊗ (−, 0, 0, 0) e2πi/3 e−2πi/3 Gij, Bij =

(−, 0, 0, 0)⊗ (+, 0, 0, 0) e−2πi/3 e2πi/3 9 cmplx scalars
NS-R

Left ⊗ Right e2πi r·v e2πi r̃·v 4d field
(0, 0, 0,±)⊗ 1

2
(+,+,+,+) 1 1 ψµα, ψα

(0, 0, 0,±)⊗ 1
2
(−,−,−,−) 1 1 4d gravitino and Weyl fermion

(+, 0, 0, 0)⊗ 1
2
(+,−,−,+) e2πi/3 e−2πi/3 9 spin 1/2 ...

(−, 0, 0, 0)⊗ 1
2
(−,+,+,−) e−2πi/3 e2πi/3 ...Weyl fermions

R-NS
Left ⊗ Right e2πi r·v e2πi r̃·v 4d field

1
2
(+,+,+,−)⊗ (0, 0, 0,±) 1 1 ψµα, ψα

1
2
(−,−,−,+)⊗ (0, 0, 0,±) 1 1 4d gravitino and Weyl fermion

1
2
(−,+,+,+)⊗ (−, 0, 0, 0) e2πi/3 e−2πi/3 9 spin 1/2

1
2
(+,−,−,−)⊗ (+, 0, 0, 0) e−2πi/3 e2πi/3 Weyl fermions

RR
Left ⊗ Right e2πi r·v e2πi r̃·v 4d field

1
2
(+,+,+,−)⊗ (

+
,+,+,+) 1 1 Gauge boson

1
2
(+,+,+,−)⊗ (

− ,−,−,−) 1 1 Aµ and
1
2
(−,−,−,+)⊗ (

+
,+,+,+) 1 1 cmplx scalar

1
2
(−,−,−,+)⊗ (

− ,−,−,−) 1 1 C123, C123
1
2
(−,+,+,+)⊗ 1

2
(+,−,−,+) e2πi/3 e−2πi/3 9 Gauge bosons

1
2
(+,−,−,−)⊗ 1

2
(−,+,+,−) e−2πi/3 e2πi/3 9 Cijµ

Notice that there are two 4d gravitinos, signalling N = 2 4d supersymme-
try. Recalling the structure of the corresponding supermultiplet, the above
fields are easily seen to gather into the supergravity multiplet (Gµν, the two
ψµα and Aµ), one hypermultiplet (the two ψα, φ and the scalar dual to Bµν),
and 9 vector multiplets (scalars Gij, Bij, Weyl fermions in RNS and NSR,
gauge bosons Cijµ).

Let us now consider the twisted sector. As mentioned above, there is one
such sector per non-trivial element in Z3 and per fixed point. The twisted
states at each fixed point are similar, so we simply obtain 27 replicas of the
content in one of them. Finally one can check that states in the θ2 twisted
sector correspond to the antiparticles of states in the θ twisted sector (it is
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easy to see graphically that states in oppositely twisted sectors can annihilate
into the vacuum). So we just compute the latter.

In the θ twisted sector, we impose boundary conditions of the kind

Zi(σ + `, t) = e2πivi Zi(σ, t) + 2πRi n
i (13.11)

(where ni is a vector in the two-torus lattice Λi). That is, the string is closed
up to the rotational and translational identification in the toroidal orbifold.
Similarly for the 2d fermions. Using the general mode expansion

Zi(σ, t) = zi0 +
pi

p+
t +

2πRi

`
ni σ +

+
∑

νi

αiνi

νi
e−2πi νi(σ+t)/` +

∑

ν̃i

α̃iν̃i

ν̃i
e2πi ν̃i(σ−t)/` (13.12)

(and similarly for 2d fermions) the boundary conditions impose that the zero
mode sits at a fixed point

zi0 = e2πivizi0 mod2πRi Λi (13.13)

that the momentum pi and winding wi vanish, and that the moddings of
oscillators are shifted by ±vi. Indeed, we have the oscillators

αin−vi
; α̃in+vi

; αin+vi
; α̃in−vi

Ψi
n+ρ−vi

; Ψ̃i
n+ρ+vi

; Ψi
n+ρ−vi

; Ψ̃i
n+ρ+vi

(13.14)

with ρ = 1/2, 0 for NS and R fermions.
The fractional modding of the oscillator modifies the vacuum energies.

In the notes on type II superstring we used the familiar regularization by an
exponential, and derived the relation

1

2

∞∑

n=0

(n+ α) = − 1

24
+

1

4
α(1− α) (13.15)

for α ≥ 0. Vacuum energies for orbifold follow from application of this
formula.

We should now construct the Hilbert space of twisted states and impose
the Z3 projection. Centering on left movers, the mass formula is given by

M 2
L =

2

α′ (NB +NF + E0) (13.16)
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with E0 = −1/6 in the NS sector and E0 = 0 in the R sector.

In the NS sector, we define the vacuum as annihilated by all positive mod-
ding oscillators, and build the Hilbert space by applying negatively modded
oscillators to it (and respecting the GSO projection). In the R sector, there
are no fermion zero modes in the internal directions, just in the two non-
compact ones. The vacuum is two-fold degenerate, and the GSO projection
selects one of them as the only massless state. At the massless level, the
states are

Sector State Mass r + v e2πi(r+v)·r

NS Ψ3
−1/6|0〉 m2 = 0 (1

3
, 1

3
, 1

3
, 0) 1

R A+
1 |0〉 m2 = 0 (−1

6
,−1

6
,−1

6
,−1

2
) 1

where we have labelled the states by a vector r + v, which is useful in
determining the Z3 phase picked up by the state 3.

Working similarly with the right moving sector (with opposite GSO in
the R sector, since we are in IIA), we can construct the massless physical
states

Sector r + v ⊗ r̃ − v SO(2)
NSNS (1

3
, 1

3
, 1

3
, 0)⊗ (−1

3
,−1

3
,−1

3
, 1

3
, 0) 0

NSR (1
3
, 1

3
, 1

3
, 0)⊗ (1

6
, 1

6
, 1

6
,−1

2
) −1/2

RNS (−1
6
,−1

6
,−1

6
,−1

2
)⊗ (−1

3
,−1

3
,−1

3
, 0) −1/2

RR (−1
6
,−1

6
,−1

6
,−1

2
)⊗ (1

6
, 1

6
, 1

6
,−1

2
) −1

It is important to recall that right movers have an opposite shift in the
modding of oscillators (hence we label the states are r̃ − v.

Together with states in the θ2 twisted sector (antiparticles), we obtain one
4d N = 2 vector multiplet per fixed point. They give rise to independent
U(1) gauge symmetries (no non-abelian enhancement).

The total spectrum of type IIA theory on the T6/Z3 orbifold is: the 4d
N = 2 gravity multiplet, one hypermultiplet and 9+27 = 36 (abelian) vector
multiplets.

3In the bosonized formulation, twisted states have momentum in a shifted lattice, so
the notation r + v is more natural.
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Figure 13.9: The singular orbifold T
6/Z3 is a particular limit of a smooth Calabi-

Yau in the limit in which some P2 4-cycles go to zero size. The smooth Calabi-Yau
is called the blowup of the orbifold.

13.2.1 Geometric interpretation

This spectrum is very much like the spectrum on a compactification on a
smooth Calabi-Yau with Hodge numbers (h1,1, h2,1) = (36, 0).

Indeed, mathematicians know that the singular space T6/Z3 can be re-
garded as a particular limit of a smooth Calabi-Yau, in the limit in which 27
4-cycles collaps to zero size (This is a singular limit in the geometric sense,
but is completely smooth in string theory, due to twisted states, namely to
α′ effects).

In other words, the singular space T6/Z3 can be continuously smoothed
to a non-singular space, preserving the Calabi-Yau property. This is done by
the procedure known as blowing-up the singular point; roughly, this amounts
to removing the 27 singular points of the orbifold and replacing them by a
suitable 4-cycle, which for the singularities at hand must be a P2, the two
(complex) dimensional projective space 4. see figure 13.9. The resulting space
is Kahler and has vanishing first Chern class, so it admits a SU(3) holonomy
metric. The smooth spaces are characterized by moduli which control the
size of the P2’s, so the singular orbifold is geometrically recovered at the
point of moduli space corresponding to zero sizes. Of course this limit is
beyond the reach of the supergravity approximation, which is not valid for
so small lentgh scales. Happily, the singular limit is nice enough so that we
can quantize string theory exactly in that regime.

The homology of the resulting smooth space can be computed as follows:

4This is the set of points (z1, z2, z3) ∈ C
3 with the identification (z1, z2, z3) '

λ(z1, z2, z3) with λIC − {0}.
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Before blowing up the homology was given by the homology of cycles in T6

invariant under the Z3 (what mathematicians call the equivariant homology)
which leads to Hodge numbers (h1,1, h2,1) = (9, 0). To these we must add
the homology of cycles associated to the P2’s, which appear after blowup.
Each P2 has one 2-cycle and no 3-cycle inside it, so their contribution to
Hodge numbers is (27, 0). Therefore we see that the homology of the smooth
blowup T̃6/Z3 is (36, 0).

Thus, string theory is clever enough to ’know’ that the singular orbifold
belongs to a continuous family of smooth spaces with Hodge numbers (36, 0),
and thus gives the right spectrum in the orbifold space.

The above geometric interpretation allows a geometric interpretation for
the twisted sector fields in string theory. Indeed, denoting Σ the 2-cycle
inside the collapsed P2 at each singularity, we interpret: the two real scalars
correspond to the geometrical size of P2 (i.e. a metric modulus) and to

∫
ΣB;

the gauge boson corresponds to
∫
ΣC3.

It is important to emphasize that the philosophy of the geometric inter-
pretation of the orbifold spaces also exists for other orbifolds (although the
cycles arising upon blowing up are in general more involved). It is in this
precise sense that orbifolds are very similar to Calabi-Yau spaces (in fact,
they are CY’s at a particular point in moduli space) but far more tractable.

13.3 Heterotic string compactification on T6/Z3

13.3.1 Gauge bundles for orbifolds

Compactification of heterotic string on orbifolds is very similar to type II.
The main difference is that noew we have the left moving internal bosons
XI , and we have the freedom of choosing a non-trivial action of Γ on them.
For Γ = ZN a simple choice is to require that the generator θ acts as a shift
5 XI → XI + V I , where NV is a vector in the internal 16d lattice Λint..

Using the relation of T6/Z3 with the singular limit of a smooth Calabi-
Yau threefold, the above embedding of ZN in the gauge degrees of freedom
corresponds, from the geometric viewpoint, to using a non-trivial gauge bun-

5One may thing that it is more natural to use a rotation of the X I instead of the
above shift. In fact, both options are related by conjugation of the rotation to the Cartan
subalgebra. More manifestly, the shift in the bosonic coordinates is equivalent to a rotation
of the 32 internal fermions in the fermionic description of the heterotic.
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dle in the compactification. In fact, just as for Calabi-Yau compactification,
it is not consistent to choose V = 0. Indeed, modular invariance imposes the
constraint

N(V 2 − v2) = even (13.17)

(this arises from requiring invariance under τ → τ + N , which imposes a
constraint on the contributions from the unpaired right moving fermions and
left moving internal bosons).

A natural choice of gauge shift, although there exist other consistent ones,
is to take V to be a copy of v. For instance, we center on the Z3 orbifold of
the E8 × E8 heterotic string, so we take

V = (
1

3
,
1

3
,−2

3
, 0, 0, 0, 0, 0)× (0, 0, 0, 0, 0, 0, 0, 0) (13.18)

Clearly this is the equivalent of the standard embedding which we studied
for smooth Calabi-Yau threefolds.

13.3.2 Computation of the spectrum

The computation of the spectrum is easy as for the type II theories. In the
untwisted sector we need to take the states of the theroy on T6 and keep
those invariant under Z3. In heterotic theory the only additional ingredient
is to realize that states with internal momentum P I pick up a phase e2πi P ·V

under the action of θ. At the massless level, we have the following massless
right and left moving states

Right
r e2πi r·v r e2πi r·v

NS (0, 0, 0,±) 1 R 1
2
(+,+,+,−) 1

(+, 0, 0, 0) e2πi/3 1
2
(−,−,−,+) 1

(−, 0, 0, 0) e−2πi/3 1
2
(−,+,+,+) e2πi/3

1
2
(+,−,−,−) e−2πi/3

Left
State θ phase State |P 〉 e2πi P ·V

α2
−1|0〉 1 E ′

8 1
α3
−1|0〉 1 E6 × SU(3) 1
αi−1|0〉 e2πi/3 (3, 27) e2πi/3

αi−1|0〉 e−2πi/3 (3), 27) e−2πi/3

αI−1|0〉
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The decomposition of the E8×E8 roots with respect to the E6×SU(3)×E8

is exactly as in the lecture on Calabi-Yau compactification, from which the
phases e2πi P ·V are easily obtained.

Glueing the left and right moving states in a Z3 invariant fashion we get

Sector State 4d Field

NS (0, 0, 0,±)⊗ α2,3
−1|0〉 Gµν, Bµν , φ

(0, 0, 0,±)⊗ [E6 × SU(3)× E ′
8 ] Gauge bosons

(+, 0, 0, 0)⊗ [(3, 27)] Complex scalars
(−, 0, 0, 0)⊗ [(3, 27)] Complex scalars

R ±1
2
(+,+,+,−)⊗ α2,3

−1|0〉 4d gravitino, Weyl spinor
±1

2
(+,+,+,−)⊗ [E6 × SU(3)× E ′

8 ] Gauginos
1
2
(−,+,+,+)⊗ [(3, 27)] Weyl spinors

1
2
(+,−,−,−)⊗ [(3, 27)] Weyl spinors

In total, we get the 4d N = 1 supergravity multiplet, vector multiplet
with gauge group E6×SU(3)×E ′

8, one neutral chiral multiplet, and 3 chiral
multiplets in the (3, 27). Note that the spinors in the conjugate representa-
tion have also opposite chirality, so they are their antiparticles.

In the θ twisted sector, the only new ingredient is that the 16d internal
momenta P are shifted by V . This follows from the boundary conditions for
the internal coordinates in a twisted sector

XI
L(σ + t + `) = XI(σ + t) + P I + V I (13.19)

(with P I is a winding/momentum in Λint.. Upon imposing it on the corre-
sponding mode expansion

XL(σ + t) =
P I
θ

2p+
+ i

√
α′

2

∑

ν

αIn e
−2πi n(σ+t)/` (13.20)

we obtain the promised relation P I
θ = P I+V I , and the oscillators are integer-

modded.
The right moving sector behaves as in type II. The left-moving spacetime

mass is

M 2
L =

2

α′ (NB +
(P + V )2

2
+ E0) (13.21)

with E0 = −1 + 3× 1
2

1
3

2
3

= −2
3
.

We have the right moving massless states
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Sector r + v e2πi(r+v)·r

NS (1
3
, 1

3
, 1

3
, 0) 1

R (−1
6
,−1

6
,−1

6
,−1

2
) 1

The massless left moving massless states are

Osc. P P + V
NB = 0 (−,−, 0, 0, 0, 0, 0, 0) (− 2

3
,−2

3
,−2

3
, 0, 0, 0, 0, 0)

(0, 0,+,±, 0, 0, 0, 0) ( 1
3
, 1

3
, 1

3
,±, 0, 0, 0, 0)

1
2
(−,−,+,±,±,±,±,±) (− 1

6
,−1

6
,−1

6
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
)

NB = 1/3 (0, 0, 0, 0, 0, 0, 0, 0) ( 1
3
, 1

3
,−2

3
, 0, 0, 0, 0, 0)

(−, 0,+, 0, 0, 0, 0, 0) (− 2
3
, 1

3
, 1

3
, 0, 0, 0, 0, 0)

where we have ignored the momentum in the second E8 piece of Λint. since
it is zero for all these states.

The NB = 0 states transform in the representation (1, 27) under SU(3)×
E6. All of them pick up a phase e2πi(P+V )·V = 1. The states with NB = 1/3
transform in the representation (3, 1) under SU(3)× E6. There are three of

them correspoding to the oscillators α1
−1/3, α

2
−1/3 and α3

−1/3. They also pick
up a total phase 1 under θ, with the oscillator phase compensating the phase
from the internal momentum.

Glueuing the left and right moving states is now straightforward. The
result is one chiral multiplet in the (1, 27) and three chiral multiplets in the
(3, 1) per fixed point. Note that the θ2 sector contains the antiparticles of
these.

In total, the massless spectrum is given by the 4d N = 1 supergravity
multiplet, E6 × SU(3) × E ′

8 vector multiplets, the dilaton chiral multiplet,
and the following charged chiral multiplets

3(3, 27; 1) + 27(1, 27; 1) + 27× 3 (3, 1; 1) (13.22)

This is remarkable, since it corresponds to an E6 grand unificiation theory
with 36 fermion families. Although not realistic, it is remarkable that we can
obtain an explicit construction of string theory models with features similar
to those of the Standard Model.

There an important point we would like to mention. Notice that SU(3)
has potential chiral anomalies (E6 is always automatically non-anomalous).
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The anomalies however vanish because the spectrum contains as many chiral
multiplets in the 3 as in the 3. Note that for this to be true it is essential that
twisted sectors are included in the theory! Hence this is a simple example
where we see that string theory requires the presence of twisted sectors for
consistency. Incidentally, we point out that the story of anomaly cancellation
in 4d is even richer in models with U(1) factors in the gauge group, since
mixed anomalies involve a 4d version of the Green-Schwarz mechanism. we
leave this discussion for the interested reader.

Notice that the above spectrum is roughly (looking just at the number
of E6 representations) that corresponding to compactification on a smooth
Calabi-Yau with Hodge numbers (36, 0) and gauge bundle specified by the
standard embedding. This agrees with the geometric interpretation of T6/Z3

we described in type II. It is interesting to notice that in this case the fields
in twisted sectors that correspond to resolving the singularity are the states
with NB = 1/3. They not only blow up the singularities but also deform the
gauge bundle (and break the gauge factor SU(3)). On the other hand, the
states with NB = 0 correspond to deformations of the gauge bundle (break
the gauge group) preserving the singular geometry (these states do not carry
any index of the internal space). See [66] for a nice discussion of moduli
space of local versions of this orbifold.

13.3.3 Final comments

In conclusion, we see how easily and systematically one can construct com-
pactifications on orbifolds. These have the advantage that they allow explicit
string theory models, exact in α′, while keeping the rich and interesting dy-
namics of reduced supersymmetry.

These constructions have many advantages:

• The low energy effective action is computable including α′ corrections,
which include the effects of massive string states. This kind of corrections
can be important, for instance, in the computation of threshold effects to the
unification of gauge coupling constants.

• The classification and construction of heterotic models is very system-
atic (and easy to program on a computer), hence allows for searching phe-
nomenologically interesting models.

• There are many generalizations of the basic construction we have de-
scribed: inclusion of Wilson lines, other orbifold groups. A less intuitive
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extension is that of asymmetric orbifolds [67], where one considers mod-
ding the left and right movers with different orbifold action, being careful
to ensure modular invariance. These have the interesting feature that many
moduli are frozen at fixed values (typically corresponding to self-dual points
with respect to the T-duality group). They are however too technical to be
discussed here.

The lesson to take home is that orbifolds allow to construct compactifica-
tions of full-fledged string theory (and not just supergravity) with interesting
features, even close to those of Particle Physics.



Chapter 14

Non-perturbative states in
string theory

Some useful references for this lecture are [86, 104, 70].

14.1 Motivation

We have studied the main properties of string theory within the framework of
perturbation theory. We have uncovered very interesting formal properties of
the theory, and potential applications for model building of unified theories
of gauge and gravitational interactions.

In the following lectures we start reviewing several results of the re-
cent years on the structure of string theory beyond perturbation theory.
This is important i) to obtain information perhaps eventually leading to
a non-perturbative formulation of string theory, and ii) to determine non-
perturbative effects which may be important even at weak coupling.

In particular in this lecture we describe certain important non-perturbative
states in string theory (the so-called p-branes), their properties, and their im-
plications for string theory at the non-perturbative level (for instance, duality
properties, etc).

14.2 p-branes in string theory

Non-perturbative states are states in the theory which do not have a per-
turbative description, i.e. they do not correspond to oscillation states of the

281
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string. Given that there is no definition of string theory beyond perturbation
theory, the main question is how to look for non-perturbative states.

The main tool to do so is to use the low energy effective theory to con-
struct them. The form of the supergravity effective actions, for large enough
number of supersymmetries, is fixed by supersymmetry up to some order in
the number of derivatives. Therefore it is valid even at finite coupling, if
the energy densities involved are not too large (low energies). We can thus
construct field configurations solving the supergravity equations of motion,
with the structure of a localized core and asymptoting to flat space. These
solutions describe classical excitations over the vacuum of the theory, which
is given by flat space. It is useful to regard them as the field background
created by a source sitting at the core of the solution. Unfortunately, super-
gravity is just an effective theory, and is clearly not enough to provide us
with a microscopic description of these objects.

First there is the approximation of taking the lowest order in alpha′.
Solutions will be reliable when the curvature lengths are larger than the
string length. Second, there is the approximation of describing the solutions
at leading order in gs. However, some reliable information can be extracted
from supergravity for some particular classes of solutions. This is the topic
of this lecture.

In particular we will center on solutions which preserve some supersym-
metry (and correspond to the so-called BPS states), and on properties of
the solutions which are protected by supersymmetry. Before entering this
discussion, let us describe the different kinds of objects we will deal with.

Detour on q-form gauge fields and charges

To describe them in a unified way, it will be useful to introduce, for each
(p + 1)-form field Cp+1 in the theory, with field strength (p + 2)-form Hp+2,
the corresponding dual (7 − p)-form C7−p with field strength (8 − p)-form
H8−p, defined by H8−p = ∗Hp+2.

An object with p spatial dimensions sweeps out a (p + 1)-dimensional
subspace Wp+1 of spacetime as it evolves in time. Such object is said to be
electrically charged under Cp+1 if the theory contains a couplingQ

∫
Wp+1

Cp+1.
The terms containing Cp+1 in the action are

∫

10d
Hp+1 ∧ ∗Hp+1 +Q

∫

Wp+1

Cp+1 =
∫

10d
Cp+1 ∧ d ∗Hp+1 +Q

∫

10d
Cp+1 ∧ δ(Wp+1)(14.1)

where δ(Wp+1) is the Poincare dual to the cycle Wp+1, bump (9 − p)-form
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with support on Wp+1. The equation of motion reads

dH8−p = Qδ(Wp+1) (14.2)

This implies that the flux of H8−p around a (8 − p)-sphere surrounding the
object in the transverse (9− p)-dimensional space is

∫

S8−p
H8−p =

∫

B9−p
dH8−p = Q

∫

B8−p
δ(Wp+1) = Q (14.3)

where B9−p is the interior of the (8 − p)-dimensional sphere. Similarly, an
object with (7− p)-dimensional volume W7−p is charged magentically under
Cp+1 if it satisfies

∫

Sp+2
Hp+2 = Q′ (14.4)

Notice that this implies that the object couples electically to the dual poten-
tical C7−p.

14.2.1 p-brane solutions

The main examples of elementary 1 are the D-branes, the NS fivebranes, and
the fundamental strings.

The Dp-brane
This solution exists in type IIB theory for p odd, in type IIA theory for

p even, and in type I theory for p = 1, 5; this kind of solution does not exist
for heterotic theories.

The solutions (see section 14.8 in [71]) have the form (for p ≤ 6, so as to
have flat space asymptotics)

ds2 = Z(r)−1/2ηµνdx
µdxν + Z(r)1/2dxmdxm

e2φ = Z(r)(3−p)/2

Z(r) = 1 +
ρ7−p

r7−p ; ρ7−p = gsQα
′(7−p)/2

H8−p =
Q

r(8−p)d(vol)S8−p (14.5)

where µ = 0, . . . , p, m = p + 1, . . . , 9, r =
∑
m |xm|2, and d(vol)S8−p is the

volume form of the (8− p)-sphere of unit volume.

1in the sense that they carry charge under just one p-form field
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Mp+1

9−pR

9−pRa) b)

Figure 14.1: Two pictures of the p-brane as a lump of energy. The second picture
shows only the transverse directions, where the p-brane looks like point-like.

The above solution has a core given by a flat (p+1) dimensional plane at
r = 0 and asymptotes to flat 10d space. See figure 14.1. The core describes an
object electrically charged under the RR field Cp+1, with charge proportional
to Q. This is very remarkable, since there is no perturbative state in string
theory charged under RR fields.

It is possible to compute the tension and charge using standard ADM
techniques in gravitational systems, and get the result

T 2
p =

π

g2
sκ

2
10

(4π2α′)3−p ; µ2
p =

π

κ2
10

(4π2α′)3−p (14.6)

Notice that the tension is inversely proportional to the string coupling, so
the state is non-perturbative, and is often referred to as soliton.

The solution is invariant under half of the supersymmetries of the vacuum
of the theory. It described a so-called BPS state. This implies the particular
relation between the tension and charge of the object, as we discuss below.

The fluctuations of the supergravity fields around the soliton background
contain a sector of fluctuations which are localized on the (p+1)-dimensional
volume of the soliton core. Since the soliton leaves 16 unbroken supersym-
metries, these fluctuations must arrange into supermultiplets of the corre-
sponding (p+ 1)-dimensional supersymmetry. In fact, for Dp-branes in type
II theory, they form a U(1) vector multiplet of 16 susys in (p+1)-dimensions
(e.g. for a type IIB D3-brane, a vector multiplet of 4d N = 4 supersym-
metry); this contains a U(1) gauge boson, (9 − p) real scalars, and a set of
fermion superpartners. On the other hand, for type I D-branes, the spectrum
of fluctuations is more complidated and will be discussed in later lectures,
using a simpler microscopic description.
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These fluctuations localized on the soliton volume can be thought of as
field living on the brane world-volume. Moreover, their dynamics is related to
the dynamics of the soliton. For instance, the scalars on the brane volume are
goldstone bosons of translational symmetries of the vacuum, broken by the
presence of the soliton. As such, the vevs of these (9−p) scalars parametrize
the location of the brane in transverse (9 − p)-dimensional space. A fluctu-
ation leadint to non-constant profile for these scalars describes a fluctuation
where the brane volume is no longer flat. The low energy effective action
of these (p + 1)-dimensional fields (which is basically the Maxwell action
and kinetic terms for the scalars and fermions) is an effective action for the
dynamics of the brane.

There exist also multi-soliton solutions, where the field configuration has
several cores, localized at different positions xma in the transverse space. The
interactions between the different soliton cores cancel as a consequence of
the BPS conditions, namely the gravitational attraction cancels agains their
’Coulomb’ repulsion due to their (equal sign) RR charges. Thus these static
configurations are solutions of supergravity. They are described by a bakc-
ground (14.5), with

Z(r) = 1 +
∑

a

ρ7−p

|xm − xma |7−p
(14.7)

and a more complicated form for H8−p, with the property that integrated
over any (8− p) sphere surrounding xm = xma gives Q.

The analysis of certain properties (e.g. the analysis of fluctuations around
the soliton background) of these multisoliton configurations is reliable only
if the inter-soliton distances are larger than the string length.

We would like to conclude by emphasizing that at weak coupling there
exists a microscopic description for Dp-branes, which will be the topic of
next lecture. The above facts and many other will be derived from this
microscopic description.

The NS5-brane
This 5-brane solution exists for type IIA and type IIB theories, and also

for heterotic theories; type I theory does not contain such states.
For type II theories, the solution (see page 182 in [71]) is of the form

ds2 = ηµνdx
µdxν + Z(r)dxmdxm
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e2φ = Z(r) = g2
s +

Q

2π2r2

HNSNS
3 = ∗6789dφ (14.8)

For heterotic theories, it has a similar expression, since the background does
not excite the 10d gauge fields.

The solution describes a (5 + 1)-dimensional core, namely a 5-brane. It
is electrically charged under the NSNS 6-form dual to the NSNS 2-form.
Namely it is magnetically charged under the latter. The tension and charge
of the object can be computed to be

TNS5 =
2π2α′

g2
sκ

2
10

Q ; QNS5 =
2π2α′

κ2
10

Q (14.9)

The solution is invariant under half of the supersymmetries of the vacuum,
and so describes a BPS state. This implies the above manifest relation be-
tween the tension and charge of the object.

The spectrum of fluctuations localized on the brane volume fill out super-
multiplets under the unbroken supersymmetries. For the type IIA NS5-brane,
they form a 6d N = (2, 0) tensor multiplet (containing a 2-form with 6d self-
dual field strength, 5 real scalars, and 2 Weyl fermions); for the type IIB
NS5-brane, they form a 6d N = (1, 1) vector multiplet (containing a gauge
boson, 4 real scalars and 2 Weyl fermions); for the E8 × E8 heterotic, they
form a 6d N = 1 tensor multiplet (containing a self-dual 2-form, 1 scalar
and 1 Weyl fermion) and hypermultiplet (containing 4 scalars and one Weyl
fermion); for the SO(32) heterotic, one 6d N = 1 vector multiplet (with
one gauge boson, and one Weyl fermion), one neutral hypermultiplet and
29 hypermultiplets charged under the 10d gauge group (this will more easily
determined in later lectures).

Other properties of the solution are analogous to those of D-brane. For
instance, the existence of multi soliton solutions, or the interpretation of
fluctuations as 6d fields describing the dynamics of the brane. An important
difference, however, is that there is no known microscopic description for
NS5-branes at weak coupling. One intuitive explanation of this is that the
effective couplig constant geff = eφ grows at the core of the soliton, no matter
how small the asymptotic coupling gs is.

Fundamental string
In addition to the above objects, there exist supergravity solutions pre-

serving half of the supersymmetries, and describing 1-branes electrically
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M2M2

R8
R8

a) b)

F1

Figure 14.2: An infinitely extended fundamental string is a source for supergravity
fields. The field configuration it excites is a solution of the supergravity equations
of motion, which corresponds to the 1-brane like configuration. The two are simply
different descriptions of the same object.

charged under the NSNS 2-form, and with tension TF1 = (2α′)−1. This
object is not non-perturbative, and has the same properties as a fundamen-
tal string with infinitely extended flat worldsheet. The natural proposal is
that the supergravity solution is providing the field configuration excited by
a large macroscopic fundamental string, so does not correspond to a new
object. In this sense, the fundamental string is providing a microscopic de-
scription of the object we found in the ‘rough’ approximation of supergravity.
See fig 14.2.

This object exists for type IIA, type IIB and heterotic theories. The
reason why type I theory does not have a fundamental string sugra solution
is that the type I string is not a BPS state. In fact, BPS states are necessarily
stable, while the type I string can break.

14.2.2 Dirac charge quantization condition

Following an analysis similar to the discussion in section .1.1, we can show
that in a quantum theory the electric and magnetric charges under a p + 1
form Cp+1 must satisfy a Dirac quantization condition.

Consider a p-brane charged electrically under Cp+1, i.e. the theory con-
tains a term Qe

∫
Wp+1

Cp+1 in the action. In the presence of a (6− p)-brane
coupling magnetically under Cp+1, the flux of the dual field strength Hp+2

over an (p+2)-sphere surrounding the (6−p)-brane in the transverse (p+3)-
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Qm

Qe Sp+2

S
p+1

Σp+2
+ Σp+2

−

dimensional space is

∫

Sp+2
Hp+2 = Q′

m (14.10)

Wrapping the p-brane over a Sp+1 in the equator of the above Sp+2, see
figure 14.2.2, the phase in the path integral can be written as an intergral
of Hp+2 over a hemisphere. The change in the phase depending on which
hemisphere one chooses is

Qe∆
∫

Sp+1
Cp+1 = Qe(

∫

Σ+
p+2

Hp+2 −
∫

Σ−
p+2

Hp+2) = Qe

∫

Sp+2
Hp+2 = QeQ

′
m(14.11)

In order to have a well-defined phase, we then need

QeQ
′
m ∈ 2πZ (14.12)

If the theory contains dyonic objects, carrying electric and magnetic charges
at the same time, consistency requires

QeQ
′
m −QmQ

′
e ∈ 2πZ (14.13)

At the level of supergravity these conditions are not visible. However,
they should follow form any consistent microscopic description of these soli-
tons (see lecture on D-branes). And they should hold in any consistent
quantum theory, so we explicitly require them to hold in our theories.

14.2.3 BPS property

In analogy with the discussion in the field theory setup in section .1.2, the
10d supersymmetry algebras of the different string theories can be seen to
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admit extensions by central charges, which is this case are tensorial. The
supersymmetry algebras have the structure

{QA
α , Q

B †
β } = −2δABPµΓ

µ
αβ − 2iZAB

µ1...µp+1
(Γµ1 . . .Γµp+1)αβ (14.14)

The operators Zµ1...µp+1 are central charges, in the sense that they commute
with the Q’s and Pµ’s, but behave as tensors with respect to the generators of
the Lorentz group. They commute with the hamiltonian, hence are moduli-
dependent multiples of the (p+ 1)-brane charge.

In a sector where just one of these central charges is non-zero, one can
go to the rest frame of the corresponding state and derive a BPS bound for
the tension of the corresponding p-brane object. Also, BPS states, i.e. states
saturating the bound, belong to short representations of the supersymmetry
algebra. This implies that they cannot cease to be BPS under continuous
deformations of the theory, and also that the dependence of their tension
with the moduli is exactly determined from the classical result (does not
change by quantum corrections or otherwise).

The p-brane states studied in section (14.2.1) are BPS states, in this sense.
This guarantees that, although they were constructed in the supergravity
approximation, they exist in the complete theory (once α′ and gs corrections
are included), and their properties, charge and tension are exactly knonw as
function of the moduli.

Going through the list of string theories and brane states, the conclusion
is that for any string theory, the theory contains states charged under all
p-form gauge fields and their duals. These states have tension controlled by
their charges, and are guaranteed to be stable (since there is no lighter state
carrying those charges (it would violate the BPS bound)).

14.3 Duality for type II string theories

In this section we scratch the surface of the implications of the existence of
these states in string theory. The main implication we would like to explore
here is the existence of duality relations in string theory, which are analogous
to the field theory duality in section .1.3. Our discussion is not complete, but
just inspirational. We will return to the issue of duality in latter lectures.
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14.3.1 Type IIB SL(2,Z) duality

Ten-dimensional Type IIB supergravity has a classical SL(2,R) invariance.
It acts on the NSNS and RR 2-forms B, B̃ and the complex coupling τ =
a+ ie−φ (which takes values in the coset SL(2,R)/U(1) as

τ → aτ + b

cτ + d(
B
B̃

)
→

(
a b
c d

)(
B
B̃

)
(14.15)

leaving the metric G (in the Einstein frame) and the 4-form A4 fields invari-
ant.

Clearly this continous symmetry cannot be a symmetry of the complete
quantum theory, since it would rotate the charges continously, in contra-
diction with the fact that they must lie in a lattice by Dirac quantization
condition. There is however plenty of evidence for the conjecture that a dis-
crete SL(2,Z) subgroup (defined by a, b, c, d ∈ Z) is an exact symmetry of
the complete string theory.

This remarkable proposal has the implication that there is a strong-weak
duality between the theory at coupling gs, a = 0 and the theory at coupling
1/gs, a = 0. Namely, the strong coupling regime of type IIB theory is
equivalent to the perturbative weak coupling regime of a dual type IIB theory.
Following the dependence of brane tensions as gs changes it is possiblo to
match the BPS states in both theories. For instance

IIB at gs IIB at 1/gs
F1 ↔ D1
D1 ↔ F1
NS5 ↔ D5
D5 ↔ NS5
D3 ↔ D3

We see that starting at gs ' 0, as gs increases at goes to infinity the
initial fundamental string becomes a D1-brane in the dual description, while
the original D1 becomes light and turns into the fundamental, perturbative
string in the dual description. The flow of BPS states is illustrated in figure
14.3.

This has the striking implication that the fundamental string is ‘funda-
mental’ only at weak coupling, while at finite coupling both the D1 and the
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gs
Theory 1

M

Theory 2

Non−Pert. Non−Pert.

Pert. Pert.

Figure 14.3: As a modulus (the dilaton vev) is changed, the original weakly cou-
pled string theory becomes strongly interacting, and at infinite coupling it can be
described as a weakly interacting dual theory. Perturbative and non-perturbative
states are reshuffled in this interpolation.

F1 are both simply two BPS string-like objects, and at strong coupling the
D1 is the one becoming the fundamental, perturbative object.

Indeed the situation is even more intriguing. The SL(2,Z) symmetry
predicts the existence of BPS strings with charges (p, q) under the two type
IIB 2-forms, all forming an orbit of SL(2,Z). These are easily constructed as
supergravity solutions, by applying SL(2,Z) transformations to the known
F1 or D1 solutions (which correspond to (p, q) = (1, 0), (0, 1)). At different
points in the moduli space of the coupling τ , related to the perturbative limit
by an SL(2,Z) transformation, it is a different (p, q) string which becomes
the perturbative object in the dual (SL(2,Z) transformed) theory.

Since the symmetry relates theories which are equivalent, up to (very non-
trivial) field redefinitions, the moduli space of physically distinct theories is
SL(2,R)/(U(1)× SL(2,Z)),

Duality relations in other 10d string theories will be studied in later lec-
tures. We conclude this lecture by pointing out that the picture for type II
theories is even more intricate as one lowers the dimension.

14.3.2 Toroidal compactification and U-duality

Let us consider compactification of type IIB theories on e.g. T6. The results
for type IIA on T6 would be equivalent via T-duality, but the interpretation
in terms of the original 10d theory is clearly different. It will be better
understood in later lectures.
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We are interested in studying non-perturbative states and duality prop-
erties of this theory (the case of other toroidal compactification is similar
in many respects, see [86, 104]. We are interested in i) the moduli space of
scalars ii) the 4d gauge fields, in particular 1-form gauge bosons iii) the BPS
states preserving 1/2 of the supersymmetries iv) the duality group.

i) Let us determine the structure of the moduli space of scalars. In T6

compactifications of type IIB theory we have 36 scalars from the moduli Gij,
Bij. These are known from the Narain lattice description to take values in
the coset

SO(6, 6)

SO(6)× SO(6)× SO(6, 6;Z)
(14.16)

In addition, we have the scalars a, φ inherited from 10d, and which parametrize
the coset

SL(2,R)

U(1)× SL(2,Z)
(14.17)

In addition, we have 15 scalars B̃ij, 15 scalars A+
ijkl and two scalars, dual to

the 4d 2-forms Bµν , B̃µν. Overall we have 70 scalars, which in the supergrav-
ity approximation live in a coset locally of the form

E7/SU(8) (14.18)

where E7 denotes the (non-compact) group generated by exponentiating the
Lie algebra generated by generators of SO(6, 6) and SL(2).

The supergravity effective action has a continuous symmetry E7 acting
non-trivially on the moduli space of scalars. As usual, classical supergravity
is not sensitive to quantization conditions, and it will be only a subgroup of
this which will be proposed to correspond to a full symmetry of the theory.
This will come later on.

ii) The theory contains 56 4d 1-form fields. 24 of them are given by Bµi,
B̃µi and their 4d duals; these transform in the representation (12, 2) of the
classical global symmetry SO(6, 6)× SL(2,R). The remaining 32 are given
by 12 from Gµi and their duals and 20 from 2 A+

ijkµ; these transform in the
representation (32, 1) of SO(6, 6)× SL(2,R). In total the 56 gauge bosons
transform in the representation 56 of the classical symmetry E7.

2Notice that A+

4 has self-dual field strength in 10d.
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iii) The elementary (in the sense that they carry at most one charge) BPS
states carrying charged under gauge bosons are of different kinds

• We can have fundamental strings winding along any of the 6 directions
in T6. We can also have D1-strings winding along any of these directions.
These are charged under the fields Bµi, B̃µi

• We can have 6 particle-like states in 4d from NS5-branes wrapped in
all dimensions of T6 except one 3 Similarly we get 6 additional states from
D5-branes wrapped in all dimensions of T6 except one. These are charged
under the duals of Bµi, B̃µi. The above 12 states plus these 12 transform in
the (12, 2) representation of the global symmetry SO(6, 6)× SL(2,R).

• KK momentum states. These are described by fundamental string
states with momentum along some internal direction in T6. There are 6
basic states, charged under the 4d gauge fields Gµi.

• The corresponding states charged magnetically under Gµi (i.e. charged
electrically under their 4d duals) are Kaluza-Klein monopoles (also known as
KK5-branes). The KK monopole configurations are discussed in appendix
.2. These 6 states are labelled by i = 1, . . . , 6 and have their isometrical
direction along the ith direction in T6 and volume spanning the remaining 5
directions in T6.

• Finally we have 20 additional states given by D3-branes wrapped on
three internal directions in T6. The above 12 states plus these 20 transform
in the representation (32, 1) of SO(6, 6)× SL(2,R).

In total, these states transform in the representaion 56 of the classical
symmetry group E7

iv) These states must have quantized charges, so clearly the full contin-
uous E7 symmetry cannot be an exact symmetry of the complete theory.
Rather, the proposal is that the discrete subroup of E7 which leaves the 56-
dimensional lattice of charges invariant is an exact symmetry of the quantum
theory.

This is a simple generalization of thing we already know. In fact, the dis-
crete duality group, denoted E7(Z), is the also the group of discrete transfor-
mations containing the T-duality group SO(6, 6;Z) and the S-duality group

3To consider branes with some transverse compact circle, we can consider starting with
an infinite transverse dimension, on which we place and infinite periodic array of branes
(this is possible and static due to the BPS no-force condition), and then modding by
discrete translations to obtain a circle.
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SL(2,Z). The global structure of the moduli space is

E7

SU(8)× E7(Z)
(14.19)

All BPS states in the theory transform in representaions of the duality group
E7(Z) (known as U-duality group).

This has remarkable implications. In particular there are infinite sets of
points in moduli space which are equivalent to weakly coupled large volume
compactifications of IIB on T6 once written in suitable dual terms. The
perturbative parameter in these dual theories can be a complicated combi-
nation of the 70 scalars in the coset E7/SU(8), and not just a function of the
dilaton. Moreover the string-like object which is becoming the fundamental
string in this dual theory can be a complicated object, not just the F1 or the
D1-string. In fact string-like objects also form a complicated representation
(I think the 133) of E7(Z): we have the unwrapped F1, and D1, A D3-brane
wrapped in two directions, D5-branes wrapped in four directions, etc. Any of
these can become the fundamental string in one particualr corner of moduli
space.

For the interested reader, let us simply point out that similar duality
relations hold in toroidal compactifications of heterotic string theory. In
fact, T6 comapctfifications lead to N = 4 4d theories, whose gauge sector is
a generalization of the kind of theories in appendix .1, and have an SL(2,Z)
duality which corresponds to Montonen-Olive in the associated gauge field
theory. We will rederive Montonen-Olive duality in later lectures, using D-
branes to study gauge field theories.

14.4 Final comments

We have seen that string theory contains plenty of non-perturbative states.
These are very important for the theory at finite coupling, and are in a sense
on an equal footing with perturbative or fundamental objects in this regime
(p-brane democracy). In fact, they can become the fundamental degrees of
freedom in different corners in moduli space, and can be described as the
fundamental strings in a suitable dual description.

We still do not have a microscopic description of string theory which is
valid beyond perturbation theory, and which includes all these BPS states
on an equal footing. What is clear anyway is that as soon as we go beyond
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the perturbative regime, string theory is no longer a theory of strings! and
must also include other extended objects.

.1 Some similar question in the simpler con-

text of field theory

A more detailed reference for this section is [73].

.1.1 States in field theory

We consider a well studied and simple 4d field theory, which is N = 4 su-
persymmetric SU(2) gauge theory. The vector multiplets contain one gauge
boson, four Majorana fermions and six real scalars in the adjoint. The scalar
potential has the form V (φ) = |[phii, φj]|, so a generic vacuum is labelled by
diagonal vevs of the form

φi =
(
vi 0
0 −vi

)
(20)

We denote v =
∑
i v

2
i . A generic vev v breaks spontaneously the gauge

symmetry SU(2)→ U(1).

At low energies in one of these vacua, E � gYMv the effective theory is
N = 4 susy U(1) gauge theory, with action

S =
∫

4d

1

g2
YM

F ∧ ∗F + θ
∫

4d
F ∧ F (21)

The theory clearly contains states electrically charged under the gauge po-
tential A; they are the massive gauge bosons. The mass of one such state
with charge ne ∈ Z is

M = |ne|gYMv (22)

We can also look for non-perturbative states of the theory by constructing
solutions to the equations of motion (see [72] for an introduction to solitons).
Indeed the theory contains particle-like states known as ’t Hooft-Polyakov
monopoles, as we discussed in the introductory lectures. Such monopoles are
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Figure 4: Picture of the hedgehog configuration for the Higgs field.

described by field configurations asymptoting as

φi(~x, t) → vi

r
xi +O(1/r2)

Ai(~x, t) → 1

r2
xi +O(1/r2) (23)

This is the so-called hedgehog configuration, shown in figure B.4. From the
point of view of the low energy U(1) theory, the field configurations are
Wu-Yang monopoles of the kind studied in the differential geometry lecture.

These objects carry magnetic charge nm ∈ Z under the gauge potential
A, and their mass is

M = |nm|v/gYM (24)

(if the θ parameter is non-zero, they also carry an electric charge proportional
to qeθnm). The mass of a general state with electric and magnetic charges
(qe, qm) is given by

M2 = v2 1

=τ |qe + τqm|2 (25)

where τ = θ + i/g2
YM . For θ = 0 this gives

M = |v||gYMqe +
1

gYM
qm| (26)

Dirac charge quantization condition
This is a consistency condition on the possible set of charges in a theory

with electric and magnetic charges. A particle with electric charge qe moving
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mq

qe

Σ Σ

S2

C
+ −

in a circle worldline C acquires a phase exp(iqe
∫
C A) in its path integral. In

the presence of a particle carrying magnetic charge q ′m, the gauge potential
is not globally well defined, so the above expression could be ambiguous,
leading to an ill-defined wavefunction for the electric particle. Indeed, as
shown in figure .1.1, the integral

∫
C A can be computed via Stokes theorem

as
∫
Σ F over some surface Σ with ∂Σ = C. The result however can depend

on the surface Σ chosen. For the two surfaces in the picture, the difference
in the exponent of the phase is

∆qe

∫

C
A = qe(

∫

Σ+

F −
∫

Σ−

F ) = qe

∫

S2
F = qeq

′
m (27)

where S2 is a surface that encloses the magnetically charged particle. In
order to have a well-defined phase, we then need

qeq
′
m ∈ 2πZ (28)

This is Dirac quantization conditions, which constrains the charges in a the-
ory with electric and magnetic objects.

If the theory contains dyonic particles, carrying electric and magnetic
charges at the same time, consistency of the phase picked up by moving a
particle of charges (qe, qm) in the presence of a particle of charge (q′e, q

′
m)

requires

qeq
′
m − qmq′e ∈ 2πZ (29)

This implies that charges (qe, qm) must lie in a 2d discrete lattice. One can
check that the charges of the above theory, which are of the form (qe, qm) with
qe + iqm = ne + τnm, with ne, nm ∈ Z, satisfy this constraint (zzz Warning:
I was not careful about 2π’s).
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.1.2 BPS bounds

The general supersymmetry algebra for N = 4 has the structure

{QA
α , Q

B †
β } = −2δABPµΓ

µ
αβ − 2iZABδαβ (30)

where QA
α , A = 1, . . . ,N are the N supercharges (N = 4 in our case) with

a (Majorana) spinor index α. The ZAB are operators that commute with
the Q’s, the P ’s and hence with the Hamiltonian. Thus they are conserved
charges of the system, known as central charges, which are combination of
the conserved gauge charges of the theory.

In a given state, ZAB forms a real antisymmetric matrix, which can be
brought to a block diagonal form with blocks

(
0 qi
−qi 0

)
(31)

The supersymmetry algebra implies a bound on the mass of particle states
in the sector of fixed (central) charges qi. This is done as follows: take for
simplicity a sector of equal charges qi = q, we can go to the rest frame of
the particle, where (Pµ) = (M, 0, 0, 0). Then the matrix {QA

α , Q
B †
β }, which

is positive definite, is diagonal in blocks of the form

(
2M 2iq
−2iq 2M

)
(32)

This implies that the eigenvalues, which are 2(M ± q) must be positive, so
that we get a bound

M ≥ |q| (33)

This is known as BPS bound. States saturating this kind of bounds are
called BPS states. They are special because they correspond to zero modes
of the supercharge anticommutator matrix, and this implies that they are
annihilated by some supercharges. This is equivalent to saying that BPS
states are invariant under some supersymmetry transformations (generated
by the corresponding supercharges). On the other hand, this implies that
the supermultiplets to which these states belong are shorter than the generic
supermultiplet.

This implies that upon continuous deformations of the theory (for in-
stance including quantum corrections or threshold effects of the underlying
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high energy theory) BPS states cannot cease being BPS, since the number of
fields in the supermultiplet cannot jump discontinuously. This also implies
that, since the mass of the state is fixed by the supersymmetry algebra, it
is exactly known, and does not suffer any correction form quantum loops or
otherwise. Therefore, the classical result for the mass of a BPS state can be
exactly extrapolated to strong coupling and other difficult regimes.

In our case above, it is possible to show that in a sector of electric and
magnetic charges (qe, qm) the central charge for the superalgebra is of the
above form

qi = q = vgYM(qe + τqm) (34)

This allows to claim that the above discussed states are BPS and the masses
(D.8) is exact.

.1.3 Montonen-Olive duality

The equations of motion for the U(1) gauge theory are (for θ = 0)

dF = jm

d ∗ F = je (35)

where je, jm are the electric and magnetric charge currents. They have a
global SL(2,R) rotation invariance

( ∗F
F

)
→M

( ∗F
F

)
;

(
je
jm

)
→M

(
je
jm

)
; M =

(
a b
c d

)
, ad− bc = 1(36)

This also acts by rotating the charges (qe, qm), so it is able to exchange
the roles of elementary electrically charged states and solitonic magnetic
monopoles, i.e. of perturbative and non-perturbative states in the system.
Indeed, for the theory (e.g. the energies of the states) to be invariant,
SL(2,R) must also act on the coupling constant τ by

τ → aτ + b

cτ + d
(37)

Since the charges must live in a discrete lattice due to the Dirac quantization
condition, it is clear that the classical SL(2,R) symmetry cannot be a sym-
metry of the full quantum theory. However, the subgroup SL(2,Z) given by



300CHAPTER 14. NON-PERTURBATIVE STATES IN STRING THEORY

matrices M with a, b, c, d ∈ Z leaves the charge lattice invariant as a whole,
and also is a symmetry of the mass formula (D.8). The Montonen-Olive du-
ality proposal is that this SL(2,Z) is an exact symmetry of the full quantum
theory.

This symmetry has very non-trivial implications:

• It implies that BPS solitons must appear in orbits of SL(2,Z). In par-
ticular this implies the existence of BPS dyonic states with charges qe+iqm =
ne + τnm for coprime ne, nm; this is the orbit containint the elementary elec-
tically charged states (ne, nm) = (±1, 0) and the basic magnetic monopoles
(ne, nm) = (0,±1). Some of these dyonic states have been explicitly con-
structed [115].

• It implies that the theory at coupling gYM , θ = 0 has a completely
equivalent description in terms of a theory with coupling g ′YM = 1/gYM ,
θ′ = 0. One says that it is a strong-weak coupling duality. This implies that
the strong coupling of the first theory is described by a weakly coupled theory
in the dual side. The theory simplifies enormously in the limit of very strong
coupling, which in principle looked like a very difficult regime!. The theory
becomes simply perturbative Maxwell theory in terms of the dual elementary
fields, which are the solitons of the initial theory.

• In fact, there is an infinite number of limits where the dynamics reduces
to perturbative Maxwell theory in terms of a dual theory, which is related
via an SL(2,Z) transformation to the original one.

• These properties are a good toy model for the dualities in string theory.
This has been our motivation for discussing this field theory example. In
fact, we will see in later lectures that duality in string theory implies duality
in field theory.

.2 The Kaluza-Klein monopole

Consider a D-dimensional theory with gravity, compactified on a circle, so
that it corresponds to a vacuum of the form MD−1 × S1. The Kaluza-Klein
monopole is a purely metric configuration, which corresponds to an excited
state of this theory, and exists ifD ≥ 4. It is described by a geometry MD−4×
XTN , where the so-called (multi)Taub-NUT space XTN has the following
metric

ds2 = V (~x)−1d~x 2 + V (~x)(dτ + ~ω · d~x)2 (38)
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R3

S1

S2

Bundle over S2

Figure 5: A picture of the multi-Taub-NUT space XTN . It is a circle fibration
over R

3, with fiber asymptoting to constant radius at infinity, and degenerating
to zero radius over the centers, shown as black dots. Around an S

2 surrounding a
center, the S

1 fibrations defines a non-trivial U(1) bundle with first Chern class 1.

with

~∇× ~ω = V (~x) ; V (~x) = 1 +
∑ 1

|~x− ~xa|
(39)

The space XTN is a fibration of S1 (parametrized by τ) over R3 (parametrized
by ~x), with the properties that (see figure 5)

i) the S1 in the fiber asymptotes to constant radius at infinity on the base
R3. So it is a finite energy excitation of the vacuum MD−1 × S1.

ii) the S1 denerates to zero radius at the location of the so-called centers
~x = ~xa.

iii) The S1 fibered over an S2 in the base R3 surrounding a center, is a
non-trivial S1 (or U(1) )bundle over S2 with first Chern class equal to 1. If
the S2 surrounds k centers, the Chern class of the bundle of S1 over S2 is k.
In fact, one can show that the mixed component of the Christoffel connection
is exactly the gauge field of the Wu-Yang monopole studied in the lecture on
differential geometry.

iv) This implies that the geometry carries a topological magnetic charge
under the D − 1 dimensional gauge boson Gµ(τ). The sources of the charge
are localized at the centers of the metric, which then behave as magnetic
monopoles for this field. The configuration defined by Taub-NUT space is
known as Kaluza-Klein monopole.

The above metric has SU(2) holonomy (so can be though of as a non-
compact Calabi-Yau in two complex coordinates) so it is invariant under
half of the supersymmetries. It is a 1/2 BPS state. Its ADM tension is
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proportional to R2/g2
s , where R is the radius of the isometrical direction S1

parametrized by τ .
In circle compactifications of string theory, the resulting 9d object is

Poincare invariant in six dimensions, and is localized in three dimensions. It
is often called the Kaluza-Klein fivebrane. In toroidal compactficiations of
several dimensions, one can have different BPS states given by the different
choices of the circle in Td chosen to correspond to the isometrical direction
in XTN .



Appendix A

D-branes

A.1 Introduction

In the previous lecture we used supergravity to obtain partial information on
non-perturbative states in string theory. We could rely on the existence and
certain properties (tension, charge) of some of these p-brane states, when
they satisfy some BPS condition.

In this lecture we propose a microscopic description, valid at weak cou-
pling, for some of these solitoon (those we called Dp-branes), explicitly in
terms of the underlying string theory. This description allows to recover the
results we found in the supergravity approximation, and to describe several
others (exactly in α′). Indeed, the study of D-branes from several viewpoints
is one of the most active topics in string theory nowadays.

Let us emphasize that the microscopic description we are going to propose
cannot be derived from out macroscopic description from the supergravity
viewpoint. Rather, the microscopic description will show that the object we
describe microscopically is a source of the supergravity fields with the same
properties of the objects in the previous lecture.

A.2 General properties of D-branes

From the supergravity viewpoint, we introduced some solitonic solutions, the
Dp-branes. They exist for p even in type IIA theory, for p odd in type IIB
theory and for p = 1, 5 in type I. They are described by a gravitational back-
ground; fluctuations of the theory around the soliton solution are localized
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p+1W

R
9−p

R
9−p

Figure A.1: Fluctuations of the theory around a Dp-brane sugra solution can be
described in stringy language as open strings with ends on a (p + 1)-dimensional
surface, located at the core of the topological defect.

p+1W

R
9−p

closed
open

Figure A.2: String theory in the presence of a Dp-brane. The closed string sector
describes the fluctuations of the theory around the vacuum (gravitons, dilaton
modes, etc), while the sector of open strings describes the spectrum of fluctuations
of the soliton.

on the (p+ 1)-dimensional volume of the soliton core.
The stringy description of Dp-branes, at weak coupling, is as follows.

They are described as (p + 1)-dimensional planes Wp+1 in flat space, with
the prescription that the theory in its presence contains open strings, with
endpoints on the (p+ 1)-dimensional plane Wp+1. See figure A.1.

Equivalently, the fluctuations of the string theory around the topological
defect are microscopically described as open strings ending on its (p + 1)
volume.

A complementary point of view, relating the microscopic description with
the supergravity solution, is that interactions of the (p+1)-dimensional plane
with the closed string modes (via the open string modes on the brane) imply
the plane is a source of the graviton, dilaton and RR fields, which creates a
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=

Figure A.3: A Dp-brane interacts with closed strings via open strings, creating
an effective background which describes the backreaction of the D-brane tension
and charge on the configuration.

background as that described by the supergravity solution. See figure A.3.
Recall that the size of the throat in the supergravity solution is gsNα

′1/2, so
this effect is bigger when gs increases (and then the supergravity description
is reliable, while for small gs the stringy description is more precise).

That is, the object we have described as a (p + 1) plane on which open
strings are allowed to end, has the correct properties to lead to a Dp-brane
supergravity solution. The coupling to the closed string modes can be ob-
tained from the disk diagram with a closed string insertion, see figure A.4.
In particular, it allows to obtain the tension and the charge under the RR
(p + 1)-form; they are of the order of 1/gs, since the Euler characteristic of
the disk is ξ = 1. It is also possible to verify they satisfy the BPS condition;
indeed, we will find below that they are supersymmetric states.

One could raise a number of objections against coupling this kind of open
string sectors to a sector of closed strings.

i) The open string sector is not Poincare invariant. This is not a problem,
since it is describing the fluctuations of the theory around a soliton state
which breaks part of the Poincare invariance of the vacuum.

ii) The 2d worldsheet bosons associated to directions transverse to the D-
brane, X i(σ, t) (and also the 2d fermions) obey Dirichlet boundary conditions

∂tX
i(σ, t)|σ=0,` = 0 (A.1)

Are these boundary conditions consistent? Do we recover the same local 2d
dynamics as for closed strings? In fact, we can check that Dirichlet boundary
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Dp

Cp+1

9−pR

9−pR

Mp+1
G,

Figure A.4: D-branes interact with closed string modes, and in particular couple
to the bulk graviton and (p + 1)-form fields, i.e. they have tension (of order 1/gs
in string units) and carry charge. Their backreaction on the background curves
and deforms it into the p-brane solution seen in the supergravity regime.

conditions do the job . Recall that the variation of the Polyakov action is

δSP = − 1

2πα′

∫

Σ
d2ξ gab∂aX

µ∂bδX
µ =

= − 1

2πα′

∫ ∞

−∞
de (gabδXµ∂bXµ)|σ=`

σ=0 +
1

2πα′

∫

Σ
d2ξ δXµ g

ab∂a∂bX
µ(A.2)

For Dirichlet boundary conditions, the corresponding endpoint is not al-
lowed to move, so the allowed variations must satisfy δX i = 0. Hence the
boundary term for any coordinate drops, for Neumann or Dirichlet boundary
conditions.

iii) In th lecture on open strings we saw that open strings allowed to end
anywhere on spacetime cannot be consistently added to type IIB theory, due
to RR tadpole cancellation conditions. In fact, this kind of configurations
can be understood as type IIB theory in the presence of D9-branes, which are
charged under C10 and lead to an inconsistency in the equations of motion.
For configurations with lower-dimensional Dp-branes, p < 9, the correspond-
ing RR form Cp+1 does have a kinetic term and the equation of motion can be
solved. RR charges are not dangerous if there are non-compact dimensions
transverse to the D-brane. Intuitively, the fluxlines created by the D-brane
charge can escape to infinity along the non-compact dimension. If there are
no transverse directions, or they are compact, the flux cannot escape and
one should require charge cancellation as a consistency condition.
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A.3 World-volume spectra for type II D-branes

The fluctuations of the theory around the soliton background are described
by open strings ending on the D-brane (p + 1)-dimensional world-volume.
These modes describe the dynamics of the Dp-brane. For instance, zero mass
oscillation modes of the open strings correspond to zero energy motions of
the Dp-brane.

In this section we compute the spectrum of open strings ending on the
Dp-brane. They give rise to fields propagating on the volume of the Dp-
brane, and describe its dynamics. For concreteness we center on type IIB
D-branes, which have even world-volume dimension.

A.3.1 A single Dp-brane

Consider a configuration given by a single Dp-brane with worldvolume span-
ning the directions Xµ, µ = 0, . . . , p and transverse to the directions X i,
i = p + 1, . . . , 9. Consider an open string with both endpoints on the
Dp-brane. Its worldsheet 2d theory is described by 2d bosons Xµ(σ, t),
µ = 2, . . . , p (in the light cone gauge) and X i(σ, t), i = p + 1, . . . , 9, and
their 2d fermion partners. see fig A.5.For directions along the brane volume,
we have Neumann boundary conditions, while for directions transverse to it
we have Dirichlet boundary conditions

∂σX
µ(σ, t)|σ=0,` = 0 ; ∂tX

i(σ, t)|σ=0,` = 0 ; (A.3)

Using the mode expansions, of the form

X(σ, t) = x + wσ +
p

p+
t + i

√
α′

2

∑

ν

αiν
ν
e−πi ν (σ+t)/` + i

√
α′

2

∑

ν̃

α̃iν̃
ν̃
e−πi ν̃ (σ+t)/`

For Xµ we obtain

xµ, pµ allowed ; wµ = 0 ; ν = n ∈ Z ; αµn = α̃µn (A.4)

For X i we obtain

xi allowed ; pi = 0 ; wi = 0 ; ν = n ∈ Z ; αi
n = −α̃i

n (A.5)

For the NN directions we have the expansion familiar from the lesson on open
strings. For the DD directions we have the expansion

X i(σ, t) = xi +
√

2α′
∑

n6=0

αin
n

sin(πnσ/`) e−πint/` (A.6)
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Figure A.5: .

and similarly for fermions.
In total, we obtain integer modded bosonic oscillators αµn, α

i
n, and fermionic

oscillators ψµn+ρ, ψ
i
n+ρ, with ρ = 1/2, 0 for NS or R fermions. Note also that

these states have momentum only in directions along the volume of the D-
brane, and not in those transverse to it. This implies that the correspondinng
particles propagate only in the (p+ 1)-dimensional D-brane world-volume.

The spectrum is very similar to that of an open superstring sector, with
the same states reinterpreted with respect to a lower-dimensional Lorentz
group. In particular, at the massless level the states are

Sector State SO(8) weight SO(p− 1) (p+ 1)-dim field
NS ψµ−1/2|0〉 (0, . . . , 0,±, . . . , 0) Vector Gauge boson Aµ

ψi−1/2|0〉 (±, . . . , 0, 0, . . . , 0) Scalar 9− p real scalars φi

R A+
a |0〉 1

2
(±,±,±,±) spinor 2(9−p)/2 ch. fermion λα

A+
a1
A+
a2
A+
a3
|0〉 # - = odd

This corresponds to a U(1) vector supermultiplet with respect to 16 su-
persymmetries in (p+1)dimension. This is also often described as the dimen-
sional reduction of the N = 1 10d vector multiplet. A prototypical example
is provided by the spectrum on a D3-brane, which corresponds to a U(1)
vector multiplet of N = 4 susy in 4d, given by one gauge boson, six real
scalars and four Majorana fermions.

In fact, supersymmetry extends to the complete open string spectrum,
implying the property that the D-brane is a 1/2 BPS state. Indeed, it is
possible to verify that the boundary conditions imposed for a D-brane on
the open string sector relate the spacetime supercharges arising from the
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=
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| |

Figure A.6: The D-brane charge and tension arise from a disk diagram with
insertions, which can be obtained from factorization of the annulus diagram.

left and right-movers in 2d, so that the configuration is still invariant under
10d supersymmetry transformations with parameters εL, εR (which are 10d
spinors) satisfying

εL = Γ0 . . .ΓpεR (A.7)

Using the above microscopic description, and knowing how to quantize
open string sectors, it is possible to compute explicitly the tension and charge
of a Dp-brane. The standard technique is to evaluate the annulus amplitude,
namely the one-loop vacuum amplitude for open strings with both ends on a
D-brane, and go to the factorization limit where the amplitude splits into the
square of the disk. The disk provides the the coupling between the D-brane
and the NSNS fields, like the graviton, and the RR fields (i.e. the D-brane
tension and RR charge). The computation is pictorially sketched in figure
A.6 and gives the result (see section 13.3 in [71]

T 2
p =

π

κ2
(4π2α′)3−p ; Qp = Tp/gs (A.8)

A.3.2 Effective action

The (9 − p) real scalars in the volume of the Dp-brane are the goldstone
bosons associated to translational symmetries of the vacuum, broken by the
presence of the soliton 1. This implies that the vevs of these scalars provide
the location of the Dp-brane in transverse space R9−p. It also implies that
non-trivial profiles for these scalar fields (that is, configurations with xµ-
dependent backgrounds for these scalars) correspond to fluctuations of the
embedding of the D-brane worldvolume on spacetime, see fig A.7. Namely

1Similarly, the fermions can be regarded as the goldstone fermions associated to super-
symmetries of the vacuum, broken by the presence of the D-brane.
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Wp+1 Wp+1

Figure A.7: A nontrivial configuration for one of the worldvolume translational
zero modes corresponds to a non-trivial embedding of the soliton worldvolume in
spacetime.

φi(xµ) describes the embedding of the D-brane volume in spacetime. There-
fore the effective action for the massless open string modes on the D-brane
worldvolume corresponds to an effective action for the D-brane, controlling
its dynamics.

There are two strategies to obtain this effective action, which are con-
ceptually analogous to the computation of effective actions for closed string
sectors. The first is to compute scattering amplitudes in string theory and to
cook up an action that reproduces them. The second is to couple a general
background of the massless fields to the 2d worldsheet theory, and to demand
conformal invariance (both locally on the 2d worldsheet and on the boundary
conditions for general backgrounds); the conformla invariance constraints can
then be interpreted as equations of motion for the spacetime fields, arising
from some effective action, see [75].

The resulting effective action has several pieces. One of them is the Dirac-
Born-Infeld action, which has the form

SDp = −Tp
∫

Wp+1

dp+1xµ (− det(G +B + 2πα′F ))
1/2

(A.9)

where Gµν = ∂µφ
i∂νφ

j Gij is the metric induced on the D-brane worldvol-
ume 2, and similarly Bµν is the induces 2-form. These terms introduce the
dependence of the action on the embedding fields φi(xµ). Finally Fµν is the
field strength of the worldvolume gauge field.

2We have implicitly fixed the worldvolume reparametrization invariance to fix a ‘static
gauge’. The scalars associated to these gauge degrees of freedom do not appear in the
light-cone spectrum.
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The Dirac-Born-Infeld action carries the information about the coupling
of the D-brane to the NSNS field. The Dirac-Born-Infeld action is α′ ex-
act in terms not involving derivatives of the field strength. Neglecting the
dependence on the field strength, it reduces to the D-brane tension times
the D-brane volume

∫
(detG)1/2). At low energies, i.e. neglecting the α′

corrections, it reduces to a kinetic term for the scalars plus the (p + 1)-
dimensional Maxwell action for the worldvolume U(1), with gauge coupling
given by g2

U(1) = gs. Of course the above action should include superpartner
fermions, etc, but we skip their discussion.

A second piece of the effective action is the Wess-Zumino terms, of the
form

SWZ = −Qp

∫

Wp+1

C ∧ ch(F ) Â(R) (A.10)

where C = Cp+1 + Cp−1 + Cp−3 + . . . is a formal sum of the RR forms of the
theory, and ch(F ) is the Chern character of the worldvolume gauge bundle
on the D-brane volume

ch(F ) = exp(
F

2π
) = 1 +

1

2π
trF +

1

8π2
trF 2 + . . . (A.11)

and Â(R) is the A-roof genus, characterizing the tangent bundle of the D-
brane world-volume Â(R) = 1− trR2/(2π2). Integration is implictly defined
to pick up the degree (p+1) pieces in the formal expansion in wedge products.
Hence we get terms like

SWZ =
∫
Wp+1

−Qp

(∫
Wp+1

Cp+1 + 1
2π

∫
Wp+1

Cp−1 ∧ trF+

+ 1
8π2

∫
Wp+1

Cp−3 ∧ (trF 2 − trR2) + . . .
)

(A.12)

A very important property of this term is that it is topological, independent
of the metric or on the particular field representatives in a given topological
sector. This is related to the fact that these terms carry the information
about the RR charges of the D-brane configuration.

A.3.3 Stack of coincident Dp-branes

As a consequence of the BPS property, the interaction between several par-
allel Dp-branes exactly vanishes. This can be understood from a cancellation
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R9−p

Figure A.8: .

of the attractive interaction due to exchange of NSNS fields (like the gravi-
ton) and the repulsive interaction due to exchange of RR fields. It can also
be understood from the fact that the supersymmetry transformations unbro-
ken by a D-brane depend only on the directions it spans, so several parallel
D-branes preserve the same supersymmetries (A.7).

We would like to consider the spectrum of open strings in a configuration
of n parallel Dp-branes, labelled a = 1, . . . , n, spanning the directions xµ,
µ = 0, . . . , p, and sitting at the locations xi = xia in the (9 − p) transverse
directions. See figure A.8.

There are in this situation n2 open string sectors, labelled ab, correspond-
ing to open strings starting at the ath D-brane and ending at the bth D-brane.
It is important to recall that we are working with oriented open strings (whose
closed string sector is type II theory, which is oriented). For each of these
n2 sectors, the boundary conditions are NN for the 2d bosons Xµ(σ, t) (and
fermions partners) and DD for the X i(σ, t) (and fermion partners). Namely,
for an ab string we have

∂σX
µ(σ, t)|σ=0,` = 0

X i(σ, t)|σ=0 = xia ; X i(σ, t)|σ=` = xib (A.13)

The mode expansion reads

X i(σ, t) = xia +
xib − xia

`
σ + i

√
α′

2

∑

ν

αin
n
e−πi n (σ+t)/` + i

√
α′

2

∑

ñ

α̃iñ
ñ
e−πi ñ (σ+t)/`

The moddings etc works as in the case of just one Dp-brane. The spacetime
mass formula is similar to the usual one for open strings, with and additional
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contribution arising from the winding term; we have

M2 =




9∑

i=p+1

xib − xia
2πα′




2

+
1

α′ (NB +NF + E0) (A.14)

with E0 = −1/2, 0 in the NS, R sectors.
This leads to the same kind of massless states as above, for each of the

n2 ab sectors. Namely, we obtain a total of n2 gauge bosons, (9− p) times n2

real scalars and 2(9−p)/2 times n2 chiral fermions in p+1 dimensions. It is not
difficult to realize that the aa strings lead to massless states, no matter what
the xia are, and produce a gauge group U(1)n, each U(1) propagating on the
volume of each D-brane. On the other hand the ab states are generically
massive, with mass squared proportional to

∑
i(x

i
a − xib)2, and have charges

(+1,−1) under U(1)a × U(1)b.
When some, say k, of the location of the D-branes in transverse space

R9−p coincide, the corresponding ab states become massless. In this situ-
ation, with additional massless vector bosons, we expect the world-volume
gauge group to enhance beyond U(1)k. The charges of the ab gauge bosons
under the aa gauge symmetries correspond to the non-zero roots of the gauge
group, which is easily checked to be U(k). Hence, for k coincident Dp-branes
the massless open string sector yields a U(k) vector multiplet with respect
to the 16 unbroken supersymmetries. In other words, in the configuration of
k coincident D-branes the corresponding states are described by a k× k ma-
trix, which represents their wavefunction with respect to Chan-Paton factors.
That is, Chan-Paton factors receive a geometric interpretation as encoding
on which branes the string is starting and ending.

Changing continuously the locations of the D-branes away from each other
corresponds to turning on a vev for the diagonal components of the scalar
fields on the D-branes. This produces a Higgs effect breaking the enhanced
U(k) gauge symmetry, generically to the Cartan subalgebra U(1)k. This is
in agreement with the interpretation of these scalars as coordinates of the
D-branes in transverse space. In this respect, it is amusing (and possibly a
very profound property of the nature of spacetime in string theory) that these
coordinates become matrices (and therefore non-commutative) at distances
of the order of the string scale (where the scalars in ab open string sectors
become light).

We conclude by mentioning that the effective action for world-volume
massless fields in coincident D-branes should be a non-abelian generalization
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of the above. This is not exactly known for the Dirac-Born-Infeld piece, due
to ambiguities in the precise gauge trace structure prescription. In any event,
at low energies the action reduces to non-abelian Yang-Mills interactions with
coupling g 2

YM = gs.

A.3.4 Comments

We conclude the discussion of type II D-branes with some comments:
• Although we have centered on type IIB D-branes, the same kind of

results hold for type IIA D-branes, namely the worldvolume massless fields
gather in vector multiplets with respect to the 16 unbroken susys, and their
dynamics is described by the Dirac-Born-Infeld plus Wess-Zumino action.
• Spacetime supersymmetric D-branes exist only for p odd in type IIB

and p even in type IIA. For the reverse dimensions, no GSO projection can
be introduced in the open string sector (in a way consistent with open-
closed duality and the GSO in the closed sector). However, there exist
non-supersymmetric D-branes with p odd in type IIA and p even in type
IIB. They are non-supersymmetric, contains worldvolume tachyons, and are
unstable against decay. We may study them in the lecture on stable non-BPS
states in string theory.
• Recall that type IIA and IIB theories are T-dual once we compactify

on S1. The action of T-duality of D-brane states is easy to obtain, since
T-duality acts on open string boundary conditions by exchanging Dirichlet
and Neumann boundary conditions (see lecture on T-duality for type I). This
implies the mapping

IIB on S1 of radius R IIA on S1 of radius 1/R
wrapped D(2k + 1) unwrapped D(2k)

unwrapped D(2k + 1) wrapped D(2k)

D-brane states moreover form a multiplet under the perturbative T-
duality groups in compactifications on Td. For instance, consider type II
compactified on T6, which has a T-duality group SO(6, 6;Z), and consider
4d particle-like D-brane states. Type IIB theory contains 4d particle-like
states arising from D1-branes wrapped in one of the internal T6 directions
(6 states), from D3-branes wrapped in three internal directions (20 states)
and from D5-branes wrapped in five internal directions (6 states). In total,
we have 32 states, transforming in the spinor representation 32 of SO(6, 6;Z).
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(Similarly, for type IIA we obtain 32 states from 1 D0-brane state, 15 D2-
brane states, 15 D4-brane states adn 1 D6-brane state). These states, to-
gether with the perturbative states (momentum, winding) and other non-
D-brane non-perturbative states (NS5-brane states, KK monopoles) fill out
multiplets of the U-duality group E7(Z) as described in previous lecture.

• We would like to make a small remark on some D-branes which can
be defined using the microscopic stringy description, and which were not
encountered in the supergravity discussion.

- The type IIB D7-brane and the type IIA D8-branes change the asymp-
totic metric of spacetime, which is not flat, hence are not nicely described
as asymptotically flat supergravity branes. The D7-brane is magnetically
charged under the type IIB RR scalar a, which suffers a shift (monodromy)
a→ a+1 in going around a D7-brane. This is consistent because the scalar is
periodic, or equivalentely, because this transformation is an exact symmetry
of IIB theory (in fact, in a subgroup of SL(2,Z).

- Type IIA D8-brane is formally magnetically charged with respect to a
(−1)-form. This simply means that it acts as a domain wall for a RR 0-form
(the ‘field strength’) of type IIA theory, which is the cosmological constant,
or mass parameter of massive IIA theory (Romans theory [76]).

- The type IIB D9-brane cannot be thought as a BPS non-perturbative
state of type IIB theory, since it is charged under the RR 10-form and gener-
ates a tadpole rendering the theory inconsistent. Supersymmetric D9-branes
only exist in the presence of O9-plane in type I theory, and in this situation
they are present already in the vacuum, they are not an excited state of the
theory. In the lecture on non-BPS states we will discuss excited states of
type IIB theory with D9 - anti-D9 -brane pairs. These are excited states,
but are not supersymmetric.

- Finally, the type IIB D(−1)-brane, which can be defined in the theory
with spacetime euclidean signatures, is a sort of instanton, localized boht in
space and in time. It is formally electrically charge under the type IIB RR
scalar a, hence the instanton action is weighted by eia, so a acts as a theta
parameter for type IIB theory.
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A.4 D-branes in type I theory

A.4.1 Type I in terms of D-branes

Type I contains a sector of open strings already in its vacuum, with endpoints
allowed to be anywhere in 10d spacetime. So in a sense it contains a set of
(spacetime filling) D9-branes in the vacuum, on which these open strings
end. These D-branes should thus not be regarded as excitated states above
the vacuum, but part of it, since the theory is inconsistent without them.
Nevertheless, these vacuum D9-branes are mathematically identical to the
D-branes studied above, so it is useful to use the same language to describe
them.

Indeed, both kinds of branes are in a sense related, as we described at
the end of the lesson on T-duality for type I string theory. Recall that type I
theory has one O9-plane (set of points fixed under the orientifold action Ω),
and 32 D9-branes. Compactifying on S1 and performing a T-duality along
it we obtain type I’ theory, which is type IIA theory modded out by ΩR,
with R : x9 → −x9. It contains two O8 planes sitting at x9 = 0, πR, and 32
D8-branes located at points in S1, which are part of the vacuum. However,
taking the limit of infinite radius, keeping the D8-branes at a finite distance,
the O8-planes go off to infinity and we are left with type IIA theory in flat
10d, with D8-branes. In this setup the D8-branes should be regarded as
excitations over the type IIA vacuum.

The BPS D-branes of type I theory are the D5-brane and the D1-brane.
In this section we obtain their world-volume modes, by quantizing the open
string sectors of the configuration. Notice that other D-branes of type IIB
theory, like the D3- or the D7-brane are projected out by the Ω projection
and do not exist as BPS D-branes in type I theory.

A.4.2 Type I D5-brane

A useful reference for this section should be [104].

In principle, the computation of the world-volume spectrum for type I
D5-branes is similar to that of type IIB D5-branes, with two new ingredients

i) In addition to the sector of open strings with both endpoints on the
D5-branes, there is a sector of open strings with one end on the D5-branes
and the other end on the vacuum D9-branes.
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D5
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99

Figure A.9: Open string sectors in type I theory in the presence of a D5-brane.

ii) We need to impose the orientifold projection on the open string spec-
trum, since we are working with unoriented open strings

To deal with i), let us start first forgetting the Ω projection, and consider
a system of k coincident D5-branes and N D9-branes in the oriented theory.
The geometry of the directions spanned/transverse to the branes is depicted
by lines/crosses as follows

0 1 2 3 4 5 6 7 8 9
D9 - - - - - - - - - -
D5 - - - - - - × × × ×

The geometry is shown in figure A.9. As we will see, the configuration
preserves 8 supersymmetries, i.e. the equivalent ofN = 1 6d supersymmetry.
This is the familiar criterion that some susy is preserved when the number
of DN directions is a multiple of four.

In the sector of 55 strings, we obtain a U(k) vector multiplet of 6d N =
(1, 1) supersymmetry, containing U(k) gauge bosons, four real adjoint scalars,
and two 6d Weyl fermions. In terms of 6d N = 1 supersymmetry, they
correspond to a U(k) vector multiplet (gauge boson plus one Weyl fermion)
and an adjoint hypermultiplet (Weyl fermion plus four scalars).

In the sector of strings starting at the D5-branes and ending on the D9-
branes (59 sector), the open strings have NN boundary conditions on the
direction 2345 and DN conditions on 6789. The NN directions work as usual.
For X i(σ, t), i = 6789, we have

∂σX
i(σ, t)|σ=0 = 0 ; ∂tX

i(σ, t)|σ=` = 0 (A.15)

Using the mode expansions for the DN directions, we obtain that the center of
mass xi is fixed at the location of the D5-brane; that momentum and winding
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are not allowed pi = 0, wi = 0; and that oscillator modding is shifted by 1/2
with respect to their usual values, namely 2d bosons have modes αin+1/2 and

2d fermions have modes ψin+ρ+1/2, with ρ = 1/2, 0 for NS, R.
The mass formula for 59 states is

α′M2 = NB +NF (A.16)

since E0 = 0 both in the NS and R sectors. In the NS sector, there are four
fermion zero modes, along 6789, hence the massless groundstate is degen-
erate. Splitting the zero modes in creation and annihilation operators, and
constructing the representaion of the zero mode Clifford algebra as usual, the
GSO projection selects the massless groundstates

State SO(4)6789

|0〉 (−1
2
,−1

2
)

A+
a1
A+
a2
|0〉 (1

2
, 1

2
) (A.17)

(A.18)

where the SO(4) is the unbroken rotation group in 6789. These states are
scalars under the 6d little group SO(4). In the R sector, we have four fermion
zero modes along 2345, hence the massless groundstate is degenerate. Split-
ting the zero modes in creation and annihilation operators, and constructing
the representaion of the zero mode Clifford algebra as usual, the GSO pro-
jection selects the massless groundstates

State SO(4)2345

|0〉 (−1
2
,−1

2
)

A+
a1A

+
a2 |0〉 (1

2
, 1

2
) (A.19)

(A.20)

these states are spinors under the 6d SO(4) Lorentz little group. Gathering
states from the 59 and 95 sectors (the latter are similar), we obtain one
hypermultiplet of 6d N = 1 supersymmetry. Noticing that the states carry
D5- and D9- Chan-Paton labels, encoding on which D5- and on which D9-
brane their endpoints lie, we realize the 6d N = 1 hypermultiplet transforms
in the bi-fundamental representation (N, k) under the D9- and D5-brane
world-volume gauge groups.
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Let us now address ii) and impose the orientifold projection. To make a
long story short, let us simply say that we need to specify the action of Ω on
the D9- and D5-brane Chan-Paton indices, via N × N and k × k matrices
γΩ,5, γΩ,9, and that consistency requires N = 32 and [78]

γΩ,9 = 132quad; γΩ,5 =
(

0 1k/2
−1k/2 0

)
(A.21)

Note that consistency requires k to be even.
The projections go as follows. In the 99 sector, all fields suffer a projection

λ = −γΩ,9λ
Tγ−1

Ω,9 (A.22)

and the surviving spectrum is the 10d N = 1 SO(32) vector multiplet.
In the 55 sector, the Ω action on oscillators along DD and NN direc-

tions differ by a sign. This follows from the definition of the action of Ω as
XΩ(σ, t) = X(−σ, t), and the mode expansions

Xµ(σ, t) = . . .+
∑

n6=0

αµn
n

cos(πnσ/`) e−πnt/`

X i(σ, t) = . . .+
∑

n6=0

αin
n

sin(πnσ/`) e−πnt/` (A.23)

The Ω projections are different for the 6d N = 1 hyper and vector multiplets.
The surviving states must satisfy the conditions

λ = −γΩ,5λ
Tγ−1

Ω,5 vect.mult.

λ = γΩ,5λ
Tγ−1

Ω,5 hypermult. (A.24)

leading to a 6d N = 1 USp(k) vector multiplet, and one hypermultiplet in
the two-index antisymmetric representation (which is reducible into a singlet
and a representation of dimension k(k − 1)/2− 1).

Finally, the 59 sector is mapped to the 95 sector by Ω, so it is enough to
keep the degrees of freedom in the 59 sector and not perform any projection.
This leads to one half hypermultiplet of 6d N = 1 susy in the representation
(k, 32) under USp(k)55 and SO(32)99. A half-hypermultiplet contains two
real scalars and one Weyl fermion satisfying a reality condition, and only
exists for multiplets in pseudo-real representation of the gauge group.

Some comments are in order
• The complete spectrum on the D5-brane worldvolume is
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USp(k) N = 1 vector multiplet
N = 1 hypermultiplet in + 1

2
( ; 32)

This 6d theory is chiral and miraculously free of anomlies. Again, another
strong check of the self-consistency of string theory.
• As discussed in [104], a D5-brane provides the limit of zero size in-

stantons in the D9-brane world-volume gauge theory. In fact, using the WZ
couplings in the D9-brane theory, and instanton is charged under the RR
6-form C6, exactly as a D5-brane.

1

8π2

∫

10d
C6 ∧ trF 2 → k

∫

6d
C6 (A.25)

where k = 1
8π2

∫
trF 2 is the instanton number. Instanton have a bosonic zero

mode which parametrizes their size. In the limit of zero size, the instanton
is pointlike in four dimensions and is exactly described by a D5-brane.

A.4.3 Type I D1-brane

One can perform a similar computation of the world-volume massless spec-
trum for D1-branes. We consider a configuration of N D9-branes and k
coincident D1-branes, the geometry is described by

0 1 2 3 4 5 6 7 8 9
D9 - - - - - - - - - -
D1 - - × × × × × × × ×

The configuration preserves 8 supersymmetries, more specifically N =
(0, 8) susy in the 2d volume of the D1-brane.

Before the orientifold projection, the 99 massless sector leads to the 10d
N = 1 U(N) vector multiplet; the 11 massless sector lead to the 2dN = (8, 8)
U(k) vector multiplet. In the 19+91 sector, we have DN boundary conditions
along the 8 light-cone directions; the moddings of oscillators are as for the
DN directions discussed above, and the mass formula for 19 states is

α′M2 = NB +NF + E0 (A.26)

with E0 = 1/2, 0 for the NS, R sectors. IN the NS sector, all states are
massive. Massless states only arise from the R sector groundstate, which is
unique since there are no fermion zero modes. The 19 and 91 groundstates
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behave as a 2d spinor, and transform in the representation (k,N) under the
D1- and D9-brane gauge groups.

Let us now impose the orientifold projection. In this case, consistency
requires

γΩ,9 = 132quad; γΩ,1 = 1k (A.27)

The projections go as follows. In the 99 sector, all fields suffer a projection

λ = −γΩ,9λ
Tγ−1

Ω,9 (A.28)

and the surviving spectrum is the 10d N = 1 SO(32) vector multiplet.
In the 11 sector, the Ω action on oscillators along DD and NN directions

differ by a sign. The Ω projections are different for the 2d N = (0, 8) vector
multiplet (2d gauge bosons plus 8 left-moving 2d chiral fermions) and the
2d N = (0, 8) chiral multiplet (8 real scalars plus 8 2d chiral right-moving
fermions). In fact we have

λ = −γΩ,1λ
Tγ−1

Ω,1 vect.mult.

λ = γΩ,1λ
Tγ−1

Ω,1 ch.mult. (A.29)

leading to a 2d N = (0, 8) SO(k) vector multiplet and a 2d N = (0, 8) chiral
multiplet in the two-index symmetric representation (which is reducible into
a singlet and a representation of dimension k(k + 1)/2− 1).

Finally, the 19 sector is mapped to the 91 sector by Ω, so it is enough to
keep the degrees of freedom in the 19 sector and not perform any projection.
This leads to one 2d chiral (left-moving) spinor, with just one component, in
the representation (k, 32) under SO(k)11 and SO(32)99. This is sometimes
called a Fermi multiplet of 2d N = (0, 8) susy.

Some comments are in order
• The complete spectrum on the D1-brane worldvolume is

SO(k) N = (0, 8) vector multiplet (gauge boson plus 8 left fermions)
N = (0, 8) chiral multiplet (8 scalars plus 8 right fermions)
N = (0, 8) Fermi multiplet (8 left fermions) in ( ; 32)

This 2d theory is chiral and miraculously free of anomlies. Yet another
strong check of the self-consistency of string theory.
• As discussed in later lectures, this content will provide support for the

interesting duality conjecture for the strong coupling regime of type I theory.
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A.5 Final comments

We have shown that a detailed treatment of Dp-branes is possible from our
microscopic description. It allows to rederive the results from the supergrav-
ity analysis of solitons, and to obtain new results, like the detailed world-
volume theories, the appearance of enhanced gauge symmetries, etc.

Many other interesting phenomena appear in configurations with D-branes.
For instance the existence of bound states of D-branes of different dimensions,
configurations where D-branes end on D-branes, the D-brane dielectric effect,
etc. D-branes properties is one of the hot topics in todays string theory. In
the following lectures we will become familiar with some of them.



Appendix B

String theories at strong
coupling and string duality

In this lecture we mainly follow section 14 of [71].

B.1 Introduction

The perturbative picture of the different superstring theories is shown in
figure B.1. There are five different theories, some ofwhich are related by
perturbative string dualities (T-duality) upon compactification.

Our purpose in this lecture is to study the strong coupling limit of these
theories. We will find out that this limit is surprisingly quite simple, and is
usually described in terms of a weakly coupled dual theory. In this description
further, non-perturbative, dualities relate all the different string theories.
This implies that the different perturbative string theories all arise in different
limits of a unique underlying theory, as some moduli are tuned. The situation
is shown in figure B.2. This is analogous to how 10d type IIA and IIB are
recovered starting from a unique theory (type II on S1) in the two limits of
large radius and small radius (large T-dual radius).

The main tool used in the exploration of the strong coupling regime is
to follow the properties of BPS states as the coupling becomes strong. This
can be done because such properties are protected by the supersymmetry
of these states. Some of these states, which are non-perturbative and very
heavy in the weakly coupled regime, become light in the strong coupling
regime, and correspond to the states that dominate this regime, and provide

323
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IIA 8 8

T TΩ

IIB   I E x ESO(32)

Figure B.1: The different 10d supersymmetric superstring theories in perturbation
theory.

IIA

8 8E x E

M

IIB

  I

SO(32)

M

Figure B.2: Map of the moduli space of the underlying theory and its different
known limits.

the elementary, perturbative, degrees of freedom of the dual theory, which is
weakly coupled in that regime.

An intuitive argument indicating which BPS states dominate the dy-
namics at strong coupling is to associate an scale to them. For instance,
the tension of a Dp-brane Tp ' α′−(p+1)/2/gs defines a mass scale M '
α′−1/2g−1/(p+1)

s . This implies that in the strong coupling limit the lightest
mass scale corresponds to the lowest p Dp-brane, suggesting these are the
states dominating the low-enery dynamics in that regime.

B.2 The type IIB SL(2,Z) self-duality

The basic reference is [104], see also [86].
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B.2.1 Type IIB S-duality

At strong coupling, the lightest mass scale is set by the D1-brane states,
M ' α′−1/2g−1/2

s . The fact that these objects dominate the dynamics at
strong coupling suggests that the strong coupling limit is described by a
string theory. It is reasonable to imagine that it moreover corresponds to
a weakly interacting string theory, hence it should correspond to one of the
string theories we have studied. And the only string theories with the correct
amount of supersymmetry are the type IIA and type IIB theories.

The natural proposal is that in fact the strong coupling limit of type IIB
theory is described by a weakly coupled dual type IIB theory. In fact, in the
low-enery limit the theory is described by type IIB supergravity, which is
known to have a symmetry relating weak and strong coupling. The action of
this symmetry, known as S-duality, relates the massless fields of the theory
at coupling gs (denoted as unprimed) with those of the theory at coupling
g′s = 1/gs (denoted as primed), as follows

a′ = a ; φ′ = −φ ; B′
2 = B̃2 ; B̃′

2 = b2

C ′
4 = C4 ; G′ = G (B.1)

where G is the metric in the Einstein frame. The reason why we can trust
the form of the type IIB supergravity action is that its form is fixed by
supersymmetry (up to higher derivative terms, which are not relevant at low
energies).

The proposal is that this symmetry of the supergravity limit is an exact
symmetry of the full string theory! As a consequence, the theory at gs →∞
is described by a perturbative type IIB theory, the transformed under S-
duality, which is weakly coupled g′s → 0.

B.2.2 Additional support

We would like to mention additional evidence supporting this proposal.
• The D1-branes in the original theory are the fundamental strings of

the dual one. Therefore the D1-brane 2d world-volume theory should be of
the same kind as that of a fundamental type IIB string. In fact, D-brane
worldvolume spectra were computed in previous lecture. For a D1-brane
we have a 2d U(1) gauge boson (which is non-dynamical in 2d), 8 2d real
scalars X i(σ1, σ2) in the 8V of the transverse SO(8) Lorentz group, and 8
2d fermions Θα(σ1, σ2), transforming in the 8C of SO(8). This is precisely
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the 2d field content of a type IIB fundamental string in the Green-Schwarz
formalism (see comment in page 19 in lecture on type II superstrings).
• The BPS states of both theories agree. For instance

IIB at gs IIB at g′s = 1/gs
F1 ←→ D1
D1 ←→ F1
D3 ←→ D3
D5 ←→ NS5
NS5 ←→ D5

The tensions and charges of the objects match. Also, they have equivalent
world-volume field theories, as we have seen for the D1/F1 and as follows from
the discussion of world-volume modes for the D5/NS5-branes in the lecture
on non-perturbative states in string theory.

B.2.3 SL(2,Z) duality

In fact, type IIB supergravity has a larger symmetry group, SL(2,R), the

group of unit determinant 2 × 2 real matrices
(
a b
c d

)
. Introducing the

type IIB complex coupling τ = a+ ie−φ, one such transformation relates the
theory at coupling τ to the theory at coupling τ ′, by the following action on
the massless fields

τ ′ =
aτ + b

cτ + d(
B′

2

B̃′
2

)
=

(
a b
c d

)(
B2

B̃2

)

G′ = G , C ′
4 = C4 (B.2)

As we argued two lectures ago, not the full SL(2,R) can be an exact sym-
metry of the quantum theory, since it does not respect the discrete lattice
of charges of brane states in the theory. However, an SL(2,Z) subgroup
of it does respect it, and we propose that it is an exact symmetry of the
full quantum theory. In fact, this group is generated by the above S-duality
transformation τ → −1/τ , and a transformation τ → τ + 1, which simply
shift a → a + 1 leaving all other fields invariant. The latter is knonw to be
a symmetry to all orders in perturbation theory (it is a 0-form gauge field,
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so gauge invariance implies that it has no non-derivative couplings), so it is
natural to propose that it is a symmetry at the non-perturbative level.

This proposal has several interesting implications.

• For instance, it implies the existence of an infinite set of points in the τ
moduli space which are related by SL(2,Z) to weak coupling; that is, whose
dynamics is equivalent to a perturbative IIB string theory once described in
suitable SL(2,Z) dual variables.

• It implies that the spectrum of BPS states in type IIB string theory must
arrange in SL(2,Z) multiplets. In particular, it must contain an SL(2,Z) or-
bit of string-like objects, denoted (p, q)-strings. The (1, 0)- and (0, 1)-strings
correspond to the F1- and D1-strings. Indeed, at a point τ dual to weak cou-
pling by an SL(2,Z) duality, the object becoming the perturbative one is the
(p, q)-string related to the F1-string by the same SL(2,Z)-transformation.
Simlarly we have (p, q) 5-branes; in these cases the p, q labels transform un-
der SL(2,Z) as a doublet, which means that a (p, q) object can be regarded
as a bound state of p (1, 0) objects and q (0, 1) objects. There are also (p, q)
7-branes, but they have a more involved SL(2,Z) transformation rule and
cannot be properly regarded as bound states of the ‘elementary’ solitons. The
existence of these (p, q)-branes as supergravity solitons is guaranteed from
the fact that SL(2,Z) is a subgroup of the supergravity symmetry group.

Toroidal compactification has been already discussed in the lecture on
non-perturbative objects in string theory. So we refer the reader to the
corresponding section.

B.3 Type IIA and M-theory on S1

The original paper discussing this is [104]

B.3.1 Strong coupling proposal

The type IIA theory strong coupling dynamics at low energies is dominated
by the D0-branes, with a mass scale of M ' α′−1/2g−1

s . There is no BPS
string becoming light in the strong coupling regime, and this suggests that
the strong coupling limit is not described by a string theory. Instead what
one finds at strong coupling is that states with n D0-branes form an infinite
tower of states, with massess Mn ' n

gs
Ms, which is becoming extremely light.
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This suggests that the strong coupling limit is a decompactification limit of
some 11d theory.

Indeed, there exists and 11d supergravity theory with the correct amount
of supersymmetry (32 supercharges), and which upon Kaluza-Klein compact-
ification on a circle of radius R leads to an effective theory (neglecting KK
replicas of massless modes) given by 10d type IIA supergravity, with

gs = (M11R)3/2 (B.3)

where M11 is the 11d Planck scale, and R is measured in the 11d metric.
More explictly, 11d supergravity is described by a metric G, a 3-form

C3and and 11d gravitino. The matching of massless 11d fields and massless
type IIA 10d fields is

GMN −→ Gµν

Gµ,10 → Aµ

G10,10 → φ

CMNP −→ Cµνρ

Cµν,10 → Bµν

ΨM,α −→ ψµα, ψµα̇, ψ10,α, ψ10,α̇ (B.4)

This suggests that type IIA at strong coupling is a new 11d quantum
theory, whose low energy limit is 11d supergravity. The microscopic nature
of this 11d theory is completely unknown (let us emphasize again that it it
not a string theory), and it is simply called M-theory. The facts we know
about M-theory are
• At low energies it reduces to 11d supergravity
• It contains 1/2 BPS states corresponding to a 2-brane and a 5-brane

(denoted M2- and M5-brane). These can be constructed as BPS solutions
of the 11d supergravity equations of motion, and argued to exist in the full
microscopic theory (whatever it is) due to their BPS property.
• M-theory compactified on a circle of radius R is completely equivalent

to full-fledged type IIA string theory at coupling gs = (M11R)3/2.

It is interesting to point out that M-theory in 11d does not have any scalar
field, and consequently does not have any dimensionless coupling constant.
This means that there is no parameter which can be taken small to obtain
a perturbative description, so the theory is intrinsecally non-perturbative.
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Once compactified on a circle, however, there is one dimensionless quantity
M11R, which can be taken small to lead to a perturbative theory: this is
precisely perturbative type IIA string theory.

B.3.2 Further comments

Let us provide some additional support for the proposal. For instance there
is a precise matching of BPS states in both theories, as follows 1

IIA at gs ←→ M-theory on S1 of radius R
D0-branes ←→ KK momenta of 11d supergravity multiplet

F1 ←→ wrapped M2
D2 ←→ unwrapped M2
D4 ←→ wrapped M5
NS5 ←→ unwrapped M5
D6 ←→ Kaluza-Klein monopole

The tensions of these objects agree completely, and it is possible to show
that they have equivalent world-volume field theories. In particular one can
show that the worldvolume theory of an M2-brane wrapped on S1 reduces
to the world-sheet theory of a fundamental type IIA string.

We would like to mention that the M-theory proposal implies very inter-
esting properties for the D0-branes, since they are, from an 11d viewpoint,
simply 11d gravitons (and partners) with non-zero momentum along the cir-
cle. For instance, a 11d graviton with n units of momentum is not the same
state as n 11d gravitons with 1 unit of momentum each, although the have the
same mass and charge. This implies that there should exist a bound states of
n D0-branes (with zero binding energy) in type IIA theory. Moreover, scat-
tering of this kind of states should reproduce the supergravity interactions
in 11d!

This line of though has led to a proposal to define microscopically M-
theory, known as the M(atrix) theory proposal [79]. It is based on describing
the complete dynamics of 11d M-theory from the world-line gauge theory
on stacks of D0-branes. This is a 1d quantum mechanics of U(n) gauge
fields, and its partners under the 16 unbroken supersymmetries (9 scalars

1The D8-brane is however a bit problematic, since it is a source of the type IIA mass
parameter, and there is no 11d version of supergravity which reduces to massive IIA theory.
This is in a sense an open issue.
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and fermions). In this description, spacetime arises as the moduli space of
scalars in the 1d theory; 11d gravitons are bound states in this quantum
mechanics system; scattering of supergravity modes in 11d is recovered by
interactions of wavepackets of bound states.

M(atrix) theory has led to very interesting results in 11d and in compacti-
fications preserving enough supersymmetry (toroidal compactifications, etc).
However, difficulties have typically arisen in trying to study more involved
situations with less supersymmetry.

B.4 M-theory on T2 vs type IIB on S1

The original discussion is in [80].

There must be a direct link between M-theory compactified on T2 and
type IIB compactified on S1. This can be seen by regarding M-theory on T2

as type IIA on S1 and performing a T-duality to type IIB on (a T-dual) S1.

11d M
↓ S1

10d IIB IIA/M
↓ S1 ↓ S1

9d IIB
T←→ IIA/M

We can perform the matching of both theories even when the circles are
not small, and propose they are equivalent, with the following relations.

Moduli: The τ complex coupling of type IIB theory matches with the
complex structure parameter of the M-theory T2, τ = R1

R2
eiθ (see figure B.3).

The radius R of the IIB S1 is related to the area of the M-theory T2 A = R1R2

by M3
11 A = 1/R.

Duality groups: The SL(2,Z) duality group of type IIB theory (already
present in 10d) matches the SL(2,Z) invariance group of the T2 geometry,
corresponding to large diffeomorphisms of T2. This is hence a nice geometric
interpretation for the IIB self-duality group.

BPS states: Let us give some examples on the matching of BPS states
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θ

τ R 2
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=
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Figure B.3: Complex structure parameter and area of a two-torus.

IIB on S1 ←→ M-theory on T2

unwrapped (p, q) string ←→ M2 wrapped on (p, q) cycle in T2

wrapped (p, q) string ←→ KK momentum of 11d sugra multiplet
along (p, q) direction

momentum in S1 ←→ M2 wrapped on T2

wrapped (p, q) 5-brane ←→ M5-brane wrapped on (p, q) cycle
unwrapped (p, q) 5-brane ←→ KK-monopole with isometry along (p, q)

unwrapped D3 ←→ M5 wrapped on T2

wrapped D3 ←→ unwrapped M2

The tensions of all objects agree, and they have equivalent world-volume
theories.

Hence type IIB on S1 with radius R and coupling τ is equivalent to M-
theory on a T2 with complex structure τ and area A ' 1/R. In particular
notice that the decompactified 10d type IIB string theory can be obtained
by taking M-theory on a T2 in the limit of vanishing area. In this limit, a
tower of light states arises from M2-branes wrapped on T2, these are inter-
preted as the KK modes on the S1 of the dual IIB theory, which is in the
decompactification limit.

B.5 Type I / SO(32) heterotic duality

See [104] and [81].
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B.5.1 Strong coupling of Type I theory

In 10d type I theory at strong coupling, the lightest mass scale is set by the
D1-branes, with M ' α′−1/2g−1/2

s . This suggests that the strong coupling
behaviour is controlled by a string, and that the strong coupling limit may
correspond to a dual string theory.

From the amount of supersymmetry, the dual string theory could be a
dual type I theory, or a dual SO(32) or E8 × E8 heterotic theory. However,
the D1-string of the original theory is BPS, so the dual string theory should
have an F1 BPS state. This is not present in type I theory, so the strong
coupling dynamics cannot correspond to a dual type I theory. Out of the
two heterotic theories, the fact that the SO(32) heterotic has the same gauge
group as type I theory suggests that it is the correct candidate to describe
the strong coupling limit of type I.

In fact, restricting to low energies, the low energy supergravity action for
type I and SO(32) heterotic theories is the same, up to redefinitions of the
fields, as follows.

φtypeI = −φhet. → (gs)het = 1/(gs)typeI (B.5)

GtypeI = e−φhet.Ghet. , (ASO(32))typeI = (ASO(32))het. , (H3,RR)typeI = (H3)het.

This suggest that the type I theory at coupling gs is exactly equivalent to
the SO(32) heterotic at coupling 1/gs. And in particular that the strong
coupling limit of type I theory is described by a weakly coupled SO(32)
heterotic string theory, and viceversa.

B.5.2 Further comments

B.5.3 Additional support

We would like to mention additional evidence supporting this proposal.
• The D1-branes in the original type Itheory are the fundamental strings

of the dual heterotic theory. Therefore the type I D1-brane 2d world-volume
theory should be of the same kind as that of a fundamental SO(32) heterotic
string. In fact, D-brane worldvolume spectra were computed in previous lec-
ture. For a D1-brane, in the 11 sector we have an O(1) = Z2 gauge symmetry,
8 2d real scalars X i(σ1, σ2) in the 8V of the transverse SO(8) Lorentz group,
and 8 2d rightmoving chiral fermions Θα(σ1− σ2), transforming in the 8C of
SO(8). In addition in the 19 and 91 sectors we have 32 2d left-moving chiral
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fermions λI(σ1 + σ2), singlets under the Lorentz SO(8) and transforming in
the fundamental of the SO(32) spacetime group. This is precisely the 2d field
content of a heterotic fundamental string in the Green-Schwarz formalism.
The fact that it is the SO(32) follows from the fact that the fermions λI are
odd under the Z2 gauge symmetry, and so in building gauge invariant states
of the 2d theory they suffer a GSO projection acting in the same way on the
32 2d internal fermions.

• The BPS states of both theories agree. For instance

type I at gs SO(32) Heterotic at g′s = 1/gs
D1 ←→ F1
D5 ←→ NS5

We would like to conclude with a comment. The SO(32) heterotic theory
contains massive states in the spinor representation of SO(32), of dimension
215. They correspond to states with internal 16d momentum

P =
1

2
(±, . . . ,±) with even number of minu signs. (B.6)

These states are non-BPS, but are stable due to charge conservation (there
are no states lighter than them with the same charge). A prediction of
heterotic/typeI duality is that states with those quantum numbers exist in
type I theory. These do not appear in perturbative type I theory, or in the
non-perturbative BPS states. In the lecture on stable non-BPS D-branes we
will discuss the nature of these objects.

B.6 M-theory on S1/Z2 / E8 ×E8 heterotic

The strong coupling limit of the E8 × E8 heterotic is difficult to analyze di-
rectly, as we will understand later on. It is somewhat easier (although highly
non-trivial) to derive it starting from the discussion of compactifications of
M-theory in the unique compact 1d space which is not the circle: the interval.
The discussion follows the original paper [82] (wee [83] for more advanced
discussions).
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Z2

S1
S1

Z2

Figure B.4: The quotient of a circle by a reflection under a diameter is an interval
I = S

1/Z2.

B.6.1 Horava-Witten theory

Consider the compactification of M-theory on S1, modded out by a Z2 action,
with generator acting by

θ : x10 → −x10

C3 → −C3 (B.7)

which is a symmetry of the theory (at least at the supergravity level, so
we are assuming implicitly this to be a symmetry of microscopic M-theory).
The action on C3 is required so that the term in the 11d supergravity action∫
11d C3 ∧G4 ∧G4 (with G4 = dC3) is invariant.

The quotient space is an interval (see figure B.4), so that spacetime has
two 10d boundaries sitting at x10 = 0, πR.

It is important to understand the we do not have a microscopic description
of M-theory, and such a description would be required to construct an orbifold
of M-theory from first principles. This is because at the fixed points of
the orbifold (the boundaries of spacetime) there may be additional states
which are not obtained simply from the effective field analysis. They would
be the analogues of twisted sectors in string theory constructions. We will
not be able to obtaine these states from first principles, but happily the
consistency condition of cancellation of anomalies will be enough to show
that the existence of these states, and their precise spectrum.

Let us start constructing the orbifold. We expect that the 10d theory will
contain a sector given by the Z2 invariant states in the compactification of
M-theory on S1 (this is the analogue of the untwisted sector in string theory
orbifolds). Ignoring KK replicas, we have
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11 field 10 field Z2 parity Surviving field
GMN −→ Gµν + Gµν

Gµ,10 → Aµ − —
G10,10 → φ + φ

CMNP −→ Cµνρ − —
Cµν,10 → Bµν + Bµν

ΨM,α −→ ψµα, ψµα̇, ψ10,α, ψ10,α̇ +, −, +, − ψµα, ψ10,α̇

The content of massless 10d surviving fields is exactly that of 10d N = 1
supergravity. This content is chiral, and leads to 10d anomalies, hence the
theory as it stands is inconsistent.

If M-theory is consistent at the quantum level it should lead to an addi-
tional set of states. Moreover, one can check that from the 11d viewpoint
the anomalies are localized on the 10d fixed locus of the orbifold. This is
because in the bulk of the spacetime away from the boundaries the local
dynamics is still described by 11d M-theory, which is non-chiral, while it is
at the boundaries that the orbifold projection introduces chirality. The new
fields cancelling the anomaly must be localized on the orbifold fixed points,
as expected.

From our discussion of anomalies in heterotic theories, we know that there
are two possible sets of fields that can cancel (in a very miraculous way) the
anomaly of the 10d N = 1 supergravity multiplet. One of them is a 10d
N = 1 SO(32) vector multiplet, and the other is a 10d N = 1 E8×E8 vector
multiplet. Clearly only the later set of fields can be split into two fixed points
and cancel the two sources of anomaly, so they provide the only candidate
set of multiplets that M-theory must contain in order to lead to a consisten
compactification.

That is, compactification of M-theory on the interval S1/Z2 contains
one E8 10d N = 1 vector multiplet at each of the two 10d boundaries of
spacetime, see figure B.5. This is known as Horava-Witten theory or Horava-
Witten compactification of M-theory.

Notice that the final theory has the same massless spectrum as the E8×E8

heterotic theory. Moreover, the effective action of both theories is determined
by supersymmetry, and agrees if the heterotic string coupling constant and
the M-theory radius are related by gs = (M11R)3/2. It is then natural to
propose that the E8×E8 heterotic string theory at coupling gs is completely
equivalent to M-theory on S1/Z2 with radius R, related to gs as above.

The strong coupling regime of the E8 × E8 heterotic string theory corre-
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S1
Z2

M10
E 8 E 8GMN

Figure B.5: The strong coupling description of E8 × E8 heterotic involves the
compatification of M-theory on a space with two 10d boundaries. Gravity prop-
agates in 11d, while gauge interactions are localized on the 10d subpaces at the
boundaries.

sponds to the large radius limit of the M-theory compactification. We can
now understand why it is difficult to determine directly the strong coupling
regime directly. The sign of the opening up of the extra dimension is the
appearance of KK momentum modes, but these are not BPS states, due to
the Z2 projection in M-theory language: the gauge boson that would carry
the charge of these states is projected out by Z2; equivalentely, momentum
is not a conserved charge due to violation of translational invariance in the
S1 due to the existence of preferred points (the orbifold fixed points).

B.6.2 Additional support

We can also match BPS states in the two theories, as follows

E8 × E8 heterotic at gs M-theory on S1/Z2 at R
F1 ←→ wrapped M2 (see fig. B.6)
NS5 ←→ unwrapped M5

Notice that other states in M-theory on S1, which are projected out by
Z2 (like a warpped M5-branes, or an unwrapped M2-branes) are correctly
absent in heterotic theory.
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S1
Z2

M10E 8 E 8

M2

Figure B.6: The fundamental heterotic string arising in the Horava-Witten view-
point from a M-theory M2-brane stretched along the interval. Note that it knows
about the existence of the two E8’s, thus explaining why the heterotic string has
(in the fermionic formulation) 2d fermions charged under the cartans of both group
factors.

B.7 SO(32) het/typeI on S1 vs M-theory on

S1 × (S1/Z2)

In this section we describe a relation between Horava-Witten theory com-
pactified to 9d on a circle with type I theory. We will find that the type I
picture in terms of D-branes, in a T-dual version, provides further insight into
the appearance of the E8 gauge multiplets on the boundaries of the interval.
See section 14.5 in [71].

We consider the following chain of dualities

11d M
↓ S1/Z2

10d type I
S←→ SO(32) het E8 × E8/HW

↓ S1 ↓ S1 ↓ S1

9d type I’
T←→ type I ←→ SO(32) het

T←→ E8 × E8/HW

Following the duality carefully allows to derive the Horava-Witten picture
from type I’ theory on S1.

T-duality relates the 9d SO(32) and E8 × E8 heterotic theories if there
are Wilson lines turned on, breaking the gauge group to SO(16) (see lecture
on toroidal compactification of heterotic strings). We can now use the S-dual
version of SO(32) heterotic theory, and relate type I on S1 with Wilson lines
breaking to SO(16)2 with E8 × E8 heterotic theory.
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In fact, it is more useful to use the T-dual of type I theory, namely type I’
theory, where the Wilson lines correspond to D8-brane positions (see lecture
on type I toroidal compactification). We are interested in locating 16 D8-
branes on top of each of the two O8-planes in the ΩR quotient of type IIA
on S1, a configuration which leads to SO(16)2 gauge group.

Thus we have a relation between IIA modded out by ΩR, R : s9 → −x9

(with SO(16) gauge multiplets on top of each of the fixed points of R) and
E8×E8 theory (on S1 with Wilson lines breaking to SO(16)2. We now only
need to identify in type I’ language what is the limit that corresponds to
taking large S1 radius and strong coupling in the heterotic side. It can be
seen to correspond also to large radius and large coupling in type I’ picture.

Recall now that in the bulk of the type I’ theory, away form the O8-
planes, the local dynamics is that of type IIA theory. Since we are taking a
strong coupling limit, a new dimension will open up (D0’s are beoming light),
lifting our configuration to M-theory. We recover a picture of M-theory on
S1/Z2 (and on large circle). At the same time, we should see our SO(16)
gauge groups enhancing to E8’s. Indeed this is the case: near the O8-planer
there are stuck D0-branes (which cannot move off into the bulk), which lead
to additional light particles (in vector multiplets) transforming in the chiral
spinors representation 128 of SO(16) and enhancing the group to E8

2

The result is exactly the Horava-Witten picture. The advantage of the
present approach is that it provides a more intuitive interpretation of the E8

gauge multiplets living on the boundaries of spacetime. The type I’ picture
has managed to make part of these multiplets perturbative and familiar.

Another additional advantage of the present picture is that is clarifies a
little bit the role of D8-branes in the lift to M-theory, at least in this par-
ticular context. Another important feature of this picture is that it allows
to understand some subtle details in the matching with heterotic string the-
ory (namely the appearance of exceptional gauge symmetries), but these are
beyond the scopes of these notes, see [81] for details.

2The open string sector of 08 and 80 strings leads to fermionic zero modes on the
D0-brane worldline, transforming in the representation 16 of SO(16). In the quantum
mechanics of these particles, quantization of the fermion zero modes implies these particles
transform in the spinor representation; there is a Z2 gauge symmetry on the D0-brane
volume that forces us to project out on of the chiral representations.
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B.8 Final remarks

As promised in the introduction, the study of strong coupling behaviour of
string theory has enriched our picture of these theories, and shown they are
all related in an intricate web of dualities, see figure B.2. The duality web
get even more intricate as we compactify in more involveld geometries.

We have learnt the lesson that different string theories are simply different
perturbative limits of a unique underlying theory. This underlying theory has
moreover a limit described by an 11d theory, which reduces at low energies
to 11d supergravity.

The theory underlying all string theories and the 11d theory is sometimes
referred to as M-theory as well, in a broad sense (M-theory is often used in
a restricted sense to refer to the 11d theory underlying 11d supergravity).

There are several proposals to define M-theory (in a broad sense) micro-
scopically, but for the moment a complete definition is lacking: We do not
have a complete definition of string theory beyond the perturbative corners.

Altough the discoveries in this lecture may make us feel a bit uncom-
fortable, we should realize that the final picture is extremely beautiful. For
instance, in perturbation theory it seemed that we had five different and
seemingly disconnected solutions/proposals to provide a quantum consistent
description of gravity and gauge interactions. Non-perturbatively we find
that in fact there is a unique answer to this problem. The issue is to extract
the fundamental physical principles underlying this theory in an intrinsic way
(not tied to any particular perturbative limit).
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Appendix C

Non-perturbative effects in
(weakly coupled) string theory

C.1 Motivation

We have seen that non-perturbative states are very important in the structure
of string theory at finite string coupling. In this lecture we will discuss that
non-perturbative states are also essential even in the weakly coupled regime
in certain situations, in which the purely perturbative sector of the theory is
incomplete and leads to divergent answers for physical quantities.

There are different situations of this kind in string theory. In this lecture
we center on two particular examples: enhanced gauge symmetries in type
IIA/M-theory on K3, and conifold singularities in Calabi-Yau compactifica-
tions.

C.2 Enhanced gauge symmetries in type IIA

theory on K3

C.2.1 K3

K3 is the only compact topological space with four dimensions admitting a
Calabi-Yau metric, i.e. of SU(2) holonomy (besides the four-torus T4, which
has trivial holonomy). We now state without proof some of its properties,
see [84] for a more extensive discussion.

Its Hodge numbers are

341
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2S K3 K3

Figure C.1: In K3, singularities arise when some 2-cycles are tuned to have zero
size.

h0,0 1
h1,0 h0,1 0 0

h2,0 h1,1 h0,2 1 20 1
h2,1 h1,2 0 0
h2,2 0

The lattice of homology classes (with integer coefficients) turns out to be
even and self-dual. We can split the corresponding harmonic forms in self-
dual and anti-self dual forms, with respect to the 4d metric. This introduces
a signature in the homology lattice, with 20 self-dual forms (given by 19 of
the (1, 1) forms and a linear combination of the (0, 0) and the (2, 2) forms)
and 4 anti-self-dual forms (one (1, 1) form and a combination of the (0, 0) and
(2, 2)). Hence, the (integer) homology of K3 has the very suggestive form of
a even self-dual lattice with a lorentzian (20, 4) signature.

The moduli space of Calabi-Yau metrics on K3 is 58-dimensional. There
are 38 parameters specifying the complex structure on K3 (i.e, telling us how
to cook up comlex coordinates starting from real ones), and 20 parameters
specifying the Kahler class.

At particular points (or more precisely, at some locus) in this metric
moduli space, K3 develops singularities, which are always of orbifold type 1

C2/Γ, with Γ a discrete subgroup of SU(2). This limits correspond to points
in moduli space where some 2-cycles within K3 have been tuned to zero size,
see figure C.1. The simplest such situation is C2/Z2, where just one 2-cycle
collapses to zero size.

Notice that tuning more parameters, one can go to a limit where the

1That is, the only singular local geometries that are consistent with SU(2) holonomy
are of orbifold type. In three complex dimensions there exist singularities consistent with
SU(3) holonomy, which are not of orbifold type.
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whole K3 has the form of a toroidal orbifold, of the kind studied in the
lecture on orbifold compactification. For instance, there exist points in the
moduli space of metrics in K3 where it is of the forms T2/Z2, At each of the
16 fixed points of the orbifolds the local geometry is C2/Z2 and there is a
zero size 2-cycle.

C.2.2 Type IIA on K3

We are interested in studying compactification of type IIA theory on K3.
Since K3 has SU(2) holonomy, each 10d gravitino leads to one 6d gravitino.
The resulting 6d theory has therefore 16 unbroken supercharges and (being
non-chiral) corresponds to 6d N = (1, 1) supersymmetry. The main massless
supermultiplets are
• the gravity multiplet, containing the graviton Gµν , a 2-form Bµν, a

real scalar φ, four gauge bosons Aµ, two gravitinos ψµα, ψµα̇, and two Weyl
fermions ψα, ψα̇, all of opposite chiralities.
• the vector multiplet, with one gauge boson Aµ, four real scalars, and

two Weyl fermions of opposite chiralities.
As usual, it will be thus enough to identify the bosonic fields in the 6d

theory, since the fermions simply complete the supermultiplets.

Since K3 is curved (unless we are sitting at the point of moduli space
corresponding to some global orbifold geometry) the 2d worldsheet theory
is not free, and we can discuss compactification only in the supergravity
approximation. This will provide the spectrum in the limit where all length
scales in K3 are large (in particular all 2-cycles are large), usually refered to
as large volume regime. Denoting Σa the 22 (2, 2) 2-cycles, Π, Π the (2, 0)
and (0, 2) 2-cycles, and Πa the 20 (1, 1) 2-cycles, the Kaluza-Klein reduction
of the massless 10d bosonic fields gives

IIA Gravity Vector
G → Gµν 38+20 scalars
B → B2

∫
Σa
B

φ → φ
A1 → A1

C3 → C3,
∫
ΠC3,

∫
Π C3

∫
Πa
C3

We thus obtain the 6d N = (1, 1) supergravity multiplet and 20 vector
multiplets (with gauge group U(1)20).
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The structure of the moduli space is (locally) of the form

SO(20, 4)

SO(20)× SO(4)
(C.1)

In principle this can be determined from supergravity, in the large K3 volume
regime. However it turns out to be completely determined by supersymmetry,
so it is exactly of this form (locally), with no α′ or gs corrections. The
above structure is related as we know to the moduli space of 24-dimensional
(20, 4) lorentzian even self-dual lattices up to rotations within the 20d and
4d signature eigenspaces. In K3, it can be regarded as the moduli space of
ways of splitting the 24d lattice of homology classes into sublattices of self-
dual and anti-self-dual forms. More technical considerations involving mirror
symmetry moreover allows to determine the global structure of moduli space
of IIA on K3 [85], which turns out to be

SO(20, 4)

SO(20)× SO(4)× SO(20, 4;Z)
. (C.2)

C.2.3 Heterotic on T4 / Type IIA on K3 duality

This is a prototypical example of string duality below ten dimensions. Let
us provide a list of supporting evidence for it; for details, see [86, 104].
• The spectrum of heterotic string theory on T4 (either for the E8 × E8

or the SO(32) theories, since they are equivalent upon toroidal compact-
ification) , at a generic point of its moduli space (see lecture on toroidal
compactification of superstrings) is given by the 6d N = (1, 1) supergravity
multiplet and 20 vector multiplets (with gauge group U(1)20). The bosonic
fields arise from Gµν, Bµν , φ, the 24 abelian gauge bosons Gmµ, Bmµ, A

I
µ and

the 80 scalars Gmn, Bmn, A
I
m, with m = 1, . . . , 4, I = 1, . . . , 16.

• The structure of the moduli space of both theories agrees, even globally.
As we know, T4 compactifications of heterotic string theory have (C.2) as
their moduli space (with the lattice corresponding to the Narain lattice of
left- and right-moving momenta).
• The low-energy effective actions of bothe theories is the same, up to

a redefinition of the fields. Defining the 6d dilaton by e−2φ6 = VX4e
−2φ,

with VX4 the volume of the internal space, the actions agree up to the field
redefinition

φ′
6 = φ6 ; H3 = e−2φ6 ∗6 H3
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G′ = e−2φ6 G ; AIa
′ = AIa (C.3)

The relations work as above in any direction of the duality. The above
mapping implies that when the IIA theory has large 6d coupling, it admits
a dual perturbative description in terms of weakly coupled heterotic strings,
and vice versa.
• The spectrum of BPS states agrees in both theories. For instance,

Heterotic on T4 Type IIA on K3
F1 ←→ NS5 wrapped on K3

NS5 wrapped on T4 ←→ F1

momentum ki D2 wrapped on any
winding wi ←→ of the 22 2-cycles or

momentum PI D0, or D4 wrapped on K3

The tensions of these objects agree, and objects related as above have
equivalent world-volume field theories.

The fundamental string of one theory corresponds to the wrapped five-
brane of the other. Namely starting with the IIA theory and going to the
limit of large 6d coupling the wrapped fivebrane becomes weakly coupled and
sets the lightest scale, hence dominating the dynamics. In fact, it is possible
to see that the world-volume theory on this wrapped fivebrane is that of a
heterotic string (and viceversa of the IIA F1 vs the heterotic NS5).

C.2.4 Enhanced non-abelian gauge symmetry

The above duality suggests that there must exist an interesting phenomenon
at particular points (loci) in the moduli space of type IIA on K3. Indeed,
at particular points (or rather, subspaces) of the moduli space of heterotic
theory on T4, some abelian gauge symmetries get enhanced to non-abelian
ones. Recalling the left-moving spacetime mass formula

α′M2
L/2 = NB +

P 2
L

2
− 1 (C.4)

we see that when the parameters are tuned such that some state has P 2
L = 2,

we get two new massless state, corresponding to ±PL. They corresponds to
a 6d vector multiplet, and carry charges ±1 under some linear combination
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of the U(1) gauge factors in the generic gauge group. Thus, they enhance
the corresponding U(1) gauge group to SU(2).

This process has clear generalizations. If the parameters are tuned in such
a way that additional states reach P 2

L = 2, then we obtaine enhancements to
larger gauge factors. In general, any non-abelian gauge symmetry with Lie
algebra of type A, D or E (or products thereof) and rank ≤ 24 is possible
(Note that only these algebras are possible since they are the only ones with
all roots of length square equal to 2).

The states becoming massless are BPS states, so we know that there are
new massless states in heterotic theory, even at strong coupling. By duality,
this implies that type IIA must have enhanced non-abelian gauge symmetries
at particular points in K3 moduli space, even at weak coupling. This is a
very surprising conclusion: we have seem that compactification of type IIA
theory on large and smooth K3 spaces leads to abelian gauge symmetries.
Moreover one can use 2d conformal field theory tecniques to show (exactly
in α′) that any regular conformal field theory describing propagation of IIA
string theory on K3 necessarily leads only to abelian gauge symmetries.

Interestingly enough, it is possible to show that there are points in moduli
space of K3 where the 2d conformal field theory breaks down, i.e. the pertur-
bative prescription to compute things in string theory gives infinite answers.
Hence we suspect that it is at these points in moduli space where non-abelian
gauge symmetries may arise, due to non-perturbative effects (present even
at weak coupling!). These points in moduli space correspond to K3 geome-
tries where some 2-cycle is collapsed to zero size and where the integral of B
along the 2-cycle vanishes. The simplest situation corresponds to geometries
with one collapsed 2-cycle C on which

∫
C B = 0. As discussed above, this

corresponds to the geometry of a local C2/Z2 orbifold singularity.
Now it is easy to identify how gauge symmetry enhancement occurs. The

6d theory contains a U(1) gauge boson arising from
∫
C C3. The theory con-

tains 6d particle states charged under it with charges ±1, arising from D2-
branes wrapped on C (with the two possible orientations). It is possible to
see that these states are BPS 2, and their mass is (exactly) given by

M =
|VC + ib|

gs
(C.5)

2Understanding this requires some discussion of the supersymmetry unbroken by D-
branes wrapped on cycles in Calabi-Yau space. We chose to skip this discussion for our
introductory overview.
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where VC denotes the volume of C and b =
∫
C B. Hence, at the point or zero

size and zero B-field the D2-brane particle is exactly massless, no matter how
small the string coupling is. This effect is very surprising, since we see that
the non-perturbative sector of the theory leads to significant effects (new
massless particles!) even in the weak coupling regime. It is reasonable (and
correct) to guess that these new particles in 6d belong to vector multiplets
N = (1, 1) supersymmetry, and therefore enhance the gauge symmetry from
U(1) to SU(2). Clearly, these D2-brane particles are the duals to the P 2

L = 2
states in heterotic theory. Note that this is in agreement with the mapping
of BPS states proposed above.

Several comments are in order
• Notice that in the IIA picture we have perturbative states (the U(1)

gauge boson) and non-perturbative ones (the D2-brane particles) on an equal
footing. Indeed, they are related by an exact gauge symmetry of the theory.
• In the above discussion we used heterotic/IIA duality to motivate the

appearance of enhanced gauge symmetries in IIA compactifications on K3.
However, the whole argument about the appearance of new massless charged
states could have been done based simply on our knowledge of D-branes and
the BPS formulae, without any use of string duality. Clearly, we have enough
understanding of non-perturbative states in string theory to look for them
without help from duality, as we will do in next section.
• Once the additional multiplet of non-perturbative origin is included,

the physics of the configuration is completely non-singular. Equivalently,
the divergent behaviour of the perturbative sector can be understood as
due to incorrectly not including all the massless fields in the dynamics (as
often stated, due to integrating out (= to not incluing) the non-perturbative
state, incorrectly since it is a massless state that clearly must be included in
discussing the low energy dynamics of the system).
• Let us emphasize again that this non-perturbative effect takes place no

matter how small the string coupling is.
• The point VC = 0, b = 0 is singular from the viewpoint of the 2d world-

sheet theory, which only sees perturbative physics. This may seem puzzling
at first sight: In the lesson on orbifold compactification we studied orbifold
singularities with cycles collapsed to zero size, and they were perfectly well
described by simple (in fact, free) 2d worldsheet theories. The key difference,
realized in [88], is that the orbifold describe by a free 2d worldsheet theory
corresponds to a point in moduli space where VC = 0 but b 6= 0 (in fact
b = 1/2 for C2/Z2). In this situation, the D2 particle is very massive at
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weak coupling, and the perturbative description is accurate and non-singular
(gives finite answers for all observables in the theory).
• There is a generalized version of this that explains other non-abelian

gauge symmetry enhancements. There is a classification of C2Γ singularities
with Γ a discrete subgroup of SU(2). In this classification there is an infinite
A series (corresponding to cyclic Zk groups), and infinite D series (dihedral
groups) and an E series with three groups (denoted E6, E7, E8). When
parameters of K3 are tuned so that it develops a C2/Γ singularity of A,
D, E type (with zero B-fields over the collapsed 2-cycles), non-perturbative
states become massless and enhance the gauge symmetry to the correspond-
ing A, D, E gauge group. This provides the IIA dual to the configurations
of enhanced gauge symmetries in heterotic compactifications. Moreover, it
also establishes a ’physics proof’ of the so-called McKay correspondence in
mathematics, which establishes a relation between the geometry of orbifold
singularities C2/Γ and Lie algebras.

C.2.5 Further comments

It is interesting to consider dual realizations of this gauge symmetry enhance-
ment. Indeed, we will find out that it is related to a very familiar phenomenon
we have already encountered.

The local geometry of C2/Z2 is identical to that of a 2-center Taub-NUT
geometry in the limit where the two centers coincide. In fact, it is possible to
display the 2-cycle collapsing to zero size in quite an explicit way, see figure
C.2a. Both spaces differ only in their asymptotic behaviour at infinity, but
this is not important for the phenomenon of gauge symmetry enhancement.
Therefore, we conclude that multi - Taub-NUT spaces develop enhanced
gauge symmetry when two centers coincide, and the B-field is tuned to zero.

Performing now a T-duality along the isometric direction in the Taub-
NUT space, the two centers of the Taub-NUT geometry turn into two par-
allel NS5-branes of IIB theory, sitting at points in the transverse R4. Their
separation in R3 is determined by the volume and B-field of the T-dual 2-
cycle. The non-perturbative D2-brane state now corresponds to a D1-brane
stretched between the NS5-branes, which clearly becomes massless when the
NS5-branes coincide. Performing now an S-duality on this configuration we
obtain two D5-branes; the state related to the original D2-brane is now a
fundametnal string stretched between the D5-branes. In this language, the
exotic phenomenon of enhanced symmetry due to the D2-brane state is the
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Figure C.2: The S
1 fibration over a segment joining two centers in a multi Taub-

NUT geometry defines a homologically non-trivial 2-cycle with the topology of a
2-sphere. Its volume vanishes as the two centers of the Taub-NUT are tuned to
coincide.

familiar phenomenon of enhancement of 6d gauge symmetry on the volume of
D5-branes when they are coincident, due to the appearance of new massless
open (fundamental) strings, see fig C.2b.

We would like to conclude by briefly mentioning that compactification
of type IIB theory on K3 leads to even more exotic physics [89]. Type
IIB theory does not contain abelian U(1) gauge symmetries associated to 2-
cycles. Rather it contains abelian 2-forms, arising from the KK reduction of
C4, belonging to tensor multiplets of 6dN = (2, 0) supersymmetry. Similarly,
IIB theory does not have D2-brane states and hence does not lead to new
massless particles in K3 with collapsed 2-cycles and zero B-field. Instead it
leads to BPS tensionless string states, charged under the 2-form fields, arising
from D3-branes wrapped on the collapsed 2-cycles. This surprising answer
is completely consistent with T-duality with the type IIA answer, once we
compactify both IIB and IIA on a further circle. Winding states of these IIB
tensionless strings are mapped by T-duality to momentum states of the IIA
massless particles.

These configurations can be used to define exotic theories in 6d if we take
the limit of decoupling gravitational interactions. In particular, they can be
used to define the so-called (0, 2) superconformal field theoty, or the so-called
little string theory. Their discussion is however beyond our scope in these
lectures.



350APPENDIX C. NON-PERTURBATIVE EFFECTS IN (WEAKLY COUPLED) STRING THEORY

C.3 Type IIB on CY3 and conifold singulari-

ties

We now have enough understanding of BPS states in string theory to analyze
non-perturbative effects in other situations, even without the help from string
duality. For this section see [90].

C.3.1 Breakdown of the perturbative theory at points
in moduli space

Recall that type IIB on Calabi-Yau threefolds, with Hodge numbers (h1,1, h2,1),
gives rise to the N = 2 4d supergravity multiplet, (h1,1 +1) vector multiplets
and h2,1 hypermultiplets. The latter two kinds of multiplets contain scalars
spanning a moduli space. We are interested in looking for regions in this
moduli space where non-perturbative effects may be relevant, even at weak
coupling.

There is a non-renormalization theorem for 4d N = 2 supersymmetry
that ensures that (to all orders in perturbation theory) the geometry of the
moduli space of vector multiplets (the moduli space metric, which controls
the kinetic terms of moduli in the effective action) does not depend on scalars
in hypermultiplets, and vice versa. In type IIB, both the dilaton and the
overall volume of the Calabi-Yau belong to hypermultiplets. This implies
that the geometry of the vector multiplet space does not depend on the
dilaton (i.e. does not suffer any quantum corrections in gs) or on the volume
scalar (i.e. does not suffer any α′/R2 corrections). The moduli space metric
determined in the classical supergravity approximation is exacty in gs and
α′.

On the other hand it is known that there are points in the moduli space
of complex structures (i.e. vector multiplet moduli space) of Calabi-Yau
manifolds where the effective action obtained from supergravity is singular.
Since we have argued that the supergravity result is exact, there is no α′

or gs correction (to any order in perturbation theory) which removes this
singularity. This means that even the α′-exact worldsheet theory (describing
compactification on the Calabi-Yau space at this point in complex structure
moduli space) is singular, and gives divergent answers for certain physical
quantities.

This breakdown of the perturbative prescription suggests that at this
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points in moduli space there is some non-perturbative effect playing an es-
sential role, even if the string coupling is weak. Our aim in this section is to
discuss this effect.

C.3.2 The conifold singularity

Let us discuss, the generic, simplest, case where compactification on a CY3

leads to a breakdown of the perturbative theory. It corresponds to sitting at
a point in complex structure moduli space, such that the CY3 has a region
which locally develops a so-called conifold singularity. Namely, a piece of the
CY3 can be locally described as the complex hypersurface in C4 given by the
equation

(z1)
2 + (z2)

2 + (z3)
2 + (z4)

2 = ε (C.6)

The complex structure modulus is described by the parameter ε, and the
problematic configuration corresponds to tuning ε→ 0.

The above geometry corresponds, as ε→ 0 to a local singularity, which is
not an orbifold, but still is quite simple and well-knonw to mathematicians
(algebraic geometers). It is possible to see that the geometry (C.6) contains
a 3-cycle with the topology of a 3-sphere of size controlled by |ε|. Namely,
let ε = |ε|eiθ, and define z′i = zie

−iθ/2. If we let xi = Re z′i, yi = Im z′i, the
3-sphere is given by

yi = 0 , (x1)
2 + (x2)

2 + (x3)
2 + (x4)

2 = |ε| (C.7)

As ε→ 0 the 3-cycle C collapses to zero size (see figure C.3). In the config-
uration with a zero size 3-cycle, the perturbative theory breaks down.

The cure of the problem is now clear. Type IIB string theory on this CY3

contains non-pertubative particle states arising from D3-branes wrapped on
the 3-cycle C. It is possible to see that this state is BPS 3 and that its mass
is given by

M =
|ε|
gs

(C.8)

Thus it becomes massless precisely when ε → 0, suggesting that this states
solves the problem of the perturbative sector, as is indeed the case.

3The 3-cycle has the property of being Special lagrangian, which implies that D-branes
wrapped on it preserve some of the supersymmetry unbroken by the CY3.
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Figure C.3: Tuning a modulus in the Calabi-Yau geometry, a 3-cycle shrinks and
the geometry develops a conifold singularity.

An important difference with respect to the case of IIA theory on K3, is
that the massless states belong to hypermultiplets of N = 2 4d supersymme-
try. They are charged under the (perturbative) U(1) gauge symmetry arising
from

∫
C C4. Therefore the effective action for the light modes in this region

in moduli space, is simply a U(1) vector multiplet coupled to a charged hy-
permultiplet of mass equal to ε. In N = 1 susy language, we have a U(1)
vector multiplet V , a neutral chiral multiplet Φ (whose vev corresponds to ε)
and two chiral multiplets of H, H ′ of charges ±1. The action is of the form1

L =
∫
d2θWαWα +

∫
d4θ (H†eVH −H ′†eVH ′) +

∫
d2θΦHH ′(C.9)

This is a perfectly nice an smooth effective action. However, integrating out
the massless fields H, H ′ leads to the singular behaviour of the perturbative
sector. The pathological behaviour of the perturbative theory can be re-
garded as a consequence of missing important dynamical degrees of freedom
in the low energy dynamics.

Again, let us emphasize that the appearance of these non-perturbative
states takes place no matter how small the string coupling is.

C.3.3 Topology change

For this section see [91].
We have seen that the conifold geometry can be regarded as a limit of a

smooth geometry (C.6), containing a 3-cycle, in the limit where the 3-cycle
collapses to zero size. Mathematically, the conifold geometry can also be
regarded as a limit of a (different) smooth geometry, containing a 2-cycle, in
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Figure C.4: Topology change in the neighbourhood of a conifold singularity. Start-
ing with a finite size S

3 we tune a modulus to shrink it; at this stage massless state
appear; a vev for them parametrizes growing an S

2 out of the conifold singualrity.

the limit where the 2-cycle collapses to zero size (and the B-fieldthrough it
is tuned to zero).

To understand this better, consider the equation (C.6) for ε = 0 in terms
of xi = Re zi, yi = Im zi. We get

x2 − y2 = 0 , x · y = 0 (C.10)

where x, y are 4-vectors with components xi, yi. Equivalently, introducing a
new variable r taking positive values, we have

x2 = r2 ; y2 = r2 , x · y = 0 (C.11)

The first equation implies that x describes a 3-sphere of radius r, while the
last equations implies that y describes a 2-sphere of radius r. The geometry
of the conifold is a cone, with base S3×S2 and radial coordinate r. At r = 0
both the 3-sphere and the 2-sphere have zero size.

The manifold (C.6) for non-zero ε corresponds to a smoothing of the
conifold singularity by replacing the singular tip of the cone by a finite size
3-sphere, as illustrated in C.4. This process is called deformation of the
singularity. As mentioned above, there is also the possibility of smoothing
the geometry by replacing the singular tip of the cone by a finite size 2-
sphere, as illustrated in figure C.4. This process is called small resolution
of the singularity, and mathematically the smooth space is described by the
equations

z+x + w+y = 0

w−x+ z+y = 0 (C.12)
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in C4×P1, where C4 is parametrized by z± = z1± iz2, w± = i(z3± iz4), and
P1 is parametrized by (x, y) (with the equivalence relation (x, y) ' λ(x, y)
with λ ∈ C∗. The above equations define a smooth space, which is the same
as the conifold singularity except at the tip of the cone. Namely, for each
non-zero value of z±, w±, the above equations define a unique point, so the
resolved space has a 1-1 mapping to the conifold singularity (away from the
thip). When z± = w± = 0, then (x, y) are unconstrained and instead of just a
singular point we obtain a whole P1. The resolved conifold thus corresponds
to a smooth space, containing a 2-sphere, given by the P1. When its size
goes to zero, the space becomes the conifold singularity.

Starting with a deformed conifold, we can imagine the process of shrinking
the 3-cycle to zero size to reach the singular conifold geometry, and then
growing a 2-cycle to obtain a resolved conifold. This process changes the
topology of the space, since we have ∆(h1,1, h2,1) = (1,−1). This process
is possible mathematically, but only passing through singular geometries.
However, we have just seen that physically string theory is smooth even at the
singular geometry. Therefore it is reasonable to wonder whether string theory
can smoothly interpolate between the two topologically different geometries.

It can be shown that this is not really possible in the above situation,
where the CY3 has only one conifold point. The new geometry does not
contain any 3-cycle, hence the low energy theory should not have any U(1)
gauge symmetry. This suggests that the transition to the new geometry must
be triggered by a vev for the massless charged hypermultiplet. However, the
field theory (C.9) does not have a flat direction where the multiplets H,
H ′ acquire non-zero vevs. This cannot be done due to the conditions to
minimize the scalar potential: these include the D-flatness constraint for the
U(1) gauge symmetry

|H|2 − |H ′|2 = 0 (C.13)

and the F-flatness constraint

∂W

∂Φ
= HH ′ = 0 (C.14)

In other words, since in the Higgsing of U(1) the vector multiplet must eat
one hypermultiplet, we are left with not scalars whose vev parametrize the
new branch.

On the other hand, this kind of topology changing transitions are possible
at points in complex structure moduli space where the CY3 develops several
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conifold singularities, such that the 3-cycles at the conifold points are not
homologically independent. For instance, we can imagine a CY3 with N
conifold singularities, with the property that the homology classes of the
corresponding 3-cycles add to zero in homology. In such situation the gauge
symmetry is U(1)N−1; equivalently there are N gauge bosons U(1)N , but
there is a relation between them, namely their sum is identically zero. On the
other hand, we still get N independent charged hypermultiplets arising from
D3-branes wrapped on the N collapsing 3-spheres. So in N = 1 multiplet
language we have N pairs of chiral multiplets Hi, H

′
i with charges ±qia under

the ath U(1) factor, with a = 1, . . . , N and
∑
a q

i
a = 0.

The effective theory for these field does have a flat direction where the
fields Hi, H

′
i acquire vevs, as can be checked from the D- and F-term con-

straints in this case

∑
i q
i
a(|Hi|2 − |H ′

i|2) = 0 , a = 1, . . . , N
∑
i q
i
aHiH

′
i = 0 (C.15)

And there is a flat direction, corresponding to 〈H ′
i〉 = v, 〈Hi〉 = w, i.e. i-

independent vevs. More intuitively, we have N charged hypermultiplets to
Higgs U(1)N−1 vector multiplets. Clearly N − 1 hypermultiplets are eaten
in the Higgs mechanism, making the vector multiplets massive, while a last
hypermultiplet is left. The two complex parameters v, w correspond to vevs
for scalars in this overall hypermultiplet.

The geometric interpretation of this new branch is clear. Since there are
no massless U(1)’s, all 3-spheres have disappeared from the geometry. Since
there is a new massless hypermultiplet, there is a new 2-sphere. Indeed, there
are N new 2-spheres at the N conifold points, which have been resolved, but
the geometry forces the sizes of all these spheres to be equal 4. String theory
has managed to smoothly interpolate 5 between the two topologically differ-
ent geometries, thanks to the crucial presence of massless non-perturbative
states! (figure C.5).

Some comments are in order

4It would be a bit tricky to explain this, see [92].
5Notice that the topology change as we have discussed it is not really dynamical, but

simpy and adiabatic change as some parameters of the model are varied. However, it is
easy to imagine configurations where moduli change slowly with time, so that their vevs
evolve in time, and we are really moving in moduli space as time goes by. In this setup
the above topology change could occur dynamically during time evolution.
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Figure C.5: Topology change in CY spaces with conifold singularities.

• Let us emphasize again that, at least in this particular setup, string the-
ory is able to interpolate smoothly between spacetimes of different topologies.
In a sense, this is a more drastic version of the statement that geometry is
dynamical in theories with gravity. In string theory, even the topology of
spacetime is, to some extent, dynamical and can change.
• After the transition to the small resolution branch, the original hyper-

multiplet which was of non-perturbative origin, becomes just a perturbative
hypermultiplet arising from the KK reduction of 10d type IIB theory on a
CY2 with a 2-cycle. This is a very striking phenomenon, but certainly it is
implied by our discussion of topology change.
• The topology changing transitions allow to connect the moduli spaces

of different CY compactifications. Indeed it has been checked that all known
Calabi-Yau manifolds are connected by this kind of transition (or general-
izations of it). This is conceptually very satisfying, and suggests that the
election of particular compactification is as dynamical as the choice of vevs
for some fields in a(n extended) moduli space.
• Finally, we would like to point out that there exist dual versions of this

phenomenon, where it looks much more familiar. For instance, there exists a
dual version in terms of heterotic theory compactified on K3×T2, where the
above process corresponds to simply deforming the internal gauge bundle of
the compactification.

C.4 Final comments

There are two finals comments we would like to make
• Non-perturbative effects can be important in string theory even in the
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weakly coupled regime. These effects are particularly crucial in situations
where the perturbative sector of the theory is singular.
• The ideas in this lecture suggest a powerful tool to determine new inter-

esting phenomena in string theory (and check its self-consistency). Namely,
cook up situations where some singular behaviour arises, and try to identify
what effects solve the problem Many new phenomena of string theory have
been uncovered using this idea, and many more lessons still wait to be learnt.
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Appendix D

D-branes and gauge field
theories

D.1 Motivation

String theory in the presence of D-branes contains sectors of gauge interac-
tions (open string sectors). The strength of gauge and gravitational interac-
tions in these setups is different 1, making it possible to switch off gravita-
tional (and other closed string) interactions, while keeping the gauge sectors
interacting. This can be done essentially by taking a low energy limit in the
configuration. In the limit, the dynamics of the open string sector of the
theory reduces to a gauge field theory.

Hence, string theory is able to reproduce the richness of gauge field the-
ory. The idea is to use string theory to explore the dynamics of gauge field
theories; for instance, study non-perturbative effects in gauge theories by
exploiting what we already know about the non-perturbative dynamics in
string theory. In order to do so, we must center on theories with enough
supersymmetry. In this talk we center on theories with 16 supersymmetries,
and four-dimensional gauge sectors (i.e. we center on configurations of par-
allel D3-brane in type IIB string theory).

1This is not true in heterotic models, for instance.

359
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D3

6R

Figure D.1: Stack of coincident D3-branes in flat space..

D.2 D3-branes and 4dN = 1 U(N) super Yang-

Mills

D.2.1 The configuration

Consider a stack of N coincident type IIB D3-branes in flat 10d space, see
figure D.1. The open string spectrum contains massless modes corresponding
to 4d N = 4 U(N) super Yang-Mills, propagating on the 4d D3-brane world-
volume. This includes U(N) gauge bosons, four Majorana fermions λr, r =
1, . . . , 4 in the adjoint representation, and six real scalars φm, m = 1, . . . , 6
in the adjoint representation. The configuration also contains massive open
string modes, and massless and massive closed string modes.

Let us consider the limit of very low energies, or equivalentely of very large
string scale (i.e. we take the limit E/Ms → 0). In this limit, all massive
string modes (open or closed) decouple, and moreover all interactions of
massless closed string modes (which are controlled by 10d Newton’s constant
'M−8

s go to zero. Interactions for massless open string modes, however, are
controlled by the dilaton vev gs and remain non-trivial. The whole dynamics
of the configuration reduces to N = 4 U(N) gauge field theory. In N =
1 supermultiplet language we have a vector multiplet V and three chiral
multiplets Φi, i = 1, 2, 3, with action

SYM =
∫
d4x

[ ∫
d2θτtr (WαWα) +

∫
d4θ

∑

i

trΦie
V Φ†

i +
∫
d2θtr (εijkΦiΦjΦk)

]
(D.1)

where Wα is the field strength chiral multiplet, and τ = θ+ i/g2
YM = a+ i/gs.

This leads to the kinetic terms for gauge bosons, matter fields, and to the
scalar potential proportional to square of the modulus of the commutators
of scalar fields. For most of the discussion we center on θ = 0, a = 0.
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D.2.2 The dictionary

We can now establish a dictionary between properties of the gauge field
theory and properties of the D3-brane configuration in string theory. A
first example already described is that the complex gauge coupling constant
corresponds in the underlying string theory to the complex IIB coupling
constant. Also, for instance, the SU(4) = SO(6) R-symmetry ofN = 4 super
Yang-Mills theory, which acts on the four 4d spinor supercharges, corresponds
in the underlying string theory to the SO(6) rotational symmetry in the R6

transverse to the D3-branes.
The dictionary become particularly interesting in discussing the so-called

Coulomb branch. The N = 4 U(N) gauge theory has a moduli space of
vacua, parametrized by the vevs of the scalar fields. For these vevs to min-
imize the scalar potential, the vevs for the real scalar fields 〈φm〉 should be
N ×N commuting matrices. Then they can be diagonalized simultaneously,
with real eigenvalues vm,a, a = 1, . . . , N , namely

〈φm〉 =



vm,1

. . .
vm,N


 (D.2)

The gauge symmetry in this vacuum is broken to U(1)N , if the vevs are
generic. In all cases, N = 4 supersymmetry is unbroken in these vacua, so
we have full N = 4 vector multiplets of U(1)N . In fact, each U(1) gauge
boson (refered to as the ath U(1)) is associated with six massless scalars,
which correspond to the moduli associated to the ath set of vevs vm,a.

States of the theory with electric charges +1, −1 under the ath and bth

U(1)’s acquire a mass

Mab = gYM |~va − ~vb| (D.3)

where ~va is a 6d vector with components vm,a. This arises from the Higgs
mechanism for gauge bosons, from the scalar potential for scalars, and from
Yukawa couplings for fermions.

There are enhanced U(n) gauge symmetries in the non-generic case when
n of the ~va are equal. That is, the corresponding charged vector multiplets
become massless.

In the underlying string picture, the moduli space of vacua corresponds
to the moduli space of D3-branes. There exists a continuous set of config-
urations, corresponding to the choice of locations of the D3-branes in the
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transverse space R6 2. Labelling the D3-branes by a (Chan-Paton) index
a = 1, . . . , N , the configurations are described by the locations rm,a of the
ath D3-branes in the coordinate xm in R6. All these configurations are N = 4
supersymmetric. As will become clear in a moment, they correspond precisely
the vacua of the N = 4 gauge theory, via the relation vi,a = ri,a/α

′.
In this configuration, the gauge symmetry on the D3-branes is broken

generically to U(1)N , since only aa open strings are massless. If n D3-branes
are located at coindicent positions in R6, their gauge symmetry is enhanced
to U(n). Furthermore, states with charges +1, −1 under the ath and bth

U(1)’s correspond to ab open strings, see figure D.2. Their lightest modes
have a mass

α′M2
ab =

|~ra − ~rb|2
α′ (D.4)

in the string frame. Going to the Einstein frame, there is a rescaling of
energies by by

√
gs, so we get

Mab = g 1/2
s

|~ra − ~rb|
α′ (D.5)

which is in precise agreement with (D.3). That is, we can match the spectrum
of electrically charges states in the gauge theory from the set of fundamental
open strings stretched between the D3-branes.

As we discussed in the N = 4 field theory appendix on the lecture of non-
perturbative states, there are other BPS states in the N = 4 gauge theory.
In particular, each SU(2) subgroup of the U(N) is spontaneously broken
to U(1) in the Coulomb branch. Within each SU(2) → U(1) sector one
can construct non-perturbative ’t Hooft-Polyakov monopole states, carrying
a magnetic charge under the corresponding U(1), and mass proportional to
the gauge symmetry breaking vev. More precisely, for the pair given by the
ath and bth U(1)’s we have monopole states with charges ±(1,−1) under
U(a)a × U(1)b, and mass given by

Mab =
|~va − ~vb|
gYM

(D.6)

2In order to allow for the possibility of branes separated in transverse space without
decoupling them from each other in the low energy limit discussed above, the limit should
also rescale the distance in transverse space R

6. This will be discussed more carefully in
section 2.
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Figure D.2: In a system of parallel D3-branes, there are BPS states obtained as
minimal length 1-branes (fundamental strings or otherwise) suspended between
the ath and the bth D3-brane.

These states are BPS, etc, which guarantees that the abvove formula is exact
quantum mechanically. Note that they are not charged under the diagonal
U(1), which is the extra U(1) factor of U(2) not in SU(2), so we recover the
SU(2)→ U(1) monopole.

In the underlying string picture, there are states with these properties,
corresponding to (open) D1-branes suspended between the ath and bth D3-
branes. It is possible to see that they have the correct charges 3. Their mass
is given by its length times the D1-brane tension. In the Einstein frame,

Mab = g 1/2
s

|~ra − ~rb|
α′1/2

α−1/2

gs
=

1

g
1/2
s

|~ra − ~rb|
α

(D.7)

in agreement with (D.6).

Some comments are in order:

• It is possible to understand that the D1-brane states are supersymmet-
ric, by analyzing the directions along which the D3- and D1-branes stretch.
For instance, for D3-brane separated just along x4, we have

3This would require describing the effect of the D1-brane pulling on the D3-brane.
Such configurations are described by the so-called BIon solutions of the Dirac-Born-Infeld
action on the D3-brane worldvolume: Intuitively, the D1-brane pulls the D3, so that the
coordinate of the D3-brane vary as one moves away from the D1-brane endpoint. To keep
energy finite, one must switch on the world-volume gauge field. The final configuration
is such that there is net flux of F around a 2-sphere surrounding, at spatial infinity, the
D1-brane endpoint, which thus corresponds to a magnetic monopole.
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0 1 2 3 4 5 6 7 8 9
D3 - - - - × × × × × ×
D3 - × × × - × × × × ×

The number of DN (Dirichlet Neumann) and ND directions is four, which
corresponds to a supersymmetric situation (note that this would be a proof
if the D1-branes were infinitely extended; since they are of finite extent, the
argument is just heuristic, but gives the right answer).
•Open strings with endpoints on the D1-branes give rise to fields localized

on the latter. The massless sector indeeed corresponds to the zero modes of
the gauge theory monopole: bosons associated to the monopole position, and
fermions due to the supersymmetries broken by the monopole state.
• In fact, the string theory configuration tells us that there are infinitely

many BPS states associated to each pair of D3-branes, corresponding to
(p, q) strings suspended between them. They must also exist in the gauge
field theory, where they are known as dyons, which carry p and q units of
electric and magnetic charge. They can be directly searched in the N = 4
field theory, and have been constructed for particular values of (p, q). The
masses of these states, (obtained in string theory language and transaled) is
(for general τ)

M2 = |~va − ~vb|
1

=τ |p+ τq|2 (D.8)

• Note that in the limit of coincident D3-brane positions / coincident vevs
(this is known as the origin in the Coulomb branch), the theory has massless
electrically charged states, but also massless monopoles, and masless dyons.
The N = 4 theory at the origin in the Coulomb branch is highly non-trivial!
It is only simple in perturbation theory, where all non-perturbative states
are infinitely massive.

Finally, we would like to point out another small piece of the dictionary.
The N = 4 gauge theory has instantons, which are field configurations in the
euclidean version of the theory. In the underlying string language, they are
described by D(−1)-branes, which are D-branes localized in all directions in
the euclidean version of the string theory. See figure D.3. This agrees with
the familiar fact that a D(p− 4)-brane on the volume of a Dp-brane behaves
as an instanton (recall that an instanton carries D(p − 4)-brane charge due
to the WZ worldvolume coupling on the Dp-brane).
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D3

D(−1)

Figure D.3: A D(−1)-brane on a D3-brane corresponds to an instanton on the 4d
gauge field theory on the D3-brane world-volume.

D.2.3 Montonen-Olive duality

As we discussed for SU(2) in the N = 4 field theory appendix on the lec-
ture of non-perturbative states, there is a non-perturbative exact SL(2,Z)
symmetry of N = 4 U(N) super Yang-Mills theory, acting non-trivially on
the complex gauge coupling, and exchanging the roles of perturbative and
non-perturbative states.

This is easily derived from the underlying string picture. The D3-brane
configuration is invariant under the exact non-perturbative SL(2,Z) sym-
metry of type IIB theory, exchanging the roles of the different (p, q)-strings.
This implies that the 4d N = 4 gauge field theory inherits this as an ex-
act symmetry, which exchanges the roles of the different electrically charged
states, monopoles and dyons of the theory. Namely

Type IIB D3-branes N = 4 gauge theory
τ → aτ+b

cτ+d
τ → aτ+b

cτ+d

(p, q)-string → (p′, q′)-string (p, q)-dyon → (p′, q′)-dyon

with
(
p′

q′

)
=
(
a b
c d

)(
p
q

)
.

As usual, this implies that e.g. the strong coupling dynamics of N = 4
U(N) super Yang-Mills is described by a dual weakly coupled U(N) gauge
theory where the perturbative degrees of freedom (electrically charged states
in dual theory) are the original magnetic monopoles.

Montonen-Olive SL(2,Z) duality arises from type IIB SL(2,Z) duality
in this setup.
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D.2.4 Generalizations

There have been many generalizations of the possibility to study gauge theory
phenomena by embedding them in the worldvolume of D-brane configurations
in string theory. For a review see [93]. Some further examples and results
one can show using string theory tools are
• Montonen-Olive dualities for N = 4 gauge field theories with SO(N)

or Sp(N) gauge groups, from configurations of D3-branes (and O3-planes)
in type IIB string theory.
• For theories with 16, 8 supersymmetries in dimensions d = 5, 6, con-

struction of interacting field theories which correspond to ultraviolet fixed
points of the renormalization group (superconformal field theories).
• For 4d theories with 8 supersymmetries (4d N = 2), exact computation

of the low energy effective action (up to two derivatives) exactly in gYM
(including non-perturbative effects), in agreement with the Seiberg-Witten
solution [94].
• A non-perturbative duality for 3d theories with 8 supersymmetries,

known as mirror symmetry 4.
• For 4d theories with 4 supersymmetries (4d N = 1), a non-perturbative

equivalence in the infrared of theories which are different in the ultraviolet,
knonw as Seiberg duality. Also, some qualitative features of N = 1 pure
Yang-Mills, like number of vacua, etc.

D.3 The Maldacena correspondence

In a sense, this is a more precise version of the relation between string the-
ory and gauge field theory. It even allows the quantitative computation of
quantities in gauge field theory from the string theory / supergravity point
of view. An extensive review is [111].

D.3.1 Maldacena’s argument

This section follows [96].
Consider a stack of N coincident type IIB D3-branes in flat 10d space 5

. The dynamics of the configuration is described by closed strings, and open

4The name is due to some relation with mirror symmetry in type II string theory.
5Similar arguments can be repreated for the M theory M2 and M5-branes. For other

branes, non-trivial varying dilatons modify the argument substantially.
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D3

+decoupling

superYM 10d sugra

Figure D.4: Maldacena’s low energy limit in the system of N coincident D3-
branes, described as hypersurfaces on which open strings end. In the limit, we
obtain N = 4 super Yang-Mills gauge field theory, decoupled from free 10d super-
gravity modes.

string ending on the D3-branes. Let us take a careful low energy limit, where
we send the string scale to infinity, but keep the energies of 4d field theory
excitations finite. One example of such states are open strings stretched
between D3-branes separated by a distance r in transverse space (i.e. elec-
trically charged states in the Coulomb branch), which have a mass

M2 = r2/α′2 (D.9)

Hence we need to take the limit α′ → 0 and r → 0, keeping r/α′ finite.
In this limit, the theory reduces to two decoupled sectors, one of them is 4d
N = 4 super Yang-Mills theory, and the other is free 10d gravitons (or better
free fields corresponding to the massless closed string modes). See figure D.4.

On the other hand, the configuration has an equivalent description, as
type IIB string theory in the background created by the stack of D3-branes

ds2 = Z(r)−1/2ηµνdx
µdxν + Z(r)1/2dxmdxm

e2φ = 1/gs

F5 = (1 + ∗)dtdx1dx2dx3dZ−1 (D.10)

where µ = 0, . . . , 3, m = 4, . . . , 9, and

r =
∑

m

(xm)2 , Z(r) = 1 +
R4

r4
, R4 = 4πgsα

′2N (D.11)

We have a gravitational background, pictorially shown in figure D.5, and
a RR 5-form field strength background, such that there are N units of flux
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S 5

R6

Figure D.5: Geometry of the background created by N coincident D3-branes.

piercing through a 5-sphere surrounding the origin in the transverse 6d space,∫
S5 F5 = N .

Notice that we say that this description is given by full string theory
in this background, namely we assume that we include all stringy (i.e. α′

corrections) and quantum corrections of the background.
We now would like to take the same kind of limit as above. First, it is a

low energy limit; this corresponds to sending the string scale to infinity (i.e.
α′ → 0), keeping energies, as measured by an asymptotic observer in the
above spacetime geometry, fixed. Second, we want to take the limit keeping
energies of excitations in the near core region r ' 0 finite. Due to the non-
trivial gtt metric component, an excitation of proper energy E(r) localized at
r in the radial direction, has an energy

E∞ = E(r)Z(r)−1/4 (D.12)

as measured in the reference frame of an observer at infinity. That is, as an
excitation approaches r ' 0, its energies measured in the reference frame of
the asymptotic observer suffers a large redshift. For excitations near r ' 0,
the above relation reads

E∞ ' E(r)
r

R
= (E(r)α

′1/2)
r

(gsN)1/4α′ (D.13)

We want to take α′ → 0 keeping E∞ fixed (large string scale keeping fixed
energy) and E(r→0)α

′1/2 finite (finite energy for excitations in the near core
region). This corresponds to taking r → 0, α′ → 0 keeping r/α′ finite.

There are two decoupled sector that survive in this low energy limit.
There is a sector of fields propagating in the asymptotically flat region, which
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Figure D.6: Maldacena’s low energy limit of the system of N coincident D3-
branes, described by type IIB theory on the D3-brane background. In the limit
we obtain full type IIB string theory on the near core limit AdS5 × S

5, decoupled
from free 10d supergravity modes.

suffer no redshift; so the only fields surviving in the low energy limit are the
massless 10d supergravity fields, which are free fields in this limit. A second
sector corresponds to modes localized in the r ' 0 region; these fields suffer
an infinite redshift, hence modes of arbitrarily large proper energy have small
energy measured in the asymptotic reference frame, and survive in the low
energy limit. This second sector is described by the full type IIB string theory
on the background

ds2 = r2

R2 (ηµνdx
µdxν) + R2

r2
dr2 + R2dΩ 2

5∫
S5 F5 = N (D.14)

The first two pieces of the metric describe a 5d anti de Sitter space AdS5, of
radius (or rather, length scale) R, while the last terms describes a 5-sphere.
Through the latter there are N units of RR 5-form flux. See figure D.6.

Since the limit involves r → 0, it is useful to rewrite the above metric in
terms of the quantity U = r/α′, which remains finite in the limit. We have

ds2 = α′
[

U2

(4πgsN)1/2
(ηµνdx

µdxν) + (4πgsN)1/2dU
2

U2
+ (4πgsN)1/2dΩ 2

5

]
(D.15)

The overall factor of α′ simply encodes the fact that we are zooming into the
region of small r.

The Maldacena conjecture is that both descriptions, in terms of gauge
field theory (plus 10d free gravitons) and in terms of string theory on the
AdS5 × S5 background (plus 10d free gravitons) are completely equivalent.
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We thus propose the complete equivalence of 4d N = 4 SU(N) super
Yang-Mills 6 gauge field theory with full fledged type IIB string theory on
AdS5×S5, with radius R2/α′ given above, and N units of 5-form flux through
S5.

Let us emphasize once again that the equivalence involves full string the-
ory, including all stringy modes, brane states, etc. Again, this is because
arbitrarily high energy modes survive in the throat region in the limit.

This correspondence is very striking. It proposes that a string theory (in
a particular background) is completely equivalent to a gauge field theory.
It is very striking that a theory that includes gravity, and an infinite set
of fields, can be equivalent to a non-gravitational theory, which in principle
looks much simpler. We will see later on how this correspondence works
in more detail, although an extensive discussion is beyond the scope of this
lecture. Let us also point out that this kind of relation, in the limit of large
N , had been proposed by ’t Hooft, see appendix.

The dictionary between the parameters of the gauge theory and the string
theory are as follows

N = 4 SU(N) super Yang-Mills Type IIB on AdS5 × S5

τ = θ + i 1
g2

Y M

τ = a+ i 1
gs

N = number of colors N = flux

λ = g2
YMN

R2/α′=4πg2
Y M

N←→ R2/α′

D.3.2 Some preliminary tests of the proposal

Some additional support for the above proposal is that the two systems have
the same symmetry structure.
• The SO(6) isometry group of S5 on the string theory side exactly repro-

duces the SO(6) R-symmetry group of the N = 4 gauge field theory. This
is analogous to the observation we made in previous section for systems of
D3-branes.
• The isometry group of AdS5 is SO(4, 2). This can be seen from the

follwoing construction of AdS5 space. Consider the hypersurface

(X0)2 + (X5)2 − (X1)2 − (X2)2 − (X3)2 − (X4)2 = R2 (D.16)

6A subtle issue is that the Maldacena gauge/string correspondence holds for the SU(N)
group, rather than for U(N). The difference in the large N limit is of order 1/N 2, and
hence only detectable by computing loop corrections.
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in the 6d flat space with signature (4, 2) and metric

ds2 = −(dX0)2 − (dX5)2 + (dX1)2 + (dX2)2 + (dX3)2 + (dX4)2 (D.17)

Clearly the above hyperboloid is a 5d space of signatures (3, 1) and isometry
group SO(4, 2).

Performing the change of variables

X0 =
1

2u

[
1 + u2(R2 + (X1)2 + (X2)2 + (X3)2 − t2)

]

X i = Ruxi

X4 =
1

2u

[
1− u2(R2 − (X1)2 − (X2)2)− (X3)2 + t2

]

X5 = Rut (D.18)

the metric on the 5d space becomes

ds2 = R2u2(−dt2 + (dx1)2 + (dx2)2 + (dx3)2) +
R2

u2
du2 (D.19)

And redefining u = Uα′/R2, we get

ds2 = α′
[
U2

R2/α′ [−dt2 + (dx1)2 + (dx2)2 + (dx3)2] +
R2/α′

U2
dU2

]
(D.20)

which is precisely (D.15). Hence AdS5 has an isometry group SO(4, 2).

This corresponds exactly to the conformal group of the 4d gauge field
theory. N = 4 theories at the origin of the Coulomb branch are conformally
invariant, even at the quantum level (that is, the beta functions which encode
the running of couplings with the scale are exactly zero, so the theory is scale
invariant). The SO(4, 2) conformal group has a SO(3, 1) Lorentz subgroup
and a SO(1, 1) scale transformations subgroup.

Hence the isometry group of the AdS5 theory reproduces the conformal
group of the 4d gauge field theory 7. An important fact in this context is that
the scale transformations in the gauge field theory correspond to translations
in the variable U on the AdS side. Namely, this subgroup acts on the AdS5

geometry as

(t, x1, x2, x3, u)→ (λt, λx1, λx2, λx3, λ−1u) (D.21)
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Figure D.7: The spread on the boundary of the effect of an excitation in the
bulk of AdS spacetime is smaller as the excitation are localized closer to infinity
in the U direction (boundary). In terms of the dual gauge field theory, the near
boundary region corresponds to the ultraviolet, while the interior corresponds to
the infrared.

Moreover, going to small lengths in the gauge field theory corresponds to
going to infinity in U in the AdS theory, and vice versa. This is known as
the UV/IR correspondence. See figure D.7.

• The supersymmetry structure is the same for both theories. The
AdS5 × S5 background preserves 32 supercharges. Sixteen of them were
present in the full D3-brane solution, but sixteen additional one appear (ac-
cidentally) in taking the near core limit. The gauge field theory has also 32
supercharges, sixteen of them are the familiar ones of N = 4 theories, while
sixteen additional ones, known as superconformal symmetries, are generated
by the previous supersymmetries and conformal transformations.

• There is non-geometric non-perturbative symmetry, which also matches
in the two theories. This is the SL(2,Z) self-duality of type IIB string theory,
which corresponds to the SL(2,Z) Montonen-Olive self-duality of N = 4
SU(N) super Yang-Mills.

It would be interesting to test the proposal beyond a mere matching of the
symmetries of the system. However, we do not know how to quantize type
IIB string theory on AdS5 × S5. This is difficult because there is curvature
in spacetimes, hence the 2d worldsheet theory is not free (and not exactly
solvable, for the moment). In addition, there are RR fields in the background,
and this makes the worldsheet theory even more complicated 8.

7Hence the familiar name of AdS/CFT correspondence.
8It is interesting to point out that a subsector of this theory (corresponding to a so-called
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Therefore we can analyze this system only in the supergravity approx-
imation, i.e. keeping the leading behaviour in α′/R2. This will be a good
approximation for R2/α′ large, when all length scales of the geometry are
large, and when the density of RR field strength is small. In the language of
the corresponding gauge field theory, this corresponds to the limit of large
λ = g2

YMN , also known as ’t Hooft limit (where the so-called ’t Hooft coupling
λ is large), see appendix. We also need to restrict to classical supergravity,
hence we ignore string loop corrections, and take gs to be small. This implies
that the AdS side is tractable when N → ∞m, gs → 0, and λ is finite and
large. In this limit the gauge field theory is not tractable. As we will see in
a moment, although gs is small the right parameter weighting loops is λ, so
at large λ the perturbative expansion breaks down.

On the other hand, the gauge field theory is tractable in the perturbative
regime, namely when gs is small and N is small. In this limit, the string
theory has a strongly coupled 2d worldsheet theory, and the supergravity
approximation breaks down. Hence, the above correspondence is analogous
to the duality relations studied in other lectures. There is an exact equiva-
lence of two different descriptions, but when one of them is weakly coupled
and tractable, the other is not.

The usual way in which the Maldacena correspondence is exploited is
to consider the classical supergravity limit to compute certain quantities,
protected (or expected to be protected) by supersymmetry. These quantities
can then be computed in perturbative gauge theory, extrapolated to the ’t
Hooft limit, and compared with the supergravity result. We will discuss some
example in next section. For quantities not protected by any symmetry, the
supergravity result need not agree with the perturbative gauge theory result.
It can then be regarded as a prediction for the behaviour of that quantity in
the ’t Hooft limit.

In this setup, the mapping of systematic corrections beyond the ’t Hooft
limit / classical supergravity limit is as follows

gauge theory side string theory side
λ corrections α′/R2 corrections

λ/N = g2
YM corrections gs loop corrections

Penrose limit), given by type IIB string theory on AdS5 × S
5 can be quantized exactly in

α′ in the light-cone gauge. In this situation it is possible to find stringy effects/states and
try to identify them in the gauge theory description, with great success [97].
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0 0U=

M4
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Figure D.8: Penrose diagram from AdS spacetimes (only the directions U are
shown). Light-rays travel at 45 degrees. The points I± are the infinite future/past
of timelike lines. A timelike observer can send a light signal to the boundary and
get it back in finite proper time.

This agrees very nicely with the picture of corrections to the ’t Hooft
limit in gauge field theories, see appendix.

D.3.3 AdS/CFT and holography

For these section, see [104] and [99]. These authors have proposed a precise
recipe to obtain correlation functions in the super Yang-Mills theory, via a
computation in type IIB theory in the AdS5×S5 background. Moreover, the
proposal leads to a nice interpretation of ’where’ the field theory is living,
in the AdS picture, For most of the discussion in this section, the essential
features arise from the geometry of AdS spaces. This suggests a generaliza-
tion of the correspondence to a relation between type IIB string theory on
AdS5×X5 (with X5 a compact Einstein space) and 4d conformal gauge field
theories with lower or no supersymmetry.

AdS5 space has a conformal boundary at U →∞, which is 4d Minkowski
space M4 (plus a point). That is, there is a conformally equivalent metric
(ds2 → e2f(t,x,U)ds2) such that infinity is brought to a finite distance . The
Penrose diagram, encoding the causal structure of the AdS space (light-
like geodesics run at 45 degrees in the diagram) is shown in figure D.8. A
remarkable feature of AdS spacetime is that an timelike observer can send
a light signal to the boundary of spacetime, and receive the reflected signal
a finite amount of time after sending it, see figure D.8. This means that,
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although the boundary of AdS spacetime is at infinity, information on the
boundary can interact with information in the bulk within finite time. Hence,
AdS5 behaves as a box of finite size, and this makes it important to specify
boundary conditions in order to define any theory on AdS5.

For instance, the partition function of the theory (namely, the vacuum
path integral over all the spacetime fields of the theory on AdS space) is in
general a functional of the boundary values φ0 for all the spacetime fields φ
of the theory

Zpart.funct.[φ0] =
∫
D(IIB fields) e−Sspacetime IIB[fields] (D.22)

The importance of boundary conditions, along with the fact that the
boundary M4 of AdS5 spacetime is of the same form as the space on which
the gauge field theory lives, motivates the following proposal. Quantities in
the gauge field theory on M4 provide the boundary conditions for fields (of
the string theory) propagating on the AdS5 spacetime. More precisely, the
proposal is
• For each field φ propagating on AdS5 there is an operator Oφ in the

gauge field theory. The field in AdS5 can be any field associated to a 5d state
of string theory in AdS5×S5, for instance a massless 5d supergravity mode,
any mode in the KK reduction of the massless 10d supergravity mode, any
massive 10d string state, or even any state from the non-perturbative sectors
of the type IIB string theory. The properties of Oφ, φ, like their behaviour
under the symmetries of the systems, are related as we discuss a bit later.
• The value φ0 of φ at the boundary at infinity

φ0(t, x) = limU→∞φ(t, x, U) (D.23)

is a function onM4. This value acts as a source for the corresponding operator
Oφ in the field theory in M4, namely, its lagrangian includes a term ∆L =
φ0Oφ. Equivalently, a term in the lagrangian of the gauge field theory (given
by a linear combination of operators, with some coefficients) corresponds
to introducing specific boundary conditions for the corresponding fields in
AdS space. Hence, the field theory data can be regarded as encoded in the
boundary of AdS space, and as providing boundary conditions for string
theory in AdS space.
• Correlation functions of operators Oφ in the gauge field theory can

be computed by taking functional derivatives of a generating functional
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Zgauge[φ0], which is a path integral with a source φ0 for the operator

Zgauge[φ0] =
∫
D(gauge th. fields)e−SY M +φ0Oφ (D.24)

For instance, the two-point correlation function

〈OφOφ〉 =
δZ[φ0]

δφ0δφ0

|φ0=0 (D.25)

The proposal is that the partition function Zpart.func.[φ0] of IIB theory on
AdS5 with boundary conditions φ0 for the 5d field φ (this for all fields of the
theory), corresponds exactly to the generating functional Zgauge th[φ0] of the
gauge field theory, with φ0 as source term for the corresponding operator Oφ.
That is

Zpart.funct[φ0] = Zgauge th[φ0] (D.26)

This is a precise correspondence that allows to encode all the dynamics of
string theory on AdS in the dynamics of gauge field theory, and vice versa.

The above proposal can be used to obtain a relation between the mass
m of a 5d field φ in string theory AdS5 (which appears in the computaion
of the partition function in the free field approximation) and the conformal
dimension ∆ of the corresponding operator Oφ in the gauge field theory
(which appears in the two-point correlation function). The relation, for a
p-form field in AdS5, reads

(∆ + p)(∆ + p− 4) = m2 (D.27)

One can verify this matching by considering operators whose conformal di-
mensions are protected by supersymmetry. For instance, chiral operators
are operators which belong to chiral multiplets when the N = 4 theory is
written in terms of the N = 1 subalgebra. For instance, chiral operators
are Tr (Φi1 . . .Φir), or Tr (WαWαΦi1 . . .Φir). Chiral operators are BPS like,
in the sense that they belong to shorter multiplets, and their conformal di-
mensions is related to their R-charge. The conformal dimensions can then
be computed in the perturbative Yang-Mills theory (small gs, small λ), and
then extrapolated and compared with the masses of (BPS) states in the string
theory side. These states are easy to identify and correspond to the KK re-
duction on S5 of massless 10d supergravity modes. The perfect matching
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between towers of KK modes in AdS5 and infinite sets of opertors in the
gauge theory is a strong check of the correspondence.

Beyond these kind of checks, which have been extended in several di-
rections, there are other qualitatively different checks that we would like to
mention
• There is a precise recipe to compute Wilson loops in the gauge field

theory (expectation values of operators given by path ordered integrals of the
gauge field over a circuit C in 4d) from the string theory side, as the action
of a minimal area worldsheet asymptoting to the circuit C as it approaches
the boundary at infinity [100].
• Some D-brane states in string theory on AdS5×S5 have been identified

to operators in the gauge theory. For instance, a D5-brane wrapped on S5

has been shown to correspond to a baryonic operator in the gauge field theory
[101].
• Taking a particular limit of the correspondence, which amounts to cen-

tering on a subsector of states/operators with large SO(6) quantum numbers,
a complete matching of stringy states and operators has been carried out [97].
On the string theory side, the limit reduces to string theory on a pp-wave
background, which can be quantized exactly in α′.

D.3.4 Implications

We would like to conclude by mentioning some implications of this far-reacing
correspondence
• It is a holographic relation! A theory with gravity in 5d is described

in terms of a non-gravitational theory with degrees of freedom in 4d. This
has deep implications for instance on question like the information problem
in black holes in AdS space. The correspondence with gauge theory allows
(in principle, although in practice it is not known how to do it) to describe
the process of creation and evaporation of a black hole purely in terms of a
manifestly unitary quantum field theory. Hence, no violation of the rules of
quantum mechanics is involved.
• The correspondence provides a complete non-perturbative definition of

string/M theory, in a particular background. This certainly changes the way
to think about string theories. It is however difficult to extract the main
physical principles to allow to develop a background independent definition.
• The correspondence and its generalizations provides a new powerful tool

to analyze gauge field theories in the ’t Hooft limit using supergravity duals.
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Figure D.9: Rough holographic picture for non-conformal gauge field theories.

In particular it has been possible to describe non-conformal theories in these
terms, for instance by finding the field profiles that must be introduced in
supergravity to describe the introduction of mass terms for some of the matter
fields of the N = 4 theories. The gauge theories are a small perturbation
of N = 4 in the ultraviolet, and flow to interacting non-conformal theories
in the infrared, sometimes showing interesting behaviour like confinement,
etc. In the supergravity side, the solutions are asymptotically AdS near the
boundary at infinity, and are deformed in the inside. The structure in the
inside region reproduces the infrared features of the gauge field theory. See
figure D.9. For instance, confinement in the gauge field theory is usually
associated to the presence of a black hole in the interior of the 5d space (see
e.g. [102]).

The gauge/string correspondence is one of the deepest recent results in
string theory and gauge theory. A lot of research is devoted to gaining a
better understanding of the lessos it has for us concerning the nature of
string theory, of holography, and of a new language to describe gauge field
theory phenomena.

.1 Large N limit

The Maldacena correspondence fits well with ’t Hooft’s proposal that the
large N limit of gauge field theories seems to be described by a string theory
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Figure 10: Propagator and 3-point interaction vertex in double line notation.

9.
The main observation is that in a SU(N) gauge theory, the effective

coupling constant is not g2
YM , but λ = g2

YMN . The factor of N intuitively
takes into account that the number of particles running in loops increases as
we increase the number of colors. Hence in the large N limit perturabation
theory breaks down, no matter how small g2

YM is. However, ’t Hooft realized
that there are additional simplifications in this limit, of large N keeping
λ finite, that suggests it might have a simple description in terms of a dual
string theory. Namely in this ’t Hooft limit, for any amplitude the Feynmann
expansion chan be recast as a double expansion in λ and 1/N .

To understand this, let us introduce the double line notation, where in a
Feynmann diagram a field in the adjoint representation is drawn as a pair
of oppositely oriented arrows (can be thought of as representing degrees of
freedom in the fundamental and antifundamental representations), see figure
10. One can classify diagrams according to its number of vertices V , external
lines E, and closed loops of lines F . From (D.1) each vertex is weighted by
N/λ, while each propagator is weighted by λ/N , while each loop of lines
gives a factor of N . Each diagram is therefore weighted by a factor

NV−E+F λE−V (28)

The number ξ = V − E + F is known as the Euler number of the diagram,
and g, defined by ξ = 2− 2g, is knons as the genus of the diagram. We have
the double expansion

∞∑

g=0

N2−2g
∞∑

i=0

λi cg,i (29)

9’t Hooft was interested in QCD, and hence on non-supersymmetric and confining pure
gauge theories, where the string is supposed to correspond to the confined gauge field
fluxlines. The AdS/CFT has shown that similar ideas actually extend (often in a subtle
way) to non-confining theories as well.
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Figure 11: Two two-loop diagrams at genus 0 and 1.

The genus has a geometric intrepretation. A diagram of genus g if such
that it can be drawn in double line notation without crossings on a Riemann
surface of genus g, and cannot be drawn in a surface of genus g−1. In figure
11 we show two-loop diagrams of genus 0 and 1.

In the large N limit, keeping λ fixed, any amplitude has a genus expan-
sion 10 in 1/N . Hence, the large N limit is dominated by the so-called planar
diagrams, which correspond to genus 0. This limit corresponds to a weakly
coupled string theory, which is dominated by the genus 0 terms. The expan-
sion in 1/N is supposed to reproduce the genus expansion of the dual string
theory. Geometrically, this corresponds to ‘filling the holes’ of the gauge
theory diagram in the double line notation to form the corresponding Rie-
mann surface. This has been physically understood in a related gauge/string
duality context in [103].

10Note that, since λ is fixed, one can recast the series as an expansion in λ/N = gY M2 ,
which becomes the coupling constant of the string theory (in fact, it is gs in the AdS/CFT
case).



Appendix A

Brane-worlds

A.1 Introduction

We have seen that branes in string theory may lead to gauge sectors localized
on their world-volumes. This can be exploited, as we did in previous lecture,
to take a decoupling limit where dynamics reduces to gauge field theory, and
try to use string theory tools to gain new insights into gauge field theory
dynamics.

In this lecture we would like to center on a different application of branes
and their gauge sectors. There exist string theory or M-theory vacua with
gauge sectors localized on the volume of branes, or on lower-dimensional
subspaces of spacetime. For intance, in Horava-Witten compactifications,
or in type I’ theory (or its T-dual versions). These vacua can be regarded
as a new possible setup in which to construct four-dimensional models with
physics similar to that of the observed world, i.e. gravitational and gauge
interactions, which charged chiral fermions. In this lecture we discuss differ-
ent possible constructions containing gauge sectors that come close enough
to the features of the Standard Model. Their main novelty is that gravi-
taional interactions and gauge interactions propagate over different spaces.
See figure A.1. This implies a different scaling of their interaction strength
as functions of the underlying parameters/moduli of the model.

Heterotic model building

To understand better this point, recall the setup of compactifications of
heterotic string theory on Calabi-Yau manifolds X6. The 4d gauge group is
given by the commutant of H in G (namely the elements of G commuting

381
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Σ2

D3

0Σ

D5

Figure A.1: In compactifications with D-branes, the gauge sectors like the Stan-
dard Model could propagate just on a lower-dimensional subpace of spacetime, e.g.
the volume of a suitable set of D-branes, like any of the shaded areas.

M4}

}X6
Gi j Ai

a

Figure A.2: Picture of heterotic string compactification.

with H), where G is the 10d E8×E8 or SO(32). Thus, 4d gauge interactions
are inherited from 10d ones, and so propagate all over 10d spacetime. Fig.
A.2 shows configurations of this kind.

A very important property in this setup is the value of the string scale,
which follows form analyzing the strength of gravitational and gauge inter-
actions, as we quickly review. The 10d gravitational and gauge interactions
have the structure

∫
d10x

M8
s

g2
s

R10d ;
∫
d10x

M6
s

g2
s

F 2
10d (A.1)

where Ms, gs are the string scale and coupling constant, and R10d, F10d are
the 10d Einstein and Yang-Mills terms. Powers of gs follow from the Euler
characteristic of the worldsheet which produces interactions for gravitons
and gauge bosons (the sphere). Upon Kaluza-Klein compactification on X6,
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these interactions reduce to 4d and pick up a factor of the volume V6 of X6

∫
d4x

M8
s V6

g2
s

R10d ;
∫
d4x

M6
s V6

g2
s

F 2
10d (A.2)

From this we may express the experimental 4d Planck scale and gauge cou-
pling in terms of the microscopic parameters of the string theory configura-
tion

M2
P =

M8
s V6

g2
s

' 1019 GeV ;
1

g2
YM

=
M6

s V6

g2
s

' O(.1) (A.3)

From these we obtain the relation

Ms = gYMMP ' 1018 GeV (A.4)

which implies that the string scale is necessarily very large in this kind of
constructions. The key points in the derivation are that all interactions
propagate on the same volume, and their strengths have the same dilaton
dependence.

Brane-world constructions
Models where gravitational and gauge interactions propagate on differ-

ent spaces are knonw as brane-worlds, since fields in the Standard Model
(those that make up the observable world) are localized on some brane (or
in general, some subspace of spacetime. In these constructions 4d gauge and
gravitational interaction strength have a different dependence on the internal
volumes.

The prototypical case 1 is provided by a compactification of type II theory
(or some orientifold quotient thereof) on a 6d space X6, with a gauge sector
localized on the volume of a stack of Dp-branes 2 wrapped on a (p − 3)-
cycle Π(p−3), with Π(p−3) ⊂ X6. Namely, the (p + 1)-dimensional world-
volume of the Dp-brane is of the form M4×Π(p−3). Before compactification,
gravitational and gauge interactions are described by an effective action

∫
d10x

M 8
s

g2
s

R10d +
∫
dp+1x

M p−3
s

gs
F 2

(p+1)d (A.5)

1The following analysis does not apply directly to Horava-Witten compactifications,
see [104] for the corresponding discussion.

2For the moment, the D-brane configuration is simplified for convenience. Later on we
will see detailed configurations leading to interesting world-volume spectra.
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where the powers of gs follow from the Euler characteristic of the world-
sheet which produces interactions for gravitons (sphere) and for gauge bosons
(disk).

Upon compactification, the 4d action picks up volume factors and reads
∫
d4x

M 8
s V6

g2
s

R4d +
∫
d4x

M p−3
s VΠ

gs
F 2

4d (A.6)

This allows to read off the 4d Planck mass and gauge coupling, which are
experimentally measured.

M2
P =

M 8
s VX6

g2
s

' 1019 GeV

1/g2
YM =

M p−3
s VΠ

gs
' 0.1 (A.7)

If the geometry is factorizable, we can split VX6 = VΠV⊥, with V⊥ the trans-
verse volume, and obtain

M2
P g

2
YM =

M11−p
s V⊥
gs

(A.8)

This shows that it is possible to generate a large Planck mass in 4d with a
low string scale, by simply increasing the volume transverse to the brane,
or tuning the string coupling. In particular, it has been proposed to lower
the string scale downto the TeV scale to avoid a hierarchy with the weak
scale [105, 106]. The hierarchy problem is recast in geometric terms, namely
the stabilization of the compactification size in very large volumes. These
are difficult to detect since they are only felt by gravitational interactions.
Present bounds on the size of ‘gravity-only’ extra dimensions come from
tabletop experiments (like the Cavendish experiment), and impose only that
their length scale in not larger than 0.1 millimeter. Notice however that a low
string scale is not compulsory in models with some solution to the hierarchy
problem, e.g. supersymmetric models.

A.2 Model building: Non-perturbative het-

erotic vacua

In this and the following section, we describe the basic rules for the construc-
tion of vacua of string theory or M-theory, with localized gauge sectors with
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features similar to those of the Standard Model. Explicit models with spec-
trum extremely close to that of the Standard Model have been constructed.
However, in this lecture we will be happy by simply describing the apperance
of charged chiral fermions, and the underlying reason for family replication.
More detailed model building issues are left for the references.

We start by considering the setup provided by compactifications of Horava-
Witten theory. This can be considered as the strong coupling limit of com-
pactifications of the E8 × E8 heterotic string theory, and hence most of the
tools are already familiar. There are however some interesting new ingredi-
ents.

Consider M-theory compactified to 4d on X6 × S1/Z2. In general we
will be interested in supersymmetric models, hence we choose X6 to be a
Calabi-Yau threefold 3.

As in compactifications of the heterotic string theory, the
compactification is required to satisfy certain consistency conditions, aris-

ing from the equation of motion for some p-form fields. Namely, in heterotic
theory the interactions for the NSNS 6-form B6

∫

10d
B6 ∧ ∗B6 +

∫

10d
B6 ∧ (trF 2 − trR2) (A.9)

led to the equation of motion for the NSNS 2-form

dH3 = trF 2 − trR2 (A.10)

In Horava-Witten theory, we need to consider two gauge bundles on the 10d
boundaries of the interval, each with structure group a subgroup of E8. The
action for the 6-form C6 (which is just the lift of the heterotic B6) reads

SC6 =
∫

11d
∗G7 ∧G7 +

+
∫

11d
δ(x10)(trF 2

E8
− 1

2
trR2) ∧ C6 +

∫

11d
δ(x10 − πR)(trF 2

E′
8
− 1

2
trR2) ∧ C6 =

3A motivation for supersymmetry in this setup is that there is only one ‘gravity-only’
dimension. If we build a non-supersymmetric model, and try to lower the 11d Planck
scale to the TeV range to avoid a hierarchy problem, we should take this dimension very
large to generate a large 4d Planck scale. In fact, so large that it would conflict with
the experimental bounds. Hence, a large 11d Planck scale is convenient in this setup,
and supersymmetry is the most reasonable way to stabilize the weak scale against it. It
however may be somewhat lower than the 4d Planck scale.
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=
∫

11d
dG4 ∧ C6 +

+
∫

11d
δ(x10)(trF 2

E8
− 1

2
trR2) ∧ C6 +

∫

11d
δ(x10 − πR)(trF 2

E′
8
− 1

2
trR2) ∧ C6

where δ(x) is a bump 1-form localized in the interval. We have a similar
equation of motion for the M-theory 3-form, namely

dG4 = δ(x10)(trF 2
E8
− 1

2
trR2) + δ(x10 − πR)(trF 2

E′
8
− 1

2
trR2) (A.11)

Taking this relation in cohomology, we obtain

[trF 2
E8

] + [trF 2
E′

8
]− [trR2] = 0 namely c2(E) = c2(R) (A.12)

We would like to point out that the class of models is in fact richer. We
can consider compactifications to 4d, where the background configuration
also includes sets of ka M5-branes 4 sitting at a point x10

a in the interval, and
with two of their world-volume dimensions wrapped on a 2-cycle Πa ⊂ X6.
Since the M5-branes are magnetically charged under the M-theory 3-form,
the action for the 11d dual 6-form C6 is

SC6 =
∫

11d
∗G7 ∧G7 +

∑

a

ka

∫

M4×Πa

C6 +

+
∫

11d
δ(x10)(trF 2

E8
− 1

2
trR2) ∧ C6 +

∫

11d
δ(x10 − πR)(trF 2

E′
8
− 1

2
trR2) ∧ C6 =

=
∫

11d
dG4 ∧ C6 +

∑

a

ka

∫

11d
δ(x10 − x10

a )δ(Πa) ∧ C6 +

+
∫

11d
δ(x10)(trF 2

E8
− 1

2
trR2) ∧ C6 +

∫

11d
δ(x10 − πR)(trF 2

E′
8
− 1

2
trR2) ∧ C6

where δ(Πa) is a bump 4-form with support on the 2-cycle Πa. The equation
of motion for C6, taken in cohomology gives the consistency condition for
this kind of compactification, which reads

[trF 2
E8

] + [trF 2
E′

8
] +

∑

a

ka[δ(Πa)]− [trR2] = 0 (A.13)

4Notice that taking the limit of small interval size shows that this possibility is also
available in heterotic theory. Hence, there exist compactifications of heterotic on Calabi-
Yau threefolds, with NS5-branes. Due to the presence of the latter, these vacua are
non-perturbative, even if the string coupling is small.
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where [Πa] is the 4-cohomology class dual to the 2-homology class of the
2-cycle [Πa]. Namely, M5-branes contribute to the condition of cancellation
of 6-form charge, via the homology class of the 2-cycle they wrap.

Compactifications with M5-branes have been studied in [107]. Since the
M5-brane classes help in satisfying the consistency condition, it follows that
there is additional freedom in the gauge bundles, and hence in the low-energy
spectra of the theory. They lead to additional phenomena, for instance there
may be transitions where some M5-brane moves towards the boundary in the
interval and is diluted as an instanton class in the boundary gauge field. We
will not go into these discussions.

Once the topology of the gauge bundles over the boundaries, namely
their structure groups H, H ′, and characteristic classes, and the M5-brane
configuration, are specified, the computation of the 4d massless spectrum is
similar to that in heterotic theory.
• We obtain the 4d N = 1 supergravity multiplet, the dilaton chiral

multiplet, and (h1,1) + h2,1 chiral mulitplets arising from geometric moduli.
•We obtain vector multiplets for the gauge group given by the commutant

of H, H ′ in E8. Notice that the choice H = SU(3), H ′ = 1 still leads to
E6×E8, but does not correspond to embedding the spin connection into the
gauge degrees of freedom, since the latter would involve both E8 factos in a
symmetric way.
• Charged chiral multiplets arise from the KK reduction of the 10d gaug-

ino, and their multiplicity is given by the index of the Dirac operator coupled
to the gauge bundle (in a representation corresponding to the their 4d gauge
representation).
• There may be additional multiplets arising from the KK reduction of

the M5-brane world-volume theory on the 2-cycle Πa. These can be trickier
to discuss, so we skip their details.

Taken overall, many of the features of these models are similar to com-
pactifications of heterotic string theory. However, the existence of the ‘gravity
only’ dimension allows to lower the fundamental scale somewhat below the
4d Planck scale.

A.3 Model building: D-brane-worlds

Another class of models with localized gauge sectors can be obtained by
considering compactifications with D-branes. An additional advantage of
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D3 D3

X 6 R6

Figure A.3: Isolated D-branes at a smooth point in transverse space feel a locally
trivial geometry and lead to non-chiral open string spectra.

these setups is that, for simple enough D-brane configurations (i.e. in the
absence of curvatures) the quantization of open string sectors can be carried
out exactly (in the sense of the α expansion).

A first issue that we should address is how to obtain D-brane sectors
containing chiral fermions in the corresponding open string spectrum. In
fact, the simplest D-brane configurations, like D-branes in flat space (or
in toroidal compactifications), with trivial world-volume gauge bundle (zero
field strength for world-volume gauge fields, preserve too much supersymme-
try to allow for chirality (that is, they have at least 4dN = 2 supersymmetry)
5.

In fact, we can heuristically argue that isolatedD-branes sitting at a
smooth point in transverse space lead to non-chiral open string spectra. Con-
sidering for instance the case of D3-branes, sitting at a smooth point P in
Transverse 6d space X6, see figure A.3. Since chiral matter is necessar-
ily massless, if present it should arise from open strings located at P and
stretching between the D3-branes. Hence, only the local behaviour of X6

around P is important. If P is smooth this local behaviour is that of R6,
hence the massless open string sector if simply that on D3-branes in flat
space, which is non-chiral.

There are two ways which have been used in the construction of D-brane
Configurations with chiral open string sectors; they arise from relaxing each

5One way to generate chiral fermions is in fact to consider introducing a non-trivial
bundle for the D-brane world-volume gauge field, with support on the internal cycle
Πp−3wrapped by the Dp-brane. This kind of model is, in some respects (like in the
computation of the spectrum, etc) similar to heterotic models, and we do not discuss it
here.
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M 4

3C  /ZN

D3

Figure A.4: Stack of D3-branes at an orbifold singularity

D62
D61

Figure A.5: Two intersecting D6-branes in flat space.

of the above conditions in italic writing:

• Relaxing the smoothness condition, we may consider D-branes sitting
at singular points in transverse space. The prototypical example is provided
by a stack of D3-branes located at an orbifold singularity, C3/ZN. See figure
A.4.

• Relaxing the condition of isolatedness, we may consider configurations of
D-branes intersecting over subspaces of their world-volume. The prototypical
case is provided by D6-branes intersecting over 4d subpaces of their world-
volumes. See figure A.5

In the following we discuss the appearance of chiral fermions, and the
spectrum in these two kinds of D-brane configurations.

A.3.1 D-branes at singularities

For concreteness, let us center of a stack of n D3-branes sitting at the Origin
of a C3/ZN orbifold singularity. These models were first Considered in [108].



390 APPENDIX A. BRANE-WORLDS

The ZN generator θ acts on the three complex coordinates of C3 as follows

(z1, z2, z3)→ (e2πI a1/Nz1, e
2πi a2/Nz2, e

2πi a3/Nz3) (A.14)

where the ai ∈ Z in order to have and order N action 6. We will center on
orbifolds that preserve some supersymmetry, hence their holonomy must be
in SU(3) and thus we require a1 ± a2 ± a3 = 0 mod N , for some choice of
signs.

The closed string spectrum in the configuration can be obtained using
the techniques explained in the corresponding lecture. Moreover, this sector
will be uncharged under the gauge group on the D-brane world-volume, so
it is not too interest for our discussion and we skip it.

Concerning the open string sector, the main observation is that there are
no twisted sectors. This follows because the definition of twisted sectors in
closed strings made use of the periodicity in the worldsheet direction σ, and
this is not allowed in open strings. Hence, the spectrum of open strings on
a set of D3-branes at a C3/ZN orbifold singularity is simply obtained by
considering the open string spectrum on D3-branes in flat space C3, and
keeping the ZN-invariant ones. Each open string state on D3-branes in flat
space is given by a set of oscillators acting on the vacuum, and an n × n
Chan-Paton matrix λ encoding the U(n) gauge degrees of freedom. The
action of θ on one such open string state is determined by the action on the
corresponding set of oscillators and the action on the Chan-Paton matrix.
For concreteness,let us center on massless states. The eigenvalues of the
different sets of oscillators for these states are

Sector State θ eigenvalue
NS (0, 0, 0,±) 1

(+, 0, 0, 0) e2πi ai/N

(−, 0, 0, 0) e−2πi ai/N

R ±1
2
(+,+,+,−) 1

1
2
(−,+,+,+) e2πi ai/N

1
2
(+,−,−,−) e−2πi ai/N

The eigenvalues can be described as e2πi r·v, where r is The SO(8) weight
and v = (a1, a2, a3, 0)/N . The above action can easily be understood by

6One also needs N
∑

i ai = even (so that the quotient is a spin manifold, i.e. allows
spinors to be defined).
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decomponsing the SO(8) representation with respect to the SU(3) subgroup
in which the ZN is embedded. In fact we have 8V = 3 + 3 + 1 + 1, and
8C = 3 + 3 + 1 + 1, and noticing that (A.14) defines the action on the
representation 3. Notice that the fact that bosons and fermions have the same
eigenvalues reflects the fact that the orbifold preserves N = 1 supersymmetry
on the D-brane world-volume theory. In fact we see that the different states
group into a vector multiplet V , with eigenvalue 1, and three chiral multiplets,
Φi with eigenvalue e2πi ai/N .

On the other hand, the action of θ on the Chan-Paton degrees of freedom
corresponds to a U(n) gauge transformation. This is defined by a unitary
order N matrix γθ,3, which without loss of generality we can diagonalize and
write in the general form

γθ,3 = diag (1n0, e
2πi/N1n1, . . . , e

2πi(N−1)/N1nN−1
) (A.15)

with
∑N−1
a=0 na = n. The action on the Chan-Paton wavefunction (which

transforms in the adjoint representation) is

λ→ γθ,3λγ
−1
θ,3 (A.16)

We now have to keep states invariant under the combined action of θ on the
oscillator and Chan-Paton piece. For states in the N = 1 vector multiplet,
the action on the oscillators is trivial, hence the surviving states correspond
to Chan-Paton matrices satisfying the condition

λ = γθ,3λγ
−1
θ,3 (A.17)

The surviving states correspond to a block diagonal matrix. The gauge group
is easily seen to be

U(n0)× . . .× U(nN−1) (A.18)

For the ith chiral multiplet Φi, the oscillator part picks up a factor of e2πi ai/N .
So surviving states have Chan-Paton wavefunction must satisfy

λ = e2πi ai/Nγθ,3λγ
−1
θ,3 (A.19)

The surviving multiplets correspond to matrices with entries in a diagonal
shifted by ai blocks. It is easy to see that the surviving multiplets transform
in the representation

3∑

i=1

N−1∑

a=0

( a, a+ai
) (A.20)
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We clearly see that in general the spectrum is chiral, so we have achieved
the construction of D-brane configurations with non-abelian gauge symme-
tries and charged chiral fermions. Moreover, we see that in general the
different fermions have different quantum numbers. The only way to ob-
tain a replication of the fermion spectrum (i.e. a structure of families, like
in the Standard Model), we need some of the ai to be equal (modulo N).
The most interesting example is obtained for the C3/Z3 singularity, with
v = (1, 1,−2)/3. The spectrum on the D3-brane world-volume is given by

N = 1 Vect.Mult. U(n0)× U(n1)× U(n2)

N = 1 Ch.Mult. 3 [ (n0, n1, 1) + (1, n1, n2) + (n0, 1, n2)] (A.21)

we see there is a triplication of the chiral fermion spectrum. Hence in this
setup the number of families is given by the number of complex planes with
equal eigenvalue.

We would like to point out that, as usual in models with open strings,
there exist some consistency conditions, known as cancellation of RR tad-
poles. Namely, there exist disk diagrams, see figure A.6, which lead to the
coupling of D-branes at singularities to RR fields in the θk twisted sector.
When the θk twist has the origin as the only fixed point, the corresponding
RR fields do not propagate over any dimension transverse to the D-brane.
This implies that they have compact support, and Gauss law will impose the
corresponding charges must vanish, namely that the corresponding disk dia-
grams cancel. The coefficient of the disk diagram is easy to obtain: from the
figure, we see that any worldsheet degree of freedom must suffer the action of
θk as it goes around the closed string insertion. In particular it means that
the Chan-Paton degrees of freedom suffer the action of γkθk,3=(γθ,3

as they go

around the boundary. Hence the disk amplitude is proportional to tr γθk,3,
and the RR tadpole condition reads

Tr γθk,3 = 0 , for kai 6= 0 modN (A.22)

For instance, for the above Z3 model these constraint require n0 = n1 = n2.
In general, the above constrains ensure that the 4d chiral gauge field theory
on the volume of the D3-branes is free of anomalies.

Clearly the above model is not realistic. However, more involved models
of this kind, with additional branes (like D7-branes, also passing through
the singularity), can lead to models much closer to the Standard Model, see
[109]. Their study is however beyond the topic of this lecture.
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θk

θkγ

Figure A.6: D3-branes at singularities are charged under RR forms in the θk

twisted sector, via a disk diagram. Worldsheet degrees of freedom suffer the ac-
tion of θk as they go around the cut, shown as a dashed line. The amplitude is
proportional to tr γθk .

a)

M4 R2 R2 R2

D61
D61θ2

θ3D61

θ1
D62

D62
D62

D62
D61

b)

Figure A.7: Two picture of D6-branes intersecting over a 4d subspace of their
volumes.

A.3.2 Intersecting D-branes

In this section we consider a different class of D-brane configurations leading
to chiral 4d fermions. Consider two stacks of D6-branes (denoted D61- and
D62-branes) in flat 10 space, intersecting over a 4d subspace of their world-
volumes, see figure A.7a. A slightly more explicit picture of the configuration
is shown in figure A.7b. The local geometry is determined by the three an-
gles πθi that relate the two D6-branes in the 6d space transverse to the 4d
intersection. For the following analysis, see [110].

Two such sets of D6-branes, intersecting at general angles, break all the
supersymmetries of the theory. The supersymmetries preserved by one of the
stacks are broken by the other, and vice versa. Consider the D61-branes to
span the direction 0123456. The supersymmetry transformations unbroken
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by these D6-branes are of the form εLQL + εRQR with

εL = Γ0 . . .Γ6εR (A.23)

where the subindices L,R denote the supersymmetries arising from the left
or right movers. Denoting by R the SO(6) rotation rotating the D61-branes
to the D62-branes, the supersymmetries unbroken by the latter are

εL = R−1 Γ0 . . .Γ6R εR (A.24)

where here R denotes the action of the rotation in the spinor representation.
In general, there are no spinors surviving both conditions. However,

for Special choices of the angles θi, i.e. of the rotation R, there may exist
solutions to the above two conditions. In fact, it is easy to realize that if
R is a rotation in an SU(3) subgroup of SO(6), there is one component of
the spinor which is invariant under R, and both condition become identical.
Therefore, intersections of D6-branes related by angles θi satisfying

θ1 ± θ2 ± θ3 = 0 (A.25)

for some choice of signs, preserve 4 supercharges (1/4 of the supersymmetries
preserved by the first stack of branes). This is the equivalent of 4d N =
1, hence we may expect these configurations to lead to chiral 4d fermions.
We will check below that this is indeed the case. Notice also that if the
rotation is in a subgroup of SU(2) (e.g. θ1 ± θ2 = 0, θ3 = 0), the system
preserves more spinors, in fact 8 supersymmetries, the equivalent of 4dN = 2
supersymmetry.

Let us compute the spectrum of open strings in the above configuration
of two Intersecting stacks of D6-branes, at generic angles θi. Consider open
strings stretching among the N1 D61-branes. This sector does not notice the
presence of the second stack, so gives the same answers as for isolated D6-
branes. We obtain U(N1) gauge bosons and their superpartners with respect
to the 16 unbroken supersymmetries, propagating over the 7d volume of these
D6-branes. For the sector of open strings stretching among the N2 D62-
branes, we similarly obtain U(N2) gauge bosons and their partners (under
the 16 susys unbroken by the second D6-branes; notice these are not the
same susy as above), propagating over the 7d volume of these D6-branes.

The novelty arises in the sector of open strings stretching between D61-
and D62-branes. This sector feels both branes, and hence notices the amount
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of supersymmetry preserved by the two-stack system. We thus expect the
spectrum in this sector to be non-supersymmetric for generic angles θi, and
to gather into supermultiplets only for a constrained set of angles. Let us
carry out the quantization of the sector of 6162 open strings. The only differ-
ence with respect to other open string sectors is in the boundary conditions.
Consider two coordinates X1, X2 in a two-plane in which the D6-branes
are rotated by an angle θ. The boundary conditions for the corresponding
worldsheet fields for an open string are

∂σX1|σ=0 = 0

∂tX2|σ=0 = 0

cos πθ ∂σX1 + sin πθ ∂σX2|σ=` = 0

− sin πθ ∂tX1 + cos πθ ∂tX2|σ=` = 0 (A.26)

In complex coordinates Z = Xi + iX2, we have

∂σ(ReZ)|σ=0 = 0

∂t(ImZ)|σ=0 = 0

∂σ(ReeiθZ)|σ=` = 0

∂t(Ime
iθZ)|σ=` = 0 (A.27)

Imposing these boundary conditions on the open string oscillator expansion
leads to the constraints that: the center of mass position of the open string
is located at the intersection point; momentum and winding are necessarily
zero; oscillators have moddings shifted by ±θ. Applying this rule to the three
complex coordinates corresponding to intersecting D6-branes, we obtain os-
cillators αin+θi

, αı
n−θi

for the complexified 2d bosons, and Ψi
n+ν+θi

, Ψı
n+ν−θi

for the 2d fermions, with n ∈ Z and ν = 1/2, 0 for the NS and R sectors.
The computation of the spectrum is formally similar to the computation of
the spectrum on the left movers in an orbifold. In particular the fractional
modding of oscillators introduces a modified vacuum energy. The final re-
sult for the spectrum, centering on light states, is as follows (we assume
θi ∈ (−1/2, 1/2))
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Sector State α′M2 4d Lorentz
NS Ψ1

−1/2+θ1
|0〉 1

2
(−θ1 + θ2 + θ3) Scalar

Ψ2
−1/2+θ2

|0〉 1
2
(θ1 − θ2 + θ3) Scalar

Ψ3
−1/2+θ3

|0〉 1
2
(θ1 + θ2 − θ3) Scalar

Ψ1
−1/2+θ1

Ψ2
−1/2+θ2

Ψ3
−1/2+θ3

|0〉 1
−12(θ1 + θ2 + θ3) Scalar

R |0〉R Weyl spinor

All these fields propagate on the 4d intersection of the two D6-branes, and
transform in the bifundamental representation (N1, N2) of the gauge group
U(N1) × U(N2). The 6261 open string sector is quantized analogously, and
in fact provides the antiparticles for the above fields. We see that generi-
cally bosons and fermions are unpaired, and only when the angles define a
rotation in SU(3) one of the bosons becomes massless and pairs up with the
4d fermion in the R sector, to give a 4d chiral multiplet. Notice that in the
non-supersymmetric case, the scalars in the NS sector may have positive or
negative mass square. If all scalars have positive mass square, the configu-
ration of intersecting branes is stable. On the other hand, the existence of
some tachyonic scalar signals an instability against a process in which the
intersecting D6-branes recombine into a single smooth one. We will not say
much more about this interesting process.

The important point in the above construction is that it provides a new
setup with D-branes containing non-abelian gauge symmetries and charged
chiral fermions. We now briefly describe how to exploit it in the construction
of 4d models. For a review, see [111].

Although intersecting D6-branes provide 4d chiral fermions already in
flat 10d space, gauge interactions remain 7d and gravity interactions remain
10d unless we consider compactification of spacetime. Hence, the general
kind of configurations we are to consider (see figure A.8) is type IIA string
theory on a spacetime of the form M4 × X6 with compact X6, and with
stacks of Na D6a-branes with volumes of the form M4 × Πa, with Πa ⊂ X6

a 3-cycle. It is important to realize that generically 3-cycles in a 6d com-
pact space intersect at points, so the corresponding wrapped D6-branes will
intersect at M4 subspaces of their volumes. Hence, compactification reduces
the 10d and 7d gravitational and gauge interactions to 4d, and intersections
lead to charged 4d chiral fermions. Also, generically two 3-cycles in a 6d
space intersect several times, therefore leading to a replicated sector of opens
strings at intersections. This is a natural mechanism to explain/reproduce
the appearance of replicated families of chiral fermions in Nature!
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Figure A.8: Compactification with intersecting D6-branes wrapped on 3-cycles.

Denoting the 3-homology classes of the wrapped 3-cycles by [Πa], the
intersection number is computed Iab = [Πa] · [Πb], computed as described in
the lecture on topology. The 4d spectrum on the resulting configuration is
easy to obtain. From the sector of open strings strecthing among the D6a-
branes, we obtain the KK reduction on Πa of the 7d U(Na) gauge bosons and
partners. In general we obtain 4d U(Na) gauge bosons 7. From the sector
of open string stretching between the ath and bth stacks of D6-branes, we
obtain a chiral 4d fermion in the bifundamental for each intersection of the
corresponding 3-cycles. There are in general additional light scalars, which
may become massless if the intersection is locally supersymmetric (ie the
intersection angles define a rotation in SU(3)). Taken overall, the (chiral
part of the) 4d spectrum is

Gauge
∏
a U(Na)

Left.Ch.Fm.
∑
a<b Iab( a, b) (A.28)

We note that a negative intersection number indicates the fermions have the
opposite chirality.

These models have to satisfy some consistency conditions, namely can-
cellation of RR tadpoles. The D6-branes act as sources for the RR 7-forms
via the disk coupling

∫
W7
C7. The consistency condition amounts to requir-

ing the total RR charge of D-branes to vanish, as implied by Gauss law in
a compact space (since RR field fluxlines cannot escape). The condition of
RR tadpole cancellation can be expressed as the requirement of consistency

7Plus some partners if the 3-cycle Πa is special lagrangian, i.e. the wrapped D-brane
preserves some supersymmetry. We will not enter into this discussion.
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of the equations of motion for RR fields. In our situation, the terms of the
spacetime action depending on the RR 7-form C7 are

SC7 =
∫

M4×X6

H8 ∧ ∗H8 +
∑

a

Na

∫

M4×Πa

C7 =

=
∫

M4×X6

C7 ∧ dH2 +
∑

a

Na

∫

M4×X6

C7 ∧ δ(Πa) (A.29)

where H8 is the 8-form field strength, H2 its Hodge dual, and δ(Πa) is a
bump 3-form localized on Πa in X6. The equations of motion read

dH2 =
∑

a

Na δ(Πa) (A.30)

The integrability condition is obtained by taking this equation in homology,
yielding

[Πtot] =
∑

a

Na [Πa] = 0 (A.31)

As usual, cancellation of RR tadpoles in the underlying string theory con-
figuration implies cancellation of four-dimensional chiral anomalies in the
effective field theory in our configurations.

Let us provide one simple example, obtained by taking X6 = T6, and
a simple set of 3-cycles. We consider X6 to be a six-torus factorized as
T6 = T2 ×T2 ×T2. Also for simplicity we take the 3-cycles Πa to be given
by a factorized product of 1-cycles in each of the 2-tori. For a 3-cycle Πa, the
1-cycle in the ith 2-torus will be labeled by the numbers (nia, m

i
a) it wraps

along the horizontal and vertical directions, see figure A.9 for examples.
The intersection number is given by the product of the number of inter-

sections in each 2-torus, and reads

Iab = (n1
am

1
b −m1

an
1
b)× (n2

am
2
b −m2

an
2
b)× (n3

am
3
b −m3

an
3
b) (A.32)

To give one interesting example, consider a configuration of D6-branes on T6

defined by the following wrapping numbers

N1 = 3 (1, 2) (1,−1) (1,-2)
N2 = 2 (1, 1) (1,−2) (-1,5)
N3 = 1 (1, 1) (1, 0) (-1,5)
N4 = 1 (1, 2) (−1, 1) (1,1)
N5 = 1 (1, 2) (−1, 1) (2,-7)
N6 = 1 (1, 1) (3,−4) (1,-5)
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(1,0)

T TT2 2 2

(1,1)

(1,2)(1,−1)
(1,3)(1,−1)

Figure A.9: Examples of intersecting 3-cycles in T
6.

The intersection numbers are

I12 = 3 I13 = −3 I14 = 0 I15 = 0 I16 = −3
I23 = 0 I24 = 6 I25 = 3 I26 = 0 I34 = −6
I35 = −3 I36 = 0 I45 = 0 I46 = 6 I56 = 3

A U(1) linear combination, playing the role of hypercharge, remains mass-
less

QY = −1

3
Q1 −

1

2
Q2 − Q3 − Q5 (A.33)

The chiral fermion spectrum, with charges with respect to the Standard
Model - like gauge group, is

SU(3)× SU(2)× U(1)Y × . . .
3(3, 2)1/6 + 3(3, 1)−2/3 + 3(3, 1)1/3 + 6(1, 2)−1/2+

+3(1, 2)1/2 + 6(1, 1)1 + 3(1, 1)−1 + 9(1, 1)0 (A.34)

Notice however, that the model contains additional U(1) factors and other
gauge factors, as well as matter beyond the context of the Standard Model.

In any event this general setup therefore allows the construction of a
large class of models with 4d gravitational and non-abelian gauge anomalies,
and charged chiral fermions. We leave their more detailed discussion for the
interested reader (see [111] for a review) and simply point out that, although
most models constructed in this setup are non-supersymmetric, there exist
several explicit supersymmetric examples in the literature.
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A.4 Final comments

The main message of this lecture is that there exist constructions in string
and M-theory which have the potential of leading to low-energy physics very
close to that observed in Nature. Perturbative heterotic string are simply
one such setup, but there are others, like compactifications of Horava-Witten
theory, or models with D-branes. There is life beyond perturbative heterotic
theory!

The novelty about these new setups is that they have localized gauge
sectors, and hence allow for fundamental scales not directly tied up to the 4d
Planck scale, and can even be significantly lower then the latter. In models
with a too low fundamental scale, there may be dangerous processes, like too
fast proton decay. In many of the D-brane models above, there exist some
symmetries which forbit this violation of baryon number.

The models are also interesting in that they provide an essentially new
way to obtain gauge symmetries and chiral fermions in string theory. In
particular this can be exploited to imagine new sources for the hierarchy of
Yukawa couplings and fermion masses in the standard model.

Besides these novelties and successes, it is however important not to loose
perspective and recognize that the models still leave many unanswered ques-
tions.

• If supersymmetry is present, how to break supersymmetry? If not,
how to stabilize moduli at values that may correspond to (seemingly
unnatural) large volumes?

• The moduli problem: Or how to get rid of the large number of mass-
less scalars which exist in many compactifications in string theory (and
whose vevs encode the parameters of the underlying geometry and
gauge bundle (like sizes of the internal manifold, etc)).

• The vaccum degeneracy problem: Or the enormous amount of consis-
tent vacua which can be constructed, out of which only one (if any
at all) is realized in the real world. Is this model preferred by some
energetic, cosmological, anthropic criterion? Or is it all just a matter
of chance?

• The cosmological constant problem, which in general is too large once
we break supersymmetry. Does string theory say anything new about
this old problem?
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As one can notice, the list is ‘isomorphic’ to the one we had in perturba-
tive heterotic models. This means that certainly these are difficult problems
which permeate any model buiding setup in string theory. Clearly we need
better theoretical understanding of new aspects theory. This is not impos-
sible, however, as for instance there are recent proposals to stabilize most
compactification moduli by studying compactifications with non-trivial field
strength fluxes for p-form fields [113]. Thus the above problems, which are
central questions in string phenomenology, will hopefully solved perhaps by
next-generation students like you!
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Appendix B

Non-BPS D-branes in string
theory

B.1 Motivation

In this lecture we present a new viewpoint on D-branes, arising from the
Study of configurations of D-branes and anti-D-branes in string theory. The
construction will imply some interesting insights into the meaning of tachy-
onic modes in string theory. Also, this viewpoint will lead to the construction
of new stable non-BPS D-branes in string theory, which will allow to carry
out a check of duality beyond supersymmetry. Some useful references for
this talk are [114, 115].

B.2 Brane-antibrane pairs and tachyon con-

densation

B.2.1 Anti-D-branes

In analogy with particles and antiparticles in quantum field theory, every
object in string theory has the corresponding antiobject, with equal tension
but opposite charges. In particular, for every Dp-brane there exists a corre-
sponding anti-Dp-brane state, denoted Dp-brane, such that when they are
put together they can annihilate each other into the vacuum.

Dp-branes and Dp-branes have the same tension but opposite charges
under the RR (p + 1)-form. Note that this implies that Dp-branes are also

403
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BPS states, which preserve half of the supersymmetry of the vacuum, but
they preserve the supersymmetries broken by the Dp-branes, and vice versa.
Namely, the supersymmetry generators εLQL + εRQR unbroken by the pres-
ence of these objects in type II theory, are of the form

Dp −→ εL = Γ0 . . .ΓpεR

Dp −→ εL = −Γ0 . . .ΓpεR (B.1)

Dp-branes are described, just as Dp-branes, as (p + 1)-dimensional sub-
spaces on which open strings are allowed to end. It is thus natural to consider
what features distinguish Dp-branes and Dp-branes , from the viewpoint of
the 2d worldsheet. Equivalently, considering a configuration including both
kinds of objects, what distinguishes open strings with both ends on the same
kind of object, and open strings starting on branes and ending on antibranes
(or viceversa). This is addressed in the following section.

B.2.2 Dp-Dp-brane pair

Consider a configuration with a single Dp- and a single Dp-brane in type II
theory, with coincident worldvolumes along the directions 01 . . . p. A promi-
nent feature of this configuration is that it is non-supersymmetric. Namely
there is no supercharge which is preserved by both the Dp- and the Dp-brane.
Another way to obtain the result is to notice that the state as a whole is not
BPS: denoting Tp, Qp the tension and charge of a Dp-brane, the state as
a whole has tension 2Tp and charge 0. The tension of a BPS state in the
topological sector of zero charge should be zero, hence the brane-antibrane
pair is a non-BPS excited state. Notice that there is a clear BPS state in the
zero charge sector of the theory, namely the type II

vacuum. Therefore we expect the non-BPS state given by the brane-
antibrane pair to be unstable against decay to the vacuum, since both states
have the same charges, and the vacuum is energetically favoured.

Let us compute the spectrum of open strings in the presence of the brane-
antibrane pair. Clearly open strings with both ends on the Dp-brane (Dp-Dp
strings) are not sensitive to the presence of the Dp-brane, hence are quantized
as usual. They lead to a (p + 1)-dimensional U(1) gauge boson and their
superpartners with respect to the 16 supersymmetries unbroken by the Dp-
brane. Similarly, Dp-Dp open strings lead to a (p + 1)-dimensional U(1)
gauge boson and its superpartners with respect to the 16 supersymmetries
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Figure B.1: The annulus diagram regarded in the open and in the closed string
channel.

unbroken by the Dp-branes (and which are the opposite of the above ones).
Finally, we need to consider Dp-Dp and Dp-Dp open strings. The boundary
conditions are exactly the same as for the above sectors, namely Neumann
for the directions 0, . . . , p and Dirichlet for the directions p+1, . . . , 9. Hence,
the Hilbert space of open string states, before any GSO projection, is the
usual one. The lightest modes are

Sector State αM 2 Field
NS |0〉 −1 Scalars

ψµ−1/2|0〉 0 Gauge bosons + Scalars

R 8C 0 Fermions
8S 0 Fermions

We now show that open-closed duality forces to choose the GSO projec-
tion in the Dp-Dp sector opposite to the usual one (namely, that in Dp-Dp or
Dp-Dp sector). To see that, consider the annulus diagram, with two bound-
aries on Dp-branes, see figure B.1a. Computing this amplitude in the open
string channel, as a loop of Dp-Dp strings, we get

Z(T )pp '
1

2

(
trNSq

NF +EF
0 + trNS(q

NF +EF
0 (−)F

)
− 1

2

(
tr Rq

NF +EF
0 + tr R(qNF +EF

0 (−)F
)

=

=
1

2
η−4


ϑ

[
0
0

]4

− ϑ

[
0

1/2

]4

− 1

2
η−4


ϑ

[
1/2
0

]4

− ϑ

[
1/2
1/2

]4

 (B.2)

This quantity can be rewritten as an amplitude of a closed string propagating
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for a time T ′ = 1/(2T ), by performing a modular transformation, leading to

Z(2T ′)pp = η−4


ϑ

[
0
0

]4

− ϑ

[
1/2
0

]4

− η−4


ϑ

[
0

1/2

]4

− ϑ
[

1/2
1/2

]4

(B.3)

The amplitude in the closed channel describes the interaction between Dp-
branes, via exchange of NSNS and RR fields, see figure B.1b).

The amplitude for a Dp-Dp-brane annulus, in the closed channel, differs
from (B.3) in the sign of the terms corresponding to the exchange of RR
fields. This is because of the opposite sign of the RR charge of the Dp-brane
with respect to the Dp-brane charge. Hence we obtain

Z(2T ′)pp = η−4


ϑ

[
0
0

]4

+ ϑ

[
1/2
0

]4

− η−4


ϑ

[
0

1/2

]4

+ ϑ

[
1/2
1/2

]4



Going back to the open string channel, the annulus amplitude for Dp-Dp
open strings going in a loop corresponds to

Z(T )pp '
1

2

(
tr NSq

NF +EF
0 − trNS(q

NF +EF
0 (−)F

)
− 1

2

(
tr Rq

NF +EF
0 − tr R(qNF +EF

0 (−)F
)

Hence we see that the signs imposing the GSO projection are flipped. There-
fore, for Dp-Dp and Dp-Dp open strings, the lightest modes are

Sector State αM 2 Field
NS |0〉 −1 Scalars
R 8S 0 Fermions

These fields carry charges ±(+1,−1) under the U(1)×U(1) on the D- and
anti-D-branes. The spectrum in these sectors is very different from the Dp-
Dp and Dp-Dp sectors. In particular, there is no enhanced gauge symmetry
when branes and antibranes coincide. Note also that these sectors lead to a
complex tachyon of the world-volume. We will discuss it in detail later on.
Before that, let us simply mention that for branes and antibranes separated
by a distance L in transverse space, the lightest mode in the NS sector has
mass

M2 = − 1

α
+

L2

(2πα)2
(B.4)
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Figure B.2: Two pictures of the tachyon potential for the brane-antibrane system.

The tachyonic mode develops for distances smaller than a critical distance of
the order of the string scale, Lc ≤ 4π2α1/2. However, branes and antibranes
initially at a distance larger than Lc feel a mutual attraction (since they have
equal tension and opposite charge, hence attract both gravitationally and by
RR Coulomb interactions), and tend dynamically to approach and decrease
this distance until they reach the tachyonic regime.

B.2.3 Tachyon condensation

The meaning of this tachyon is that the configuration is unstable against
annihilation of the brane-antibrane pair to the vacuum of type II theory.
That is, the brane-antibrane pair corresponds to a configuration of the system
which is sitting at the top of a potential. The negative mass square of the
tachyon field simply means that the second derivative of the potential as
a function of this field is negative at the top of the potential, see figure
B.2. One should therefore let the tachyon roll down to the minimum of
the potential, if it exists, to obtain a stable configuration. This process, by
which the tachyon field acquires a vacuum expectation value T0, minimizing
the potential, is known as tachyon condensation.

A remarkable feature of this process is that there is a clear spacetime
picture of its endpoint. The tachyon simply represents the instability of the
brane-antibrane system against annihilation to the vacuum. This spacetime
picture of the process of tachyon condensation implies that we know exactly
the final state of this process: it is the vacuum of type II theory. So, although
the initial state is non-supersymmetric, we can make exact statement about
its fate after tachyon condensation..

Note that from the viewpoint of the world-volume theory, this process is
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similar in some respects to a Higgs mechanism. This is not completely precise,
though. It is true that in the process a charged field (the tachyon) gets a
vev, and breaks a gauge symmetry (the antisymmetric linear combination of
the U(1)s on the D- and the anti-D-branes). However, the final state is the
vacuum, where no open string states, and hence also the diagonal U(1) linear
combination, under which the tachyon is uncharged should also disappear.
More strikingly, in the final state all open string modes of the initial state
must be absent. Hence in the process of tachyon condensation an infinite
number of fields disappear from the theory. This kind of processes have been
successfully described only within the approach of string field theory.

Let us emphasize how remarkable it is the fact that we exactly know the
final state of tachyon condensation. It leads to a number of exact statements
about the properties of a non-supersymmetric brane-antibrane pair when the
world-volume tachyon has a constant vev T0. All of them are encoded in the
statement that a brane-antibrane pair with a tachyon vev T0 is indistinguish-
able from the vacuum. This is very surprising, for instance, the final state has
an enhanced supersymmetry, it has zero energy, etc. The set of predictions
(as well as several others to be studied later) following from this spacetime
picture of tachyon condensation are known as Sens conjectures.

Also, very remarkably, we have succeeded in understanding the meaning
of open string tachyons. In fact, we can extend this understanding to othe
open string tachyons in string theory. For instance, tachyons in the open
string sector of open bosonic string theory are now understood as an insta-
bility of bosonic D-branes to decay into the vacuum. This is consistent, since
bosonic D-branes do not carry any conserved charge. Hence, we are recov-
ering the result, briefly mentioned in the lecture on open strings, that open
bosonic string theory is unstable into decay to purely closed bosonic string
theory, with no open string sector at all.

B.3 D-branes from brane-antibrane pairs

In this section we discuss other processes of tachyon condensation in brane-
antibrane systems, where the final state is not the vacuum, but a lower-
dimensional D-brane.
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B.3.1 Branes within branes

For this section, see [116]. Recall that a Dp-brane in charged not only under
the RR (p + 1)-form, but also Under other lower-degree RR forms, if the
world-volume gauge bundle is non-trivial. For instance, consider the Wess-
Zumino couplings for a D3-brane

SWZ =
∫

D3
C4 +

∫

D3
C2 ∧ trF +

∫

D3
C0 ∧ trF 2 (B.5)

Consider a world-volume gauge bundle with non-zero first Chern class, i.e.
trF is non-trivial on the D3-brane world-volume. This intuitively corre-
sponds to turning on a magnetic field along two of the directions, say 23, in
the D3-brane volume, with total integral e.g.

∫
23 F = 1. The above couplings

imply that the D3-brane is charged under the RR 2-form C2, or that we are
dealing with a bound state of a D3-brane and a D1-brane (with volume along
01). In a sense, the system can be thought of as a D3-brane with a D1-brane
diluted in its volume 1.

Similarly, a non-trivial trF on a general Dp-brane induces D(p−2)-brane
charge, a non-trivial second Chern class (or instanton number) trF 2 induces
non-trivial D(p− 4)-brane charge, etc.

B.3.2 D-branes from brane-antibrane pairs

Consider aD3-brane with trivial world-volume gauge bundle, and a D3-brane
with one unit of induced D1-brane charge, see figure B.3. The complete
system has zero D3-brane charge, one unit of D1-brane charge, and non-zero
3-brane tension (slightly larger than but around 2T3).

Clearly the state is non-supersymmetric. One way to understand this is
to note that there exists a state with the same charges and much less energy,
namely a BPS D1-brane. Hence we expect, from the spacetime viewpoint,
that the initial system is unstable to decay into a D1-brane state. Notice
that decay to the vacuum is not consistent with charge conservation. Heuris-
tically, the decay to the D1-brane state can be understood by considering the
magnetic field to be localized in a more or less compact core in the directions
23, and translationally invariant along 01. Asymptotically away from the

1Indeed this is quite precise. Starting with a configuration of coincident D3- and D1-
branes there is a dynamical process diluting the D1-brane as world-volume gauge field
strength on the D3-brane.
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Figure B.3: Brane-antibrane system with induced lower-dimensional brane
charges.

core, we just have a D3-D3-brane pair, with no magnetic field density, so the
system will suffer tachyon condensation annihilating them in the asymptotic
region. Near the core, the magnetic field changes things, and annihilation
leads an object compactly supported in 23, namely the D1-brane.

From the viewpoint of the 4d world-volume, the above system is described
as follows. In a D3-D3-system, we have a gauge group U(1)2, and a complex
scalar T with charge (+1,−1), with a Mexican hat potential shown in fig-
ure B.2b. Note that gauge invariance implies that the potential is function
of the modulus of T , V (|T |). The diagonal U(1) subgroup decouples and
will be irrelevant for the following discussion. This field theory has soliton
solutions, which correspond to topologically non-trivial world-volume field
configurations. Finite energy solitons must have a tachyon field asymptoting
to the value |T | = T0. Considering configurations which are translationally
invariant in 01, T = T (x2, x3), the tachyon field taken at the S1 at infinity
in 23 defines a map from the spacetime S1 to the set of minima of the po-
tential, which is also an S1. Topologically inequivalent solitons correspond
to topologically inequivalent tachyon field configurations, which correspond
to topologically inequivalent maps S1 → S1. The latter are classified by the
homotopy group Π1(S

1) = Z, i.e. there are an infinite number of inequiva-
lent solitons, characterized by an integer, known as winding number of the
above map. A simple example is provided by the winding one configuration.
Defining z = x2 + ix3, the tachyon profile for the corresponding soliton is

T (z) = T0
z

|z| (B.6)

Representing the complex value of the tachyon by an arrow, the field config-



B.3. D-BRANES FROM BRANE-ANTIBRANE PAIRS 411

Figure B.4: Picture of the hedgehog configuration for the tachyon field in the
vortex solution.

uration is of the hedgehog form shown in figure B.4. In order to have a finite
energy configuration, we also need to turn on a non-trivial gauge field, so that
the covariant derivatives approach zero fast enough as |z| → ∞. This gauge
field is such that there is a non-trivial first Chern class over 23,

∫
23 F = 1.

The whole field configuration is known as vortex, and is the world-volume de-
scription of the tachyon condensed configuration. Indeed, asymptotically the
system approaches the configuration of a D3-D3-brane with a tachyon vev
of T0, hence describing asymptotic annihilation. Near the core, the tachyon
value is approximately zero, and no annihilation is implied. In fact, near
the core we have a D3-D3 system with non-condensed tachyon; hence, open
strings are allowed to end in the near core region of the above system. The
system described an object localized in 23, charged under C2 and on which
open strings can end. This is clearly a D1-brane, which we have construced
as a bound state of a higher-dimensional brane-antibrane pair.

The above construction suggests the construction of D-branes as bound
states, upon tachyon condenstation, of higher dimensional brane-antibrane
pairs. This is a surprising new viewpoint, where D-branes are regarded as
solitons on the world-volume of brane-antibrane pairs.

We can use a similar strategy to construct other D-brane states, in par-
ticular unstable Non-BPS Dp-branes in type II theory (with p even for IIB
and odd for IIA). For instance, consider a D3-D3 pair, with a tachyon pro-
file corresponding to a kink in one dimension, say 3, see figure B.5. The
field configuration is localized in a compact region in x3, and has trivial field
strengths.

This world-volume configuration is not topologically stable, the kind can
be continuously unwound into a trivial configuration. This implies that the
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T0

0−T
x3

T

Figure B.5: Picture of the tachyon profile in the kink configuration..

resulting D2-brane, denoted D̂2-brane, is unstable (against decay to the vac-
uum), which is consistent since it carries no conserved charges. We would
like to mention two further facts on these non-BPS branes: First, they admit
a microscopic description, as subspaces on which open strings end. In this
situation, the fact that these D-branes do not carry RR charges implies, by
open-closed duality, that open strings stretching between non-BPS D-branes
of this kind have a world-volume spectrum with no GSO projection. This
spectrum is easily obtained, and in particular contains a real tachyon. Sec-
ond, a further kink configuration on this world-volume tachyon corresponds
to the condensation of an unstable non-BPS Dp-brane to a BPS D(p − 1)-
brane, of the usual kind (these relations are known as descent relations).

B.4 D-branes and K-theory

Let us generalize the idea that D-branes are constructed as bound states of
higher-dimensional brane-antibrane pairs, upon tachyon condensation. The
latter statement means that, at the topological level, states which differ by
processes of creation/annihilation of brane-antibrane pairs must be consid-
ered equivalent.

Let us apply these ideas to type IIB theory on a spacetime X, and try to
classify all D-brane charges. Namely, consider a type IIB configuration with
n D9-D9-brane pairs. Note that this is consistent, since the tadpole for the
RR 10-form C10 generated by the D9- and the D9-branes cancel each other
2. In general, the D9-branes carry a world-volume U(n) gauge bundle E, and

2Recall that the only inconsistency in coupling 10d Poincare invariant open string
sector to oriented type IIB theory arose from RR tadpole cancellation. Note also that



B.4. D-BRANES AND K-THEORY 413
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Figure B.6: Brane-antibrane pairs with general world-volume gauge bundles.

the D9-branes carry another U(n) gauge bundle E. Hence, different D-brane
states or D-brane charges are classified by pairs of bundles (E,E). However,
configurations that differ by the nucleation of D9- and D9-branes, both with
world-volume gauge bundle H, must be considered topologically equivalent.
Therefore the set of topologically inequivalent D-brane states is given by the
set of pairs of bundles (E,E), modulo the equivalence relation

(E,E) ' (E ⊕H,E ⊕H) (B.7)

The set of pairs of topological bundles up to this equivalence relation is a
finitely generated group, known as (complex) K-theory group of the space-
time X, denoted K(X).

Let us describe the classification of type IIB charged D-branes in flat 10d
space from this viewpoint. If we are interested in p-brane states (i.e. states
with Poincare invariance in (p + 1) dimensions)the bundles are non-trivial
only over the (9 − p)-dimensional transverse space. Also, we are interested
in bundles with compact support, so that the resulting states are localized
in R9−p. See figure B.6. Bundles with compact support on R9− p can be
described as general bundles over S9−p. The corresponding K-theory groups
have been computed by mathematicians and read

K(S9−p) = Z p odd

= 1 p even (B.8)

Hence type IIB theory contains stable Dp-branes for p odd. These branes are
stable since their charge, classified by the K-theory class, which is topological,

the configuration with equal number of D9 and D9-branes is regarded not as a new string
theory, but as an excited state of type IIB theory (connected to the vacuum via tachyon
condensation).
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forbids their decay to the vacuum. The fact that the K-theory classes are Z
valued implies that their charge is additive. In fact, these are the familiar
BPS we already know about, and their charge is the charge under the RR (p+
1)-form field. Hence the classification of D-brane states using K-theory agrees
with the classification using cohomology (namely computing the charge of a
D-brane state as the flux of a certain form field over a cycle surrounding the
D-brane) 3 . This is not so surprising, since there is a natural map from
K-theory to cohomology, which to each K-theory class represented by a pair
of bundles (E,E) it assigns the cohomology class

(E,E) −→ ch(E)− ch(E) (B.9)

where ch(E) is the Chern character, defined by

ch(E) = tr eF/2π = 1 +
1

2π
trF +

1

8π2
trF 2 + . . . (B.10)

The Chern character is additive, ch(E⊕) = ch(E)− ch(H), hence the above
map is independenent of the representative of the K-theory class. Finally,
notice that the Chern character enters in the Wess-Zumino couplings on the
world-volume of a D-brane, hence it carries the information on the induced
D-brane charges under the RR p-form fields.

There are situations, however, where the above mapping is not injec-
tive. Namely there may are situations where there exist non-trivial K-theory
classes whose Chern character vanishes. Namely, there exist bundles which
are topologically non-trivial but whose characteristic classes all vanish. This
implies the existence of D-branes which are stable (since they carry a non-
trivial topological quantum number) but are uncharged under the RR fields.

The simplest example of this kind is provided by type I theory. The
classification of D-branes can be carried out as above. Namely, introduce n
additional D9-D9 over the vacuum of type I theory (note that this is consis-
tent, since the total system contains (n + 32) D9-branes and n D9-branes,
leading to a total RR 10-form tadpole cancelling that of the O9-planes). The
D9- and D9-branes carry SO(n) bundles E, E. D-brane configurations are
topologically classified by pairs of bundles (E,E) modulo the equivalence

3Notice that we are classifying topological D-brane states. In particular, the unstable
D-branes of type IIB theory do not appear in this classification since they can decay to
the vacuum, namely are topologically equivalent to it.
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relation (B.7). The resulting set is a group known as the real K-theory group
of the spacetime X KO(X).

Let us classify type I D-brane charges in flat space. As before, we need
to compute the groups KO(S9−p, which have been computed by mathemati-
cians. We obtain the following sets of D-branes

KO(S1) = Z2 → D̂8

KO(S2) = Z2 → D̂7

KO(S4) = Z → D5

KO(S8) = Z → D1

KO(S9) = Z2 → D̂0

KO(S10) = Z2 → ̂D(−1) (B.11)

Beyond the familiar BPS D1- and D5-branes, the K-theory classification
implies the existence of non-BPS D8-, D7-, D0- and D(-1)-brane charges.
They are completely uncharged under the RR fields, however they carry a
non-trivial Z2 charge and cannot decay into the vacuum.

We would like to conclude with some comments

• For type IIA theory, there also exists a K-theory classification of D-brane
charges. It is based on classifying bundles over spacetime filling unstable
D̂9-branes. The relevant K-theory groups are known as (complex) reduced
K-theory groups K−1(X). There is a relation between these and the type
IIB groups, which is consistent with T-duality. For instance in 10d space,
we have K−1(Sn) = K(Sn−1). This leads to the familiar set of BPS states of
type IIA theory.
• The above construction is valid for D-branes, since they naturally carry

world-volume gauge bundles. It is still an open issue to extend this kind
of classification scheme to other theories without D-branes, like heterotic
theories or M-theory, and to other objects, like NS5-branes.

B.5 Type I non-BPS D-branes

We have seen that type I contains different non-BPS D-branes with non-
trivial topological charge. Since these charges are topological, states with
these charges must exist in the spectrum for all values of the moduli (although
their microscopic description may change in between). This allows to test
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string duality for this particular class of non-BPS states, i.e. test string
duality beyond supersymmetry 4

B.5.1 Description

The D̂0-brane

Altough we have described it starting with D9-D9-brane pairs, the sim-
plest construction starts from a D1-D1-brane pair in type I theory. The
world-volume gauge group is Z2 × Z2. The fact that this gauge group is
discrete ensures that a kink configuration for the world-volume tachyon can-
not be unwound, and hence describes tachyon condensation to a stable state.
This is the stable D̂0-brane of type I theory 5. The fact that it carries a Z2

charge means that two of these states can annihilate to the vacuum. This
is understood in the D1-D1-brane pair because two kinks can unwind to the
trivial configuration for the world-volume tachyon, describing decay to the
vacuum.

There is a microscopic description for the type I D̂0-brane, as a 1d sub-
space on which open strings can end. Such open strings have no GSO pro-
jection, in agreement (via open-closed duality) with the fact that they carry
no RR charges. The light spectrum on the world-volume of a stack of n
D̂0-branes is as follows. In the 00 sector, there is no GSO projection. The
states are computed as usual (with some subtlety due to the fact that

there are not enough NN directions to use the light-cone gauge), and
projected into Ω-invariant states. In the NS sector, there are massless SO(n)
gauge bosons, and 9 scalars in the representation ; there are also a world-
volume real tachyon, transforming in the representation , so it is absent for
n = 1 (in which case the system is stable). In the R sector, the groundstates
give rise to fermions in the + representation. In the 09 + 90 sector, the
NS states are massive, while in the R sector the groundstate gives rise to
massless 1d fermions in the 32 of the D9-brane SO(32) group.

For n = 1 we have a stable particle, with worldline described by the
above fields. It has nine worldline bosons, so the particle propatates in 10d.

4Note that the lack of the BPS property however implies that we do not have much
control over properties like the tension of the object, as the moduli change. Hence the
tests are much less exhaustive than for supersymmetric states.

5Equivalently, one can describe the type I D̂0-brane as the type IIB D̂0-brane, modded
out by Ω, which projects out the world-volume tachyon of the latter.
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On the other hand, there are worldline zero modes, which imply that in the
quantum theory the particle belongs to a multiplet. Quantization of fermion
zero modes in the 00 sector gives a 256-fold multiplicity, implying the particle
state belongs to a non-BPS multiplet. Quantization of fermion zero modes in
the 09 sector imply that the particle transforms in a non-trivial representation
of SO(32), in particular a 215-fold dimensional chiral spinor representation
(there also appears the spinor representation of opposite chirality, but it is
eliminated by the world-volume Z2 gauge group).

The fact that type I contains states in the spinor representation of a given
chirality implies that its spacetime gauge group is globally not SO(32). All
perturbative and non-perturbative states are consistent with a gauge group
Spin(32)/Z2 (where Spin allows the existence of spinor representations, and
Z2 forbids the existence of spinors of one chirality and of states in vector
representation).

The D̂8-brane

There exists a type I D̂8-brane described microscopically as a 9d subspace
on which open strings end, and which carries the correct K-theory charge.
However, the brane contains a world-volume tachyon arising in the sector of
open strings stretching from the brane to the background D9-branes. This
tachyon implies the non-BPS brane is unstable to decay, but not to the
vacuum (which is forbidden by charge conservation) but to a different con-
figuration carrying the same charge. The latter configuration is a non-trivial
bundle on the D9-branes where there is a Z2 Wilson line on one of the D9-
branes 6

The ̂D(−1)-brane

The ̂D(−1)-brane can be constructed starting from a type I D1-D1-brane
pair with a vortex configuration for the world-volume tachyon. Equivalently
it can be described as a D(−1)-D(−1)-brane pair of type IIB theory, modded
out by Ω, which exchanges the D(−1) and the D(−1)-brane, and eliminates
the world-volume tachyon. The latter description provides a simple micro-
scopic description for the type I D-instanton, but we will skip its detailed
discussion.

The D̂7-brane

6This Wilson line is topological in the sense that it is an element in Spin(32)/Z2 but
not of SO(32).
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This can be described as a type IIB D7-D7-brane pair, modded out by
Ω, which exchanges the objects in the pair, and eliminates the world-volume
tachyon in the 77 sector. The tachyon in the 79 and 79 sectors however sur-
vive, implying that the system is unstable against decay, not to the vacuum
but to a non-trivial bundle on the background D9-branes. The bundle is
described by two Z2 Wilson lines which commute up to a sign in SO(32),
namely which commute in Spin(32)/Z2 but not in SO(32).

B.5.2 Heterotic/type I duality beyond supersymmetry

Non-BPS states in type I theory, which are nevertheless stable due to charge
conservation, must exist not only at weak coupling (where we have provided
a microscopic description), but at all values of the coupling. This implies
that they lead to results which can be extrapolated to strong coupling, and
be compared with properties of the heterotic theory.

The perturbative group of type I theory is O(32). However we have
seen that the global structure of the group is Spin(32)/Z2, since the theory
contains states that transform in a chiral spinor representation, and states
described by gauge configurations which do not exist in SO(32). Finally,
the non-BPS D-instanton plays a crucial role in describing the change in
gauge group. Namely, it is not invariant under large gauge transformations
in SO(32). The true gauge group consistent with all non-BPS states of the
theory is in fact the appropriate one to agree with the heterotic theory upon
type I / heterotic duality. This is a first non-trivial result of non-BPS type
I theory.

An even more remarkable check is that the particles described as type
I D̂0-branes provide states that transform in a chiral spinor representation
of the spacetime gauge group. By duality, heterotic theory should contain
some states with the same basic properties, namely same gauge representa-
tion, and same non-BPS supermultiplet. Indeed, the Spin(32)/Z2 heterotic
theory does contain states with these properties, they are given by massive
perturbative heterotic states, with left-handed internal 16d momentum

P =
1

2
(±, . . . ,±) , # − = even (B.12)

This is Sens great idea on using these states to test string duality beyond
supersymmetry.
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B.6 Final comments

In this lecture we have studied a beautiful set of ideas, concerning a new
viewpoint on D-branes. They have been widely generalized to more involved
configurations, like orbifolds and orientifolds.

The construction of D-branes as bound states of higher-dimensional brane-
antibrane pairs has allowed us to make precise exact statements on tachyon
condensation processes in non-supersymmetric systems. Finally, these re-
sults have provided a new tool to test and partially confirm string duality
beyond supersymmetry.

There are many other applications of these ideas to other related con-
texts. For instance the study of condensation of tachyons of other kinds
(most interestingly the study of closed string tacyons is an open issue), or
the application of antibranes and non-BPS D-branes as a source of supersym-
metry breaking in model building. We leave these questions for the interested
reader.
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Appendix A

Modular functions

There is a lot of mathematical literature on modular functions, namely func-
tions of the parameter τ which have nice transformation properties under
the SL(2,Z) modular group. A useful reference for them is [40].

Recall that the modular group is the set of transformations

τ → aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 (A.1)

and is generated by τ → τ + 1, τ → −1/τ

The Dedekind eta function
Introduce q = e2πiτ .The Dedekind eta function is defined by

η(τ) = q1/24
∞∏

n=1

(1− qn) (A.2)

Under modular transformations

η(τ + 1) = eπi/12 η(τ)

η(−1/τ) = (−iτ)1/2 η(τ) (A.3)

(The first is trivial to show, while the second is tricky and one should consult
the literature).

The theta functions
For future use it is useful to introduce the theta function with character-

istics θ, φ

ϑ

[
θ
φ

]
(τ) = η(τ) e2πi θφ q

1
2
θ2− 1

24

∞∏

n=1

(1 + qn+θ−1/2 e2πiφ) (1 + qn−θ−1/2 e−2πiφ)(A.4)
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These functions also have an expression as infinite sums

ϑ

[
θ
φ

]
(τ) =

∑

n∈Z

q(n+θ)2/2 e2πi (n+θ)φ (A.5)

The fact that (A.4) and (A.5) are equal is related to bosonization, namely the
fact that in two dimensions a theory of free fermions can be rewritten as a
theory of free bosons (with a compact target space). The two expressions for
the theta functions correspond to the partition functions of the same theory
in terms of different field variables. This will be understood better when we
study 2d theories with fermions in the superstring.

Some useful and often appearing values of the characteristics are 0, 1/2.
For future convenience, we list the product form of the corresponding theta
functions

ϑ

[
0
0

]
(τ) =

∞∏

n=1

(1− qn) (1 + qn−1/2)2

ϑ

[
0

1/2

]
(τ) =

∞∏

n=1

(1− qn) (1− qn−1/2)2

ϑ

[
1/2
0

]
(τ) = q1/8

∞∏

n=1

(1− qn) (1 + qn) (1 + qn−1) =

= 2 q1/8
∞∏

n=1

(1− qn) (1 + qn)2

ϑ

[
1/2
1/2

]
(τ) = i q1/8

∞∏

n=1

(1− qn)2 (1− qn−1) = 0

(A.6)

Finally, we list some useful properties of theta functions. Under integer
shifts of the characteristics

ϑ

[
θ +m
φ+ n

]
(τ) = e2πiθn ϑ

[
θ
φ

]
(τ) (A.7)

This can be shown very easily using the infinite sum form (A.5).
Under modular transformations

ϑ

[
θ
φ

]
(τ + 1) = e−πi(θ

2−θ) ϑ

[
θ

θ + φ− 1/2

]
(τ)

ϑ

[
θ
φ

]
(−1/τ) = (−iτ)1/2 ϑ

[
φ
−θ

]
(τ) (A.8)
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The first is very easy to show, using the infinite sum form (A.5) and using
the trick that eπin

2
= eπin (since n2 = n mod 2). The second is also easy in

the infinite sum form using the Poisson resummation formula

∑

n∈Z

exp [−πA(n+ θ)2 + 2πi (n+ θ)φ ] = A−1/2
∑

k∈Z

exp [−πA−1(k + φ)2 − 2πikθ ](A.9)

This general formula can be shown by repeatedly using the one-dimensional
one (A.9).

Particular cases of this transformation are

ϑ

[
0
0

]
(τ + 1) = ϑ

[
0

1/2

]
(τ) ; ϑ

[
0
0

]
(−1/τ) = (−iτ)1/2 ϑ

[
0
0

]
(τ)

ϑ

[
0

1/2

]
(τ + 1) = ϑ

[
0
0

]
(τ) ; ϑ

[
0

1/2

]
(−1/τ) = (−iτ)1/2 ϑ

[
1/2
0

]
(τ)

ϑ

[
1/2
0

]
(τ + 1) = e−πi/4 ϑ

[
1/2
0

]
(τ) ; ϑ

[
1/2
0

]
(−1/τ) = (−iτ)1/2 ϑ

[
0

1/2

]
(τ)

ϑ

[
1/2
1/2

]
(τ + 1) = e−πi/4 ϑ

[
1/2
1/2

]
(τ) ; ϑ

[
1/2
1/2

]
(−1/τ) = i(−iτ)1/2 ϑ

[
1/2
1/2

]
(τ)
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Appendix B

Rudiments of group theory

In this appendix we provide some basic techniques in group theory that we
will need to be familiar with. Useful references are [120, 121] and the more
formal [122, 123].

B.1 Groups and representations

B.1.1 Group

A group G is a set on which there exists a multiplication, satisfying

• Closure: For any g, h ∈ G, g · h ∈ G

• Identity element: there exists an element e ∈ G such that e·g = g·e = g
for any g ∈ G

• Inverse: For any g ∈ G there exists an element g−1 such that g · g−1 =
g−1 · g = e

• Associativity: (g · h) · k = g · (h · k) for any g, h, k ∈ G
Notice that commutativity g · h = h · g is not required to be a group. If any
pair of elements commute, the group is called abelian.

B.1.2 Representation

A representation R of a group is a mapping that, to each element of G asso-
ciates a linear operator R(g) acting on a vector space V , in a way compatible

425
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with the group multiplication, namely

R(g)R(h) = R(g · h) ∀g, h ∈ G (B.1)

Hence a representation is a homomorphism between G and the set of lin-
ear operators on V . If it is an isomorphism (injective and onto), then the
representation is called faithful.

The vector space V is called the representation space, and vectors in
V are said to form the representation R of G. The group G is said to acto
on V (or on vectors of V ) in the representation R.

If the dimension of V is n, and we fix a basis |ei〉, any linear operator can
be regarded as an n× n matrix via

R(g)ij = 〈ei|R(g) |ej〉 (B.2)

So a representation can be defined also as a homomorphism between G
and the set of n× n matrices. We call these matrix representations of G.

Notice that the explicit matrix that represents an element g ∈ G in a ma-
trix representation, depends on the basis. Hence, it makes sense to define an
equivalence relation of matrix representations. Two matrix representations
R and R′ are equivalent if there exist a similarity transformation S (n× n
invertible matrix) such that

R′(g) = S R(g)S−1 ∀g ∈ G (B.3)

Namely the matrices R(g) and R′(g) are related by a (g-independent) change
of basis in V .

OBS: Often, one find a group acting on a physical system in a particular
representation. It is however important to distinguish between the abstract
group and its different representations.

B.1.3 Reducibility

A representation R is reducible if it has a matrix version equivalent to a
representation with block diagonal matrices

R(g) =
(
R1(g) 0

0 R2(g)

)
∀g ∈ G (B.4)

Hence V splits into V1 and V2, which are acted on, but not mixed, by R1(g)
and R2(g), respectively.

An irreducible representation (irrep for short) is one which is not re-
ducible.
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B.1.4 Examples

• The trivial representation, which exists for any group G. To every element,
it associates the 1× 1 matrix 1.

R(g) = 1 ∀g ∈ G (B.5)

It is clearly a homomorphism, but not an isomorphism. It is not a faithful
representation
• Irreps of Z3. The group Z3 has three elements, 1, g and g2, with the

group multiplication law gk · gl = gk+l, g3 = 1.
It has three inequivalent irresps, which are all 1-dimensional. One of them

is the trivial

1→ 1 ; g → 1 ; g2 → 1 (B.6)

There are two faithful representations

R1 : 1→ 1 ; g → e2πi/3 ; g2 → e4πi/3

R2 : 1→ 1 ; g → e4πi/3 ; g2 → e2πi/3 (B.7)

In fact, it is easy to show that for an abelian group all irreducible repre-
sentations are necessarily 1-dimensional.
• Group of symmetries of the square. This group is generated by two

elements: α, a rotation or 90 degrees around the center of the square, and β,
a flip around a vertical axis. Any other element can be obtained by taking
products of these. A simple 2-dimensional faithful irrep of this group is

α→
(

0 1
−1 0

)
; β →

(
1 0
0 −1

)
(B.8)

and the corresponding product matrix for other elements.

B.1.5 Operations with representations

It is useful to define them in terms of matrix representation. Let R1, R2 be
representations of a group G on vector spaces V1, V2, on which we specify a
basis |ei〉, |fm〉, of dimensions n1, n2 respectively.
• Sum of representations We define the sum representation R1 ⊕ R2,

acting on V1 ⊕ V2 as

R(g) =
(
R1(g) 0

0 R2(g)

)
(B.9)
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It has dimension n1 + n2, and is clearly reducible.
• Tensor product of representations. We define the product repre-

sention R = R1 ⊗R2, acting on V1 × V2 (which has basis |ei〉 ⊗ |fm〉) as

(R(g))im,jn = (R1(g))ij (R2(g))mn (B.10)

It has dimension n1n2 and is in general reducible. The decomposition of ten-
sor product representations as sum or irreps is a canonical question in group
theory, which can be systematically solved using Clebsch-Gordan techniques.

B.2 Lie groups and Lie algebras

B.2.1 Lie groups

A Lie group G is a group where the elements are labeled by a set of continu-
ous real parameters, ξa, a = 1, . . . , N , with the multiplication law depending
smoothly on the latter. Namely

g(ξ) · g(ξ′) = g(f(ξ, ξ′)) (B.11)

with f a(ξ, ξ′) a continuous (usually also C∞) function of ξ, ξ′.
OBS: The Lie group is a differentiable manifold, and the ξ are coordi-

nates. Usually we define the parameters such that g(ξ = 0) = e, the identity
element of G. The number of parameters N is called the dimension of the
group.

We will be interested in compact Lie groups (which are compact as man-
ifolds), although there exist very important non-compact Lie groups, for
instance, the Lorentz group (where the boost parameters correspond to non-
compact directions).

Lie groups also have representations. As usual, to each element g(ξ) ∈ G
they associate a linear operator R(g(ξ)) on a vector space V , compatibly
with the group law. The dimension of V is unrelated to N the dimension of
the group. For short we denote R(g(ξ)) by R(ξ).

B.2.2 Lie algebra A(G)

Formally, it is the tangent space to the manifold G at the point corresponding
to the identity element, see fig B.1. Since the geometry of G is so constrained



B.2. LIE GROUPS AND LIE ALGEBRAS 429
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A(G)
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e

Figure B.1: The Lie algebra is in a very precise sense the tangent space to the
Lie group at the point corresponding to the identity element.

by the group law, its structure is almost completely encoded just in the
tangent space.

Recall the differential geometry definition of tangent space of a manifold
M at a point P . It is the vector space generated by the objects ∂a, a =
1, . . . , dimM ; the latter are vectors, formally defined as mappings from the
space of functions on M , F(M) to the real numbers

∂a : F(M)→ R

f(x)→ ∂a f(x)|P (B.12)

In Lie groups, the natural functions of G are matrix valued functions
compatible with the group law, namely representations. Hence we define the
vectors Ta as mappings from the space of representations of G, R(G) to the
space of matrices Mat

Ta : R(M)→ Mat

R(g(ξ))→ −i∂a R(g(ξ))|ξ=0 (B.13)

This formal definition is used to emphasize that the properties of the Ta are
properties of the group and not of any particular representation. In this
sense, this can be formally written as ‘Ta = −i∂ag|e’. However, it is often
useful to discuss properties etc in terms of representations.

For a fixed representation R, we call −i∂aR(ξ)|ξ = 0 the representation
of Ta in the representation R, and call it tRa . It is interesting to note that
changes of coordinates in G induce linear transformations on the Ta’s, as
follows

T ′
a =

∂ξb

∂ξ′a
Tb (B.14)
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We can form linear combinations and multiply the Ta’s, as induced from
sum and product of matrices. Roughly speaking the Lie algebra is the algebra
generated by the Ta’s with this sum and product. The linear combinations∑
a λaTa are called generators of the group/algebra (often, just the Ta are

called generators of the algebra).

B.2.3 Exponential map

Generators provide infinitesimal transformations

g(0, . . . , δξa, . . . , 0) = e + ∂ag δξ
a = e + i Ta δξ

a (B.15)

In fact, they are associated to whole one-parameter subgroups of G (which
are said to be generated by Ta). In any representation R

R(0, . . . , ξa + δξa, . . . , 0) = R(0, . . . , δξa, . . . , 0)R(0, . . . , ξa, . . . , 0) =

= (1 + ∂aR|ξ=0δξ
a)R(0, . . . , ξa, . . . , 0) (B.16)

On the other hand

R(0, . . . , ξa + δξa, . . . , 0) = R(0, . . . , ξa, . . . , 0) + ∂aR|ξ=0δξ
a (B.17)

So we get

∂aR(0, . . . , ξa, . . . , 0) = i tRa R(0, . . . , ξa, . . . , 0) (B.18)

Hence

R(0, . . . , ξa, . . . , 0) = eit
R
a ξ

a

(no sum) (B.19)

In the abstract group/algebra

g(0, . . . , ξa, . . . , 0) = ei Ta ξa

(no sum) (B.20)

In fact, any element of the group g(ξ) continously connected to the identity
can be written as

g(ξ) = ei
∑

a
Ta ξa

(B.21)

for a suitable generator
∑
a ξ

aTa in the algebra, see figure B.2. So the whole
group can be recovered from the structure of the algebra 1

1In fact, some global information on the group may not be recovered from the algebra.
There are groups which are globally different yet have the same Lie algebra. They are
typically quotients of each other, so they differ in their homotopy groups. The group
recovered from the algebra is the so-called universal cover group, which is the only simply
connected group with that algebra. This subtle issue is what makes SU(2) and SO(3)
have the same Lie algebra although SU(2) is simply connected and SO(3) = SU(2)/Z2.
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G

A(G)

ξ ιΤξg(  ) = e

U(1)T

T

Figure B.2: Any element in the group (in the component continuously connected
to the identity) can be obtained from a generator in the Lie algebra by the expo-
nential map.

B.2.4 Commutation relations

The generators Ta satisfy simple commutation relations

[Ta, Tb] = ifabcTc (B.22)

where fabc are called the structure constants of the group/algebra.
i) They are determined by the group multiplication law. To see this,

consider the group element g(λ) defined by

gab(λ) = eiλTb eiλTa e−iλTb e−iλTa (B.23)

Expanding around λ = 0, we have

gab(λ) = 1 + λ2 [Ta, Tb] + . . . (B.24)

Since g(λ) is a group element, infinitesimally close to the identity, it also has
the expansion as identity plus some element in the algebra

gab(λ) = 1 + λ2
∑

c

fabcTc (B.25)

By comparing, we get the commutation relations (B.22)
ii) They determine the group multiplication law, at least for elements

connected to the identity. To see that, consider two group elements eiλ
aTa

and eiσ
aTa, their product is some element eiρ

aTa. The Lie algebra information
is enough to find the ρa in terms of the λb, σc. By expansion of the relation

eiλ
aTa eiσ

aTa = eiρ
aTa (B.26)
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we get

ρa = λa + σa − 1

2
fabc λ

b σc + . . . (B.27)

this verifies our claim.

The commutation relations satisfy the Jacobi identities

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0 (B.28)

(as in any representation they are simply matrices which obviously satisfy this
relation). This can be easily translated into a relation among the structure
constants.

A representation R of the Lie algebra is a mapping that to each Ta it
associates a linear operator tRa (acting on a space V of some dimension n,
independent of the dimension N of the group), consistently with linear com-
binations and with the commutation relations, namely

[tRa , t
R
b ] = ifabct

R
c (B.29)

Clearly the structure constants are a property of the group/algebra and not
of the representation.

Clearly, given a representation of the group we can build a representa-
tion of the algebra (by taking representations of group elements close to
the identity tRa = −i∂aR(ξ)), and viceversa (by the exponential mapping
R(ξ) = eit

R
a ξ

a

).

The structure constants depend on the choice of basis in the Lie algebra,
so it is convenient to fix a canonical choice. To fix it, consider the quantity
tr (tRa t

R
b ) in any representation R; it is a real and symmetric matrix, which

can be diagonalized by a change of basis in the Lie algebra. Once we are in
such basis tr (tRa t

R
b ) = kRδab and we obtain the structure constants as

fabc = − i

kR
tr ([tRa , t

R
b ]tRc ) (B.30)

and are completely antisymmetric.
Since this can be played for any representation R, it shows that there

exists a basis in the abstract Lie algebra where (B.22) hold with completely
antisymmetric structure constants.

In the remaining of this lecture we will center on compact Lie groups, for
which any representation is equivalent to a unitary representation. In such
representation all generators are hermitian and the structure constants are
real.
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B.2.5 Some useful representations

There is a very useful representation which is canonically built in the struc-
ture of the Lie algebra. It is the adjoint representation, which isN -dimensional
(same dimension as the group). Consider an N -dimensional vector space,
with a set of basis vectors labeled by the generators of the algebra |Ta〉,
a = 1, . . . , N . And represent Ta by the linear operator tAdj

a defined by

tAdj
a |Tb〉 = |[Ta, Tb]〉 = i fabc |Tc〉 (B.31)

Namely we have the matrix elements (tAdj
a )bc = −ifabc.

Given any representation R, with generators represented by tRa , we can
build another representation R∗, called the conjugate representation, with
generators represented by −(tRa )T . It is a simple exercise to check that it also
provides a representation of the algebra.

B.3 SU(2)

To warm up before the study of more general Lie algebras, we study the
construction of representations for SU(2), the simplest non-abelian group.
The Lie algebra is given by

[Ja, Jb] = iεabcJc (B.32)

A familiar representation is provided by the Pauli matrices Ja = σa/2,
with

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(B.33)

In this representation, elements of the group correspond to 2 × 2 unitary
matrices. This particular representation arises as the action of the 3d rotation
group on spin 1/2 particles. We will be interested in constructing more
general representations in a more systematic way.

B.3.1 Roots

We first put the Lie algebra in Cartan-Weyl form. To do that, the first
step is to choose a maximal set of mutually commuting generators (this is
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a)
0 +1−1 m m

...−j jj−1−j+1
b)

Figure B.3: Fig. a) shows the root diagram for the SU(2) Lie algebra; Fig b)
shows the general structure of the weights for irreducible representations of this
algebra.

the so-called Cartan subalgebra, whose dimension is called the rank of the
group/algebra). For SU(2) any pair of generators is non-commuting, there
is at most one such generator, say J3.

Next, se take the remaining generators are form linear combinations

J± =
1√
2
(J1 ± iJ2) (B.34)

such that they have simple commutation relations with the Cartan generator
J3

[J3, J
+] = J+ ; [J3, J

−] = −J− (B.35)

In intuitive terms, this tells us the charges of J± with respect to the U(1)
subgroup generated by the Cartan J3. In the adjoint representation, we have
the relation J3|J±〉 = ±|J±〉; upon exponentiation, g(ξ)|J±〉 = e±iξJ3|J±〉,
namely |J±〉 tranform with charges ± under the U(1) generated by J3. By
abuse of language we use the same language for J± themselves.

We also have

[J3, J3] = 0 ; [J+, J−] = J3 (B.36)

This are the commutation relations for the algebra written in the Cartan-
Weyl form. The charges of the different generators with respect to the U(1)
generated by the Cartan J3 are called the roots of the algebra. In our case
we have the roots −1, 0, +1 for J−, J3, J

+ respectively.
The roots of an algebra are drawn in a root diagram, as in figure B.3a).

Such picture encodes all the information about the algebra.

B.3.2 Weights

Let us now discuss the construction of irreps. The representation space is a
vector space spanned by a set of basis vectors. It is natural to take a basis
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where the representative of J3 is diagonal, and then it is natural to label each
vector in the basis by its J3 eigenvalue, |µ〉. Hence we have by construction

J3|µ〉 = µ|µ〉 (B.37)

The eigenvalues µ are in principle real numbers, which give us the charge of
the corresponding eigenstate with respect to the U(1) generated by J3. Such
charges are called weights of the representation. The irrep is essentially
defined by giving the set of weights for all basis vector in the representation
space, and it is usual to draw the weights in a weight diagram (see below)
that encodes all information about the representation.

We define the highest weight as the highest of all eigenvalues, and call
it j. Soon we will see that the complete irrep is defined just in terms of its
highest weight.

An important fact is that weights in an irrep differ by roots. Starting
with a state of weight |µ〉, we can build the states J±|µ〉, which are eigenstates
of J3 with eigenvalues µ± 1

J3J
±|µ〉 = ([J3, J

±] + J±J3)|µ〉 = (±J± + µJ±)|µ〉 = (µ± 1)J±|µ〉(B.38)

So the states J±|µ〉 must be either zero or they are part of our basis vectors.
Hence there should exist weigths which are equal to µ ± 1, namely weights
differ by roots.

Since by definition µ = j was the highest weight, the structure of the
basis vectors is

|j〉 , |j − 1〉 , |j − 2〉 . . . (B.39)

On the other hand, the representations we are interested in are finite
dimensional, so the representation should end. To compute when, we must
realize that J−|µ〉 ' |µ− 1〉 up to a normalization factor. Namely, one has

J−|µ〉 = Nµ |µ− 1〉
J+|µ〉 = Nµ |µ+ 1〉 (B.40)

and the coefficent can be computed to be

Nµ =
1√
2

√
(j + µ)(j − µ+ 1) (B.41)
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which means that the representation is finite-dimensional if some µ = −j

J−| − j〉 = 0 (B.42)

Since µ’s differ by integers, j and −j must differ by an integers, which implies
the constraint that j must be integer or half odd.

Hence irreps of SU(2) are characterized by a highest weight, which must
be an integer of half-odd number. The representation space is spanned by
the basis vectors

|j〉 , |j − 1〉 , |j − 2〉 . . . | − j〉 (B.43)

which is (2j + 1)-dimensional. The matrices representing generators in this
space are easy to obtain from the actions of J±, J3 on the basis vectors. All
the information of the irrep with highest weight j is encoded in a weight
diagram as in figure B.3b.

B.4 Roots and weights for general Lie alge-

bras

The idea is to generalize to any Lie algebra the procedure introduced for
SU(2).

B.4.1 Roots

First we put the Lie algebra in the Cartan-Weyl form. The first step is to
pick a maximal set of mutually commuting hermitian 2 generators, which we
call Hi, i = 1 . . . , r. The number of such generators is called the rank r of
the group; they generate the Cartan subalgebra of the Lie algebra. Upon
exponentiation, they generate a U(1)r subgroup of the Lie group.

The second step is to take linear combinations of the remaining operators
so that they have easy commutators with the Hi. To do that, we go to the
adjoint representation, with basis vectors |Ta〉, and construct the matrix

M
(i)
ab = 〈Ta|Hi|Tb〉 (B.44)

2By abuse of language we talk about a hermitian generator in the abstract algebra, as
a generator which is represented by a hermitian operator/matrix in any unitary represen-
tation.
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Diagonalizing simultaneously the matrices M (i) (they commute since they
represent the Cartan generators, which commute in the abstract algebra),
we get a new basis of vectors |Eα〉, which are eigenstates of the Hi (better, of
their representatives in the adjoint representation). We label each such state
by its r eigenvalues αi with respect to Hi.

Hi|Eα〉 = αi|Eα〉 (B.45)

At the level of the abstract algebra, this induces some linear combinations
of the original generators Ta into some generators Eα with commutation
relations

[Hi, Eα] = αiEα (B.46)

These are not hermitian, rather E †
α = E−α

Using the Jacobi identity it is also possible to show that

[Eα, E−α] =
∑

i

αiHi

[Eα, Eβ] = Eα+β if α+ β is root

= 0 otherwise (B.47)

The r-dimensional vectors α are called the roots of the Lie algebra,
and they provide the charges of the Eα with respect to the U(1)r generated
by the Cartan subalgebra.

B.4.2 Weights

To describe irreps, we choose a basis of the representation space where all
matrices representing the Cartan generators are diagonal, and we label the
vectors in the basis (eigenstates of the matrix representing Hi) by the cor-
responding eigenvalues. By abuse of language, we denote Hi the matrix
representing the abstract Hi in the representation. We have

Hi|µ〉 = µi|µ〉 i = 1, . . . , r (B.48)

The r-dimensional vectors µ are called weights of the representation.
The set of weights of a representation characterize the representation.

OBS: Notice that the weights are a property of the representation, while
the roots are a property of the algebra. Notice also that the weights of the
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adjoint representation are the roots of the Lie algebra (this is beacuse the
adjoint is a very canonical representation, built into the structure of the
algebra itself).

OBS: Notice that in an irreducible representation there may be different
states with the same weight vectors. One (special) example is the states
|Hi〉 in the adjoint representation, which all have weight equal to zero. One
must be careful in dealing with situations where different vectors have same
weights.

In a given representation, weights are not arbitrary. Rather, as in SU(2),
weights differ by roots. Namely, starting with an state |µ〉 we can con-
struct E±α|µ〉 which is an eigenstate of the Hi, with eigenvalue µi ± αi, as
follows

HiE±α|µ〉 = (αiE±α + E±αHi) |µ〉 = (µi ± αi)E±α|µ〉 (B.49)

So there must in principle exist a weight in the representation given by the
vectors µ + α, and a corresponding state |µ ± α〉. In fact, as in SU(2) we
have a relation modulo a coefficient

E±α|µ〉 = Nµ,±α|µ± α〉 (B.50)

and for some µ we will have Nµ,±α = 0, which ensures that representations are
finite-dimensional, and impose some additional constraints on the possible
values of the weights µ. The sets of allowed irreps and the corresponding
weights is difficult to analyze in general, and we leave their discussion for
specific examples, see sections B.6.

It is worth pointing out that the analogy with SU(2) is quite precise. In
fact, for any non-zero root α, the generators E±α,

∑
i αiHi form an SU(2)

subalgebra of the Lie algebra. Defining E± = 1
|α|E±α, E3 = 1

|α|2
∑
i αiHi we

have the commutators

[E3, E
±] = ±E± ; [E+, E−] = E3 (B.51)

which is an SU(2) algebra in the Cartan-Weyl form. This means that for
any µ the states |µ+ kα〉 form an irrep of this SU(2).

For future convenience, we use this a bit further. This irrep will contain
some highest and lowest SU(2) weight states |j〉 and | − j〉, namely there
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exist integers p, q such that

Eα|µ+ pα〉 = 0 ; j =
α · µ
|α|2 + p

E−α|µ− qα〉 = 0 ; −j =
α · µ
|α|2 − q (B.52)

so we get α·µ
|α|2 = −1

2
(p − q). This is the master formula extensively used in

the classification of Lie algebras, see section B.5.

The basic strategy to build irreps is therefore as follows. We need to
introduce the concept of a highest weight. To do so, we define a positive
vector in the r-dimensional space of roots/weights/charges, v > 0 if v1 > 0;
if v1 = 0 we say that v > 0 if v2 > 0; etc. We say that one vector v is higher
than other vector w, v > w, if v − w > 0. This allows to define the highest
weight µ0 of a representation the weight such that µ0 > µ for any other
weight µ.

The concept of positivity allows to split the set of non-zero roots into the
set of positive roots and of negative roots. For α > 0 the Eα are raising
operators and the E−α are lowering operators. The highest weight vector is
characterized by the fact that it is annihilated by the raising operators (if
not, we would get states |µ0 + α〉 with weight higher than |µ0〉, which was
defined as the highest!).

The representation is build by applying lowering operators to the highest
weight state, in all possible inequivalent ways, until we exhaust the repre-
sentation (namely, until we start finding zeroes upon application of lowering
operators). That this happens is guaranteed because states form represen-
tations of the SU(2)’s associated to each α, and such representations are
finite-dimensional from our experience with SU(2)

B.4.3 SU(3) and some pictures

Instead of giving the commutation relations of the SU(3) algebra, all the
relevant information is provided by the root diagram of the algebra, shown
in figure B.4. Namely, the rank is two; the Cartan subalgebra is spanned by
two generators H1, H2, which are mutually commuting. The remaining eight
generators are labelled Eα, E−α for α = (1, 0), (1/2,

√
3/2), (1/2,−

√
3/2),

and have commutation relations

[Hi, E±α] = ±αiE±α (B.53)
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H1

H 2

α 1

α 2

α 3

Figure B.4: The root system of the SU(3) Lie algebra. The positive roots are
α1 = (1, 0), α2 = (1/2, 1/(2

√
3), α3 = (1/2,−1/(2

√
3). The two roots at (0, 0)

correspond to the Cartan generators.

Notice the SU(2) subalgebras along the different α’s, which graphically
correspond to lines along which the roots reproduce the root diagram of
SU(2).

Some representations
Instead of writing the explicit matrices providing a particular representa-

tion of the SU(3) algebra, we can instead provide the weight diagram of the
corresponding representation.

A familiar representation is the fundamental representation, which is 3-
dimensional, and on which the generators are represented as 3× 3 hermitian
matrices (the Gell-Mann matrices). Upon exponentiation, the group ele-
ments are represented as 3× 3 unitary matrices.

This representation can be equivalentely described by the weights in pic-
ture B.5a. The action of the Cartans on the states |µ = (±1/2, 1/(2

√
3)),

(0,−1/
√

3) is

Hi|µ〉 = µi|µ〉 (B.54)

The action of non-zero root generators Eα is

Eα|µ〉 = Nµ,α|µ+ α〉 (B.55)

Notice that the states form representations under the SU(2) subalgebras of
the non-zero roots. That is, weights along lines parallel to the root diagram
of the corresponding SU(2) subgroup differ by the corresponding root.
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a)

H1

H 2

H1

H 2

1µ2µ

3µ 1µ− −

−

b)

µ

µ

2

3

Figure B.5: The weight diagram for the fundamental (a) and antifundamental
representations of SU(3).

The construction of the irrep is as follows. The highest weight is |(1/2, 1/(2
√

3)〉,
so this is annihilated by the positive roots α1 = (1, 0), α2 = (1/2, 1/(2

√
3),

α3 = (1/2,−1/(2
√

3). The remaining states are obtained as

E−α1 |(1/2, 1/(2
√

3)〉 ' |(−1/2, 1/(2
√

3)〉
E−α2 |(1/2, 1/(2

√
3)〉 ' |(0,−1/

√
3)〉

(B.56)

The conjugate representation, the antifundamental, which is obtained by
minus the transposed GellMann matrices, has weights opposite to those of
the fundamental. Namely, conjugation of the representation flips the charges
of objects. The weights are shown in figure B.5b

B.5 Dynkin diagrams and classification of sim-

ple groups

The discussion in this section will be very sketchy. For more information, see
chapter VIII of [120]. However, the discussion is not too relevant, one can
jump to the results directly.

The information we have obtained is also useful in yielding information
that can be used to classify all possible Lie algebras. In fact in the study
of representations we obtained some interesting constraints. For instance,
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recall the master formula that for any representation, the fact that |µ + kα
for a representation of SU(2)α implied that the weights satisfy

α · µ
|α|2 = −1

2
(p− q) (B.57)

In particular we may apply this to the adjoint representation, where the
weight µ is a root. Requiring that the states |β + kα〉 form a representation
of SU(2)α, and that the states |α+ kβ〉 form a representation of SU(2)β, we
get

α · β
|α|2 = −1

2
m ;

β · α
|β|2 = −1

2
m ;m.m′ ∈ Z (B.58)

We obtain a constraint on the relative angle of the roots

cos2 θα,β =
(α · β)2

|α|2|β|2 =
mm′

4
(B.59)

The angle is constrained to be 0, 30, 45, 60, 90, 120, 135, 150 or 180 degrees.

B.5.1 Simple roots

We now define a simple root as a positive root which cannot be written
as a sum of positive roots with positive coefficients. Simple roots have nice
properties, in particular the set of simple roots of an algebra is linearly in-
dependent, and there are r simple roots; so simple roots provide a basis of
root space.

Moreover, the angles between simple roots are more constrained. To see
this, notice that if α and β are simple roots, then α− β is not a root 3. Now
going to the adjoint representation, E−α must annihilate Eβ (since otherwise
it would create a state |Eβ−α〉, but β − α is not a root!), so |Eβ〉 is the lower
weight state | − j〉 for the subalgebra SU(2)β, and we get

2
α · β
|α|2 = −p ; p ∈ Z+ (B.60)

3If it were, it would be positive or negative; if it is positive then α = β + (α − β)
contradicts the fact that α is simple; if it is negative, then β = α + (β − α) contradicts
that β is simple
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Hence the quantities 2 α·β
|α|2 are non-positive integers for simple roots. Using

2
α · β
|α|2 = −p ; 2

α · β
|β|2 = −p′ (B.61)

we get cos θα,β = −1
2

√
pp′, and this forces the angles between simple roots to

be 90, 120, 135 or 150 degrees.

B.5.2 Cartan classification

The only invariants of the set of simple roots are the relative lengths and
angles of the simple roots. Use of this information is enough to recover
the complete system of roots, since simple roots provide a basis. Hence the
problem of classification of Lie algebras is the problem of classifying sets of r
linearly independent vectors in r-dimensional space with non-positive integer
values of 2α · β/|α|2.

In the classification it is important to note the following. Two r1- resp
r2-dimensional systems of simple roots, satisfying the above properties, can
always be combined into a new (r1 + r2)-dimensional simple root system, by
simply joining orthogonally the two initial systems. Clearly we are interested
in root systems which cannot be split into orthogonal subsystems.

This is related to the concept of invariant subalgebra. Given and algebra
A, an invariant subalgebra B is a subalgebra such that the commutator of
any element in B with any element in A is still in A. Upon exponentiation,
Lie algebras with invariant subalgebras lead to non-simple groups, namely
groups which split as product of groups, G = G1 ×G2.

So one is in principle interested in classifying simple groups (as any other
is obtained by taking products) and Lie algebras without invariant subalge-
bras (simple Lie algebras). Lie algebras with invariant subalgebras manifest
as root systems which split into two orthgonal subsystems. Hence we are
interested in classifying simple root systems without such subsystems. Any
other can be obtained by simple adjunction.

The problem of classifying simple root systems of this kind has been
solved. The result, called the Cartan classification can be recast is giving the
relative lengths and angles between the simple roots. This is conveniently
codified in a picture called the Dynkin diagram. The classification of Dynkin
diagrams for simple Lie algebras is given in figure B.6. The rules to obtain
the simple root system from the diagram are as follows.
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An

nB

nC

nD

G2
F 4

E6

E7

E8

SU(n+1)

SO(2n+1)

USp(2n)

SO(2n)

Figure B.6: Dynkin diagrams for simple Lie algebras. There are four infinite series
(labeled by a positive integer r giving the number of nodes), and some exceptional
algebras. Notice that for small rank some algebras are isomorphic and have the
same Dynking diagram (e.g. A3 = D3, namely SU(4) ' SO(6). The groups
arising from the A, B, C, and D series were known in classical mathematics before
Cartan and are known as classical Lie groups, they are listed to the right of the
corresponding diagram.

• Each node corresponds to a simple root (hence the number of nodes is
the rank of the Lie algebra/group)

• The number of lines joining two nodes gives us the angle between the
two simple roots: no line means 90o, one line means 120o, two lines means
135o, three lines means 150o.

• Dark nodes correspond to shorter roots (the relative lengths can be
found from (B.59)

Clearly, Dynking diagrams corresponding to non-simple algebras are ob-
tained by adjoining in a disconnected way Dynkin diagrams for simple alge-
bras (so that we adjoin orthogonally the two subsystems of simple roots).

B.6 Some examples of useful roots and weights

There are some systems of roots and weights that we will encounter in our
study of string theory. In this section we list some of them. A more complete
reference, which includes a systematic discussion of tensor products or irreps,
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Figure B.7: The root system of SU(3) described as a set of vectors lying in a
2-plane in 3-dimensional space.

and decomposition of representations under subgroups, is the appendices of
[124].

B.6.1 Comments on SU(k)

Roots
Although SU(k) (or its algebra Ak−1) has rank k−1, it is convenient and

easier to describe its roots as k-dimensional vectors, which lie on an (k− 1)-
plane. Besides the k − 1 zero roots associated to the Cartan generators, the
non-zero roots are given by the k-dimensional vectors

(+,−, 0, . . . , 0) (B.62)

where +, − denote +1, −1, and where underlining means permutation,
namely the + and − can be located in any (non-coincident) positions. Note
that all roots satisfy one relation

∑n
i=1 vi = 0, so they live in a (k − 1)-plane

Π in Rn. There are a total of k2−1 roots, which is the number of generators
of SU(k).

Fixing a basis within the (k − 1)-plane it is straightforward to read out
the roots as (k − 1)-dimensional vectors. The picture of the root system of
SU(3) in this language is given in figure B.7.

The extra direction in the diagram can be regarded as associated to the
extra U(1) generator in U(k) = SU(k)×U(1). Hence, SU(k) weight diagrams
embedded in (k− 1)-planes parallel to Π but not passing through the origin
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are associated to states which, in addition to being in a representation of
SU(k), also carry some charge under the additional U(1).

Weights
A familiar representation is the fundamental representation. The corre-

sponding weights, given as k-dimensional vectors but inside the (k−1)-plane
Π are,

1

n
(n− 1,−1, . . . ,−1) (B.63)

Notice that weights differ by roots, so application of generators associated to
non-zero roots relate states with different weights (or give zero if they take
us out of the representation).

In situations where the gauge group is U(k) so there is an additional U(1)
generator, the fundamentals of SU(k) may carry some charge, so the weights
satisfy the relation

∑n
i=1 vi = q for some non-zero constant q giving (up to

normalization) the charge under the additional U(1). Very often one finds
fundamentals from weights of the form

(+, 0, . . . , 0) (B.64)

or

1

2
(+,−, . . . ,−) (B.65)

Notice that the weights (B.63) can be written as

(+, 0, . . . , 0) − (1/n, . . . ,−1/n) (B.66)

where the second term removes the piece corresponding to the additional
U(1) charge. By abuse of language, we will often use things expressions like
(B.64) or (B.65) to denote the fundamental even in situations where there
is no additional U(1), removing implicitly the piece corresponding to this
charge.

The weights for the antifundamental representation are the opposite to
those for the fundamental, namely

(−, 0, . . . , 0) (B.67)
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By this, we mean

1

n
(−(n− 1), 1, . . . , 1) (B.68)

or any other shifted version, with the understanding that the additional U(1)
charge should be removed.

Other representations can be obtained by taking tensor products of the
fundamental (using the techniques of Yound tableaux, not discussed in this
lecture, see [120] for discussion). The corresponding weights are obtained by
adding the weights of the fundamental representation.

For instance, the two-index antisymmetric representation has k(k − 1)/2
weights

(+,+, 0, . . . , 0) (B.69)

while the two-index symmetric representation has k(k + 1)/2 weights

(+,+, 0, . . . , 0) ; (±2, 0, . . . , 0) (B.70)

They are obtained by adding two times weights of the fundamental represen-
tation in a way consisten with antisymmetry or symmetry of the representa-
tion.

It is straightforward to derive familiar facts like the equivalence of the
antifundamental representation and the (k − 1)-index antisymmetric repre-
sentation. They have the same weights.

B.6.2 Comments on SO(2r)

Roots
Besides the n zero roots, the non-zero roots for the Dr Lie algebra are

given by the r-dimensional vectors

(±,±, 0, . . . , 0) (B.71)

Meaning that the + and - can be choses arbitrarily in any non-coincident
position. The total number of roots is 2r(2r − 1)/2.

The root system of SO(4) is shown in figure B.8. The fact that there are
two subsets of orthogonal roots means that there are invariant subalgebras.
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Figure B.8: Root diagram for SO(4). In fact it splits as two orthogonal SU(2)
root systems.

In fact, SO(4) ' SU(2) × SU(2)′, with non-zero roots of the latter being
given by

SU(2) : (++), (−−) ; SU(2)′ : (+−), (−+) (B.72)

Notice also that the Dynkin diagram for D2 are two disconnected nodes, so
is the same as two A1 Dynkin diagrams.

It is important to notice that the root system of SO(2r) contains the
roots of SU(r), so by exponentiation the group SO(2r) contains a subgroup
SU(r).

Weights
An important representation is the vector representation, which is

2r-dimensional and has weights

(±, 0, . . . , 0) (B.73)

Notice that it is a real representation, since its conjugate has opposite weights,
but the representation (as a whole) is invariant under such change.

When the group is regarded as the group of rotational isometries of a 2r
dimensional euclidean space, the vector representation in which vectors of
this space transform.

More representations can be obtained by taking tensor products of the
vector representation. These are the respresentations under which tensors in
the euclidean space transform under rotations.

There are some additional representations which cannot be obtained from
tensor products of the vector representation. These are the spinor represen-
tations. For Dr there are two inequivalent irreducible spinor representations,
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both with dimension 2r−1, and weights

spinor : (±1

2
, . . . ,±1

2
) , #− = even

spinor′ : (±1

2
, . . . ,±1

2
) , #− = odd (B.74)

These spinor representations are said to have different chirality 4.
Spinor representations and Clifford algebras
There is a canonical and very useful way to describe the spinor representa-

tions of SO(2r), related to representations of Clifford algebras. We briefly
review this here, since it will appear in our construction of string spectra.

Consider the algebra of objects Γi, i = 1, . . . , 2r, satisfying

{Γi,Γj} = 2δij (B.75)

It is called a Clifford algebra. It is important to remark that this is not a Lie
algebra! In particular it is not defined in terms or commutators.

The important point is that this algebra is invariant under the group of
transformations

Γ′i = Ri
j Γj (B.76)

where R is a 2r× 2r orthogonal matrix. This group is precisely SO(2r), and
we have found it acting on the set of Γi in the fundamental representation.

The fact that the Clifford algebra (B.75) has an SO(2r) invariance menas
that any representation of the Clifford algebra must also form a representa-
tion of SO(2r). In fact, given a hermitian matrix representation for the
Γi, the hermitian matrices J ij = −i

4
[Γi,Γj] can be seen to form a (possibly

reducible) hermitian matrix representation of the SO(2r) algebra, which is

[J ij, Jkl] = i (δikJ jl + δjlJ ik − δilJ jk − δjkJ il) (B.77)

So our purpose is to build a representation of the Clifford algebra, and
the resulting representations of SO(2r). The standard technique to build a

4Clearly there discussion of spinors under the Lorentz group in even dimensional space
can be recovered from the group theory of spinor representations of SO(2r) (with a few
subtleties arising from the non-compactness of the Lorentz group). A nice discussion of
Lorentz spinors can be found in the appendices of [71].
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representation of the Clifford algebra is to form linear combinations of the
Γi which can act as raising and lowering operators. We define

Aa =
1√
2

( Γ2a + iΓ2a−1 ) ; A†
a =

1√
2

( Γ2a − iΓ2a−1 ) , a = 1, . . . , r(B.78)

They satisfy the relations

{A†
a, A

†
b} = {Aa, Ab} = 0 ; {A†

a, Ab} = δab (B.79)

So they behave as fermionic oscillator ladder operators. Notice that in this
language only an SU(r) invariance is manifest, with the A†

a, Aa transforming
in the fundamental resp. antifundamental representations.

To build a representation of the Clifford algebra, we introduce a ‘ground-
state’ for the harmonic oscillator

Aa|0〉 = 0 (B.80)

The representation is built by applying raising operators to this ‘groundstate’
in all possible inequivalent ways. We have

states number

|0〉 1

A†
a|0〉 r

A†
aA

†
b|0〉 r(r − 1)/2

. . . . . .

A†
a1 . . . A

†
ak
|0〉

(
r
k

)

. . . . . .

A†
1 . . . A

†
r|0〉 1 (B.81)

The bunch of
(
r
k

)
states arising from applying k operators to the ground-

state clearly forms a k-index completely antisymmetric tensor representation
of the SU(r) invariance group.

The total number of states is 2r. Constructing the Lorentz generators, it
is possible to check that the weights are of the form

(±1

2
, . . . ,±1

2
) (B.82)
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Moreover, it is easy to realize that the weights among the above with has
k +1/2’s correspond to the weights of a k-index completely antisymmetric
tensor representation of SU(r), in agreement with our above statement.

The above weights therefore define a representation of the SO(2r) group
(although only SU(r) invariance was manifest in intermediate steps). Now
this representation is reducible. REcalling that the SO(2r) generators are
constructed with products of two Γi’s, it is clear that they are unable to
relate states (B.81) with even number of Γ’s to states with odd number of
Γ’s. More formally, one can introduce the chirality operator Γ = Γ1 . . .Γ2r

which commutes with all SO(2r) generators (and anticommutes with the Γi),
and can be used to distinguish the two subsets of states.

This means that the 2r-dimensional representation is reducible into two
2r−1-dimensional irreducible representations, with weights given in (B.74),
called the chiral spinor representations.

B.6.3 Comments on SO(2r + 1)

We will not say much about SO(2r + 1), since most of the relevant facts
about its representations can be obtained by noticing that it is a subroup of
SO(2r + 2) and that it contains an SO(2r) subgroup.

Let us simply say that it has an (2r+1)-dimensional vector representation,
out of which other tensor representations can be obtained by tensor produce.
It also has a unique spinor representation, of dimension 2r which is irreducible
5.

The tensor product of representations and decomposition under sub-
groups can be found in standard tables, like the appendices in [124].

B.6.4 Comments on USp(2n)

We will not say much about these, since these groups rarely appear in particle
physics or in string theory. Moreover, most of its properties can be derived
from the trick that it can be constructed from U(2n) by keeping the subset
of roots invariant under an involution. We will see more of this as we need
it.

5This underlies the fact that there are no chiral spinors in euclidean spaces of odd
dimension.
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B.6.5 Comments on exceptional groups

The most interesting one is E8, since it appears automatically in the con-
struction of the heterotic superstring. Moreover, properties of E6, E7 etc are
easy to derive since they are subgroups of E8. For details we refer to the
properties listed in tables like the appendices in [124].

For the moment, the only data we need is the root system of E8. This
has rank 8 and dimension 248, and the 240 non-zero roots are of the form

(±,±, 0, 0, 0, 0, 0, 0)
(±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
) , #− = even (B.83)

Notice that there is a nice subset of SO(16) roots, given by the first line
of non-zero roots (along with the 8 Cartan generators). With respect to
this SO(16) subalgebra, the states associated with the vectors in the second
line are transforming in a 28−1-dimensional chiral spinor representation of
SO(16).

We will find good application of these facts for instance in the identifica-
tion of the spectrum of the heterotic theory.



Appendix C

Appendix: Rudiments of
Supersymmetry

In this appendix we provide the basic ideas on the construction of super-
symmetric field theories. The emphasis is in providing some basic results
to be used in the general lectures. We mainly follow the notation and dis-
cussion in [125], to which we refer the reader interested in more details and
proofs. For useful tables of supermultiplet components, for diverse extended
supersymmetries in diverse dimensions, see [127, 126].

C.1 Preliminaries: Spinors in 4d

Before discussing supersymmetry, it is useful to briefly review two-component
4d spinors (Weyl spinors), their properties, some useful notation, and their
relation to the more familiar four-component Dirac spinors. It is important to
realize that the following discussion has nothing to do with supersymmetry,
but just with spinor representations of the 4d Lorentz group, and that two-
component spinors appear in many contexts, for instance in the Standard
Model.

The 4d Lorentz group contains two inequivalent spinor representations,
usually denoted left- and right-handed spinors. These representations are
two-dimensional, so the spinors are denoted two-component, and sometime
Weyl spinors. The two representations are exchanged under (Dirac) conju-
gation (transposition and complex conjugation), namely the conjugate of a
left-handed object transforms as a right-handed spinor.

453
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We use the following notation, we denote a left-handed spinor as ψα, a
right-handed spinor as ψ̄α̇. We also denote the conjugate of a right-handed
spinor by ψα and the conjugate of a left-handed spinor by ψ̄α̇.

A Lorentz transformation is represented on spinors in terms of a matrix
M in SL(2,C) (Notice that it contains six independent real parameters).

Spinors transform as

ψ′
α = Mα

βψβ ; ψ̄′
α̇ = (M∗)α̇

β̇ψ̄β̇

ψ′α = ψβ(M−1)β
α ; ψ̄′α̇ = ψ̄β̇(M∗−1)β̇

α̇ (C.1)

Namely, ψα and ψα are rotated by M as column and row vectors, while ψ̄α̇
and ψ̄α̇ are rotated by M ∗.

Thus, contractions of the form (. . .)α(. . .)α and (. . .)α̇(. . .)
α̇ are invariant.

Vector representations can be constructed from the spinor representa-
tions. For that purpose, we introduce the matrices σµαα̇

σ0 =
(−1 0

0 −1

)
; σ1 =

(
0 1
1 0

)
; σ0 =

(
0 −i
i 0

)
; σ0 =

(
1 0
0 −1

)
(C.2)

Considering linear combinations of the form P = Pµσ
µ, the inherited action

of M is

P ′
αα̇ = Mα

βPββ̇(M
∗)α̇β̇ = (MPM †)αα̇ (C.3)

Indeed this is a Lorentz transformation on the 4-vector (Pµ), since the trans-
formation preserves detP = −[−(P0)

2 + (P1)
2 + (P2)

2 + (P3)
2], which is

precisely (minus) the norm of Pµ. Hence, any vector can be expressed in
terms of bi-spinor components (and vice-versa).

It is useful to introduce the tensors

(εαβ) =
(

0 1
−1 0

)
; (εαβ) =

(
0 −1
1 0

)
(C.4)

(and similarly for dotted indices). They are Lorentz invariant, namely they
satisfy

εαβ = Mα
γMβ

δ εγδ ; εαβ = εγδ (M−1)γ
α (M−1)δ

β (C.5)

as may be checked by using their explicit expressions.
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These properties imply that the tensors can be used to raise and lower
indices

ψα = εαβψβ ; ψα = εαβψ
β (C.6)

(and similarly for dotted indices). What this means is that e.g. the object
εαβψβ transforms as an object ()α, (i.e. as a column vector on which M acts),
which we denote ψα. We introduce the shorthand notation

χψ = χαψα ; χ̄ψ̄ = χα̇ψ
α̇ (C.7)

Using the ε tensors, we can also define

(σ̄µ)α̇α = εα̇β̇εαβσµββ̇ (C.8)

They satisfy

(σµσ̄ν + σνσ̄µ)α
β = −2ηµνδα

β ; (σ̄µσν + σ̄νσµ)α̇β̇ = −2ηµνδα̇β̇ (C.9)

In terms of them, the generators of the Lorentz group are given by

(σµν)α
β =

1

4
[σµαα̇σ̄

να̇β − σναα̇σ̄µα̇β] ; (σ̄µν)α̇β̇ =
1

4
[σ̇µα̇ασναβ̇ − σ̇να̇ασµαβ̇] (C.10)

Given two Weyl spinors of opposite chiralities χα, ψ̄
α̇ (and equal global and

gauge quantum numbers), one can construct a four-component Dirac spinor
by superposing them as a column vector

ΨD =
(
χα
ψ̄α̇

)
(C.11)

on which the Dirac matrices are realized as

γµ =
(

0 σµ

σ̄µ 0

)
(C.12)

which satisfy the Clifford algebra relations, as follows from (C.9). Also, given
a single Weyl spinor, say χα, in a real representation of all all global and
gauge symmetries, one can construct a four-component fermion, by taking
its conjugate to play the role of the right-handed piece, as follows

ΨM =
(
χα
χ̄α̇

)
(C.13)

Such spinors ΨM are thus subject to a reality condition, and are denoted
Majorana. Notice that Weyl spinors in complex representations of the global
or gauge symmetries cannot be turned into Majorana spinors, since the spinor
and its conjugate cannot belong to the same multiplet.
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C.2 4d N = 1 Supersymmetry algebra and

representations

In this section we discuss the basic structure of 4d N = 1 supersymmetry
algebra, and its realization in terms of fields.

C.2.1 The supersymmetry algebra

The 4d N = 1 supersymmetry algebra contains two spinorial generators Qα,
Q̄α̇, which behave as Grassman variables, and hence obey anticommutation
relations. The algebra is given by

{Qα, Q̄α̇} = 2σµαα̇Pµ

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0

{Pµ, Qα} = {Pµ, Q̄α̇} = 0 (C.14)

(in addition, we have the natural commutators that imply that the Q’s are
in the spinor representations).

OBS: The above algebra is invariant under U(1) transformations rotating
the supercharges Qα, Q̄α̇ by opposite phases.

Qα → eiλQα ; Q̄α̇ → e−iλQ̄α̇ (C.15)

This symmetry is known as R-symmetry.
Since the supergenerators Qα, Q̄α̇, are Grassman quantities, when re-

alized on quantum fields they relate bosons and fermions. Each multiplet
providing a representation of the supersymmetry algebra (supermultiplet)
thus contains bosons and fermions. Since the operator P 2, which is the mass
square operator, commutes with the Q’s, bosons and fermions in the same
multiplet are mass degenerate. Similarly, the supergenerators commute with
any global and gauge symmetry of the theory 1, so all fields in a supermul-
tiplet belong to the same representation of global and gauge symmetries.

An important property is that the total number of physical bosonic and
fermionic degrees of freedom is equal within a supermultiplet. To show this,
we define the operator (−1)F , which is equal to +1 for bosons and −1 for
fermions, and hence satisfies (−1)FQα = −Qα(−1)F . We can then compute,

1Except for R-symmetries, see below.
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in two different ways, Tr [(−1)F{Qα, Q̄α̇}], where the trace is taken over states
of fixed momentum in a supermultiplet,

1) Tr [(−1)F{Qα, Q̄α̇}] = Tr [(−1)FQαQ̄α̇ + (−1)F Q̄α̇Qα] =

= Tr [−Qα(−1)F Q̄α̇ +Qα(−1)F Q̄α̇] = 0

2) Tr [(−1)F{Qα, Q̄α̇}] = 2σµαα̇PµTr [(−1)F ]

(C.16)

Hence Tr [(−1)F ] = 0 in a supermultiplet.

C.2.2 Structure of supermultiplets

Let us consider the construction of the supermultiplet for massive fields of
mass M . Going to the rest frame for such particles, the relevant piece of the
algebra (C.14) becomes

{Qα, Q̄α̇} = 2Mδαα̇

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0

(C.17)

By defining aα = Qα/
√

2M , a†α = Q̄α̇/
√

2M , these are the anticommutators
for two decoupled fermionic harmonic oscillators. The supermultiplet is built
by starting with a lowest helicity state |Ω〉, obeying aα|Ω〉 = 0, and appying
operators a†α, namely

State Helicity
|Ω〉 j
a†α|Ω〉 j ± 1

2

a†1a
†
2|Ω〉 j

In building a quantum field theory with the corresponding fields, it is
important to notice that CPT flips the chirality (and conjugates the global
and gauge representations), so a CPT-invariant supermultiplet may require
using two of the above basic multiplets.

Two of the most useful supermultiplets are the following:
- The massive scalar supermultiplet is obtained by starting with a j = 0

state |Ω〉. It contains states of helicities 0, ±1/2, 0. It thus contains a Weyl
spinor and a complex scalar. This is CPT-invariant if the supermultiplet
belongs to a real representation of the gauge and global symmetries. If not,
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two of these basic multiplets, in conjugate representations, must be combined
to form a CPT-invariant set.

- The massive vector multiplet is obtained by starting with a j = 1/2
state |Ω〉. It contains states of helicities 1/2, 1, 0, 1/2. Combining it with its
CPT conjugate, the total multiplet contains one massive vector boson, one
real scalar and two Weyl fermions.

Let us now consider the construction of supermultiplets for massless fields.
Since they have light-like momentum P 2 = 0, they do not have rest frame,
but we may use a reference system where P = (−E, 0, 0, E). In this frame,
the supersymmetry algebra is

{Qα, Q̄α̇} = 2
(

2E 0
0 0

)
(C.18)

Defining the rescaled operators

a =
1

2
√
E
Q1 ; a† =

1

2
√
E
Q̄1̇ (C.19)

they correspond to a fermionic harmonic oscillator. The multiplet is con-
structed by starting with a lowest helicity state |Ω〉, satisfying

a|Ω〉 = Q2|Ω〉 = Q̄2̇|0〉 = 0 (C.20)

Hence the multiplet contains the states |Ω〉 and a†|Ω〉, with helicities j and
j+1/2, respectively. As before, one may need to combine this multiplet with
its CPT conjugate to formulate a quantum field theory.

Some of the most useful massless supermultiplets are:
- The chiral supermultiplet, obtained by taking |Ω〉 of helicity j = 0, so

it contains states of helicity j = 0, 1/2. This should be combined with its
CPT conjugate, with helicities j = 0,−1/2. This complete chiral supermul-
tiplet contains a complex scalar and a 4d Weyl fermion. This multiplet can
transform in an arbitrary representation of the gauge and global symmetries,
hence contains a chiral fermion, which is necessarily massless. If the multiplet
happens to transform in a real representation, it is possible to write a mass
term for it (see later), so it is equivalent to a massive scalar supermultiplet.

- The massless vector supermultiplet, obtained by taking |Ω〉 of helicity
j = 1/2, so it contains states of helicities j = 1/2, 1. Combined with its CPT
conjugate, with helicities j = −1,−1/2, the multiplet contains a 4d Weyl
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spinor and a massless vector boson. The multiplet transforms in the adjoint
representation of the gauge group, which is real, so the 4d Weyl spinor can
be recast as a 4d Majorana spinor.

- The supergravity multiplet, containing states of helicity j = 3/2, 2.
Combined with its CPT conjugate, of helicities j = −2,−3/2, it contains a
graviton and a gravitino (a spin 3/2 particle). We will not discuss it in detail,
since interacting theories involving this multiplet have spacetime diffeomor-
phism invariance, and include gravity (and in fact local supersymmetry),
they are known as supergravity theories, and lie beyond the scope of this
lecture

C.3 Component fields, chiral multiplet

The supersymmetry transformation parameters are anticommuting spinors
ξα, ξ̄α̇. Formally, the supersymmetry variation

is δξ = ξQ+ ξ̄Q̄. The supersymmetry algebra can be expressed as

[ξQ, η̄Q̄] = 2 ξσµη̄ Pµ

[ξQ, ηQ] = [ξ̄Q̄, η̄Q̄] = 0 (C.21)

We would like to construct a representation of the supersymmetry algebra,
using the massive scalar multiplet, which contains as physical degrees of
freedom a 4d Weyl spinor ψα and a complex scalar Φ. The supersymmetry
transformations of these fields are

δξΦ =
√

2 ξψ

δξψα = i
√

2σµαα̇ξ̄
α̇ ∂µΦ +

√
2 ξαF (C.22)

Namely

Q̄α̇Φ = 0 QαΦ =
√

2ψα

Q̄α̇ψα = −i
√

2σµαα̇∂µΦ Qαψβ =
√

2εαβF (C.23)

The field F appearing in the transformation of the fermions is discussed
below.

The transformations acting on Φ satisfy the supersymmetry algebra. In
order for the transformations acting on ψ to satisfy the supersymmetry al-
gebra, we have two choices
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i) Take F = −mΦ∗, and use the equation of motion of a free massive

fermion for ψ, namely −iσ̄µ∂µψ = mψ. Since we are using equations of
motion, the algebra closes on-shell.

ii) Consider F to be and independent field, and require δξF = i
√

2ξ̄σ̄µ∂µψ.
Since the equations of motion are not involved, the algebra closes off-shell.

Notice that the viewpoint i) is disadvantageous, since the equations of
motion are different for different theories, and this complicates the construc-
tion of interacting theories. On the other hand, from the viewpoint ii) the
transformations obey the supersymmetry algebra relations, no matter what
the dynamics of the theory is. It is important to notice that the field F does
not really describe a new physical degree of freedom. Since the dimension
of ξ, ξ̄ is 1/2, F has dimension 2, and it is not possible to write a kinetic
term for it, and it is called an auxiliary field. Hence we still have equality
of the number of bosonic and fermionic physical degrees of freedom in the
supermultiplet.

In principle, one can construct supersymmetry transformations for fields
in other supermultiplets. However it is non-trivial to do so for more com-
plicated supermultiplets. The task is facilitated by a technique, known as
superfield formalism.

C.4 Superfields

C.4.1 Superfields and supersymmetry transformations

Let us consider the set of component fields in a supermultiplet. Since they
form an irreducible representation, the whole set can be generated from any
one of them, say A, by acting with the supergenerators. It is useful to
consider the following formal expression

F (x, θ, θ̄) = eθQ+θ̄Q̄A (C.24)

Different component fields in the supermultiplet arise as coefficients in the
power-expansion of F in θ, θ̄. Since the latter are Grassman variables, the
power-expansion is a finite expression, of the form

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄ξ̄(x) + θθm(x) + θ̄θ̄ n(x) +

+ θσµθ̄ vµ(x) + θθ θ̄λ̄(x) + θ̄θ̄ θψ(x) + θθ θ̄θ̄ d(x) (C.25)
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where all the fields are related to each other by the action of Q, Q̄. Expres-
sions of the form (C.25), providing a formal sum of the component fields in
a supermultiplet, are refered to as superfields. Formally, they are functions
over a superspace parametrize by the supercoodinates z = (x, θ, θ̄). A whole
branch of mathematical physics is the study of the geometry of superspace
(supergeometry), but we will not need much of its machinery.

The use of superfields facilitates the computation of supersymmetry trans-
formations of the component fields. Let us introduce a formal sum of such
variations

δξF (x, θ, θ̄) = δξf(x) + θδξφ(x) + θ̄δξ ξ̄(x) + θθ δξm(x) + θ̄θ̄ δξn(x) +

+ θσµθ̄ δξvµ(x) + θθ θ̄δξλ̄(x) + θ̄θ̄ θδξψ(x) + θθ θ̄θ̄ δξd(x) (C.26)

We formally write δξF ≡ (ξQ + ξ̄Q̄) × F . The operation (ξQ + ξ̄Q̄)× thus
maps a superfield to the superfield constructed using the susy variations of
the component fields. Notice that it does not interfere with the θ, θ̄.

We would like to represent the action of (ξQ+ξ̄Q̄)× in terms of differential
operators in superspace. The simplest operators in superspace are derivatives
∂α = ∂

∂θα and ∂̄α̇ = ∂
∂θ̄α̇ (in addition to the familiar ∂µ = ∂

∂xµ . Using Hausdorff

formula, eA+B = eAeBe−[A,B]/2 (for A, B, commuting with [A,B]), we have

ξα∂α ( eθQ+θ̄Q̄× ) = ξα∂α e
θQeθ̄Q̄e−θσ

µ θ̄Pµ × =

= (ξQ+ iσµθ̄∂µ) × eθQ+θ̄Q̄ ×
ξ̄α̇∂̄

α̇ eθQ+θ̄Q̄× = (ξ̄Q̄− iθσµξ̄∂µ) × eθQ+θ̄Q̄× (C.27)

From this we learn that the action of ξQ, ξ̄Q̄ on component fields can be
represented in terms of differential operators acting on superfields. By abuse
of notation, these differential operators are also denoted Qα and Q̄α̇

Qα = ∂α − iσµαα̇θ̄α̇∂µ
Q̄α̇ = ∂̄α̇ − iθασµαα̇∂µ (C.28)

Namely, given a superfield F (x, θ, θ̄), we can compute the supersymmetry
variation of its components, which are encoded in the superfield of variations
(C.26) δξF = (ξQ + ξ̄Q̄) × F , by computing δξF using the action of the
differential operators (C.28), namely δξF = (ξQ + ξ̄Q̄)F . Comparing terms
in both θ-expansions leads to the supersymmetry variations.
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An important observation is that the component field corresponding to
highest power in θ, θ̄ in the expansion, always transforms as a total diver-
gence. This is because θ, θ̄ have dimension −1/2, so that this component
field is the one of highest dimension in the supermultiplet. On the other
hand, the supergenerators Qα, Q̄α̇, have dimension 1/2. Thus the supersym-
metry variation of the highest-dimension component field is necessarily the
derivative of a lower-dimension component field. This observation will be the
key idea in the construction of supersymmetric field theory actions.

Superfields are useful since they provide linear representations of the su-
persymmetry algebra. Actually, a completely general superfield corresponds
to a reducible representation. Different irreducible representations corre-
spond to superfields satisfying different constraints, consistent with the ac-
tion of the operators (C.28). This will be discussed below. For that purpose,
it is useful to define the differential operators

Dα = ∂α + iσµαα̇θ̄
α̇∂µ ; D̄α̇ = −∂̄α̇ − iθασµαα̇∂µ (C.29)

They anticommute with the operators (C.28)

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 (C.30)

C.4.2 The chiral superfield

A chiral superfield Φ(x, θ, θ̄ is characterized by D̄α̇Φ = 0. It is useful to
describe it in terms of a new position variable yµ = xµ + iθσµθ̄, in terms of
which the differential operators (C.29) read

Dα =
∂

∂θα
+ 2iσµαα̇θ̄

α̇ ∂

∂yµ
; D̄α̇ = − ∂

∂θ̄α̇
(C.31)

Hence a chiral superfield has the expansion

Φ(y, θ, θ̄) = Φ(y) +
√

2θψ(y) + θθF (y) (C.32)

We can readily identify that this describes a chiral (or scalar) supermultiplet
(by abuse of language, one often uses the same notation for the superfield
and for its complex scalar component field, hoping the context will disentan-
gle any possible ambiguity). Indeed we can reproduce the supersymmetry
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transformations of the component fields, by using the differential operators
(C.28), which in these coordinates read

Qα =
∂

∂θα
; Q̄α̇ =

∂

∂θ̄α̇
− 2iθασµαα̇

∂

∂yµ
(C.33)

and comparing

(ξQ+ ξ̄Q̄)× Φ(y, θ, θ̄) = δξΦ(y) +
√

2θαδξψα(y) + θθδξF (y) (C.34)

(ξQ+ ξ̄Q̄)Φ(y, θ, θ̄) = ξα
∂

∂θα
Φ(y, θ, θ̄) + (

∂

∂θ̄α̇
− 2iθασµαα̇

∂

∂yµ
)ξα̇Φ(y, θ, θ̄) =

=
√

2ξψ +
√

2θα(−i
√

2σµαα̇ξ̄
α̇∂µΦ + ξαF ) + θθ i

√
2ξ̄σ̄µ∂µψ

In terms of the original coordinates, we have

Φ(x, θ, θ̄) = Φ(x) + iθσµθ̄ ∂µΦ(x) +
1

4
θθ θ̄θ̄ Φ(x) +

+
√

2θψ(x)− i√
2
θθ∂µψ(x)σµθ̄ + θθF (x) (C.35)

Notice that the highest-dimension component is the same, expressed in terms
of x or y.

An antichiral field satisfies the condition that Dα annihilates it. Clearly
the the adjoint superfield Φ† of a chiral superfield is antichiral. In terms of
x, θ, θ̄, it reads

Φ†(x, θ, θ̄) = Φ∗(x)− iθσµθ̄ ∂µΦ∗(x) +
1

4
θθθ̄θ̄ Φ∗(x) +

+
√

2θ̄ψ̄(x) +
i√
2
θ̄θ̄θσµ∂µψ̄(x) + θθF ∗(x) (C.36)

The supermultiplet has a simpler expression in terms of the variable y†µ =
xµ − iθσµθ̄, it reads

Φ†(y†, θ, θ̄) = Φ∗(y†) +
√

2θ̄ψ̄(y†) + θθF ∗(y†) (C.37)

An important property of chiral multiplets is that their product is also
a chiral superfield. This is straightforward using the expression in terms of
y coordinates. By using power-series, one can show that any holomorphic
function of chiral multiplets W (Φk(x, θ, θ̄) is also a chiral multiplet. For
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future convenience, one can show that its highest-dimension component is
given by

W (Φ)|θθ =
∂2W

∂Φk∂Φl
ψkψl + Fk

(
∂W

∂Φk

)∗
+ F ∗

k

∂W

∂Φk
(C.38)

where in the right-hand side Φ denotes the scalar component field, not the
superfield.

On the other hand, non-holomorphic functions like Φ†Φ are not chiral
superfields. For future convenience, we list the highest-dimension component
of the latter

Φ†
1(x, θ, θ̄)Φ2(x, θ, θ̄)|θθθ̄θ̄ = F ∗

1F2 +
1

4
Φ∗

1 Φ2 +
1

4
Φ∗

1 Φ2 −
1

2
∂µΦ

∗
1∂

µΦ2 +

+
i

2
∂µψ̄1σ̄

µψ2 −
i

2
ψ̄1σ̄

µ∂µψ2 (C.39)

We are now ready to construct supersymmetric lagragians for fields in
chiral supermultiplets. The key idea is that, since the highest-dimensional
component of a supermultiplet (usually a product of basic supermultiplets)
transforms as a total derivative, its spacetime integral is invariant under
supersymmetry transformations. The strategy then is to construct product
superfields whose highest-dimensional component corresponds to kinetic and
interactions terms. Finally, recalling the rules of integration over Grassman
variables,

∫
dθ = 0 ;

∫
dθ θ = 1 (C.40)

an efficient way to extract the highest component of a supermultiplet is to
integrate it over the supercoordinates θ and/or θ̄. For instance

∫
d2θΦ(x, θ, θ̄) = F (x) (C.41)

A typical supersymmetric action for a set of chiral supermultiplets has the
structure

S =
∫
d4x d2θ d2θ̄Φ†

iΦi +
∫
d4x d2θW (Φi) +

∫
d4x d2θ̄ W (Φi)

∗(C.42)

The first term can be generalized to
∫
d4x d2θ d2θ̄ K(Φi,Φ

†
i), with K a real

function, known as Kahler potential. Expanding in components, this implies
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that the space parametrized by scalars in chiral multiplets is Kahler (in the
geometric sense). We will however stick to the canonical kinetic term above,
but occasionally refer to these more general possible actions.

Using (C.38), (C.39), the action in component fields reads (integrating
by parts in certain terms)

S = −
[
∂µΦ

∗
i ∂

µΦi + iψ̄iσ̄
µ∂µψi − F ∗

i Fi −
∂2W

∂Φi∂Φj
ψiψj − Fi

(
∂W

∂Φi

)∗
− F ∗

i

∂W

∂Φi

]
(C.43)

We see that the auxiliary fields Fi are indeed non-dynamical. We can use
their equations of motion, to obtain Fi = −∂W/∂Φi. Replacing in the above
expression, we have

S = −

∂µΦ∗

i ∂
µΦi + iψ̄iσ̄

µ∂µψi −
∑

i

∣∣∣∣∣
∂W

∂Φi

∣∣∣∣∣

2

− ∂2W

∂Φi∂Φj

ψiψj


 (C.44)

The first two pieces are standard kinetic terms. The fourth describes
scalar-fermion interactions, and the third is a scalar potential

V (Φi) =
∑

i

∣∣∣∣∣
∂W

∂Φi

∣∣∣∣∣

2

(C.45)

It is positive-definite, and vanishes for scalar vevs such that

Fi = −∂W
∂Φi

= 0 (C.46)

These are know as F-term constraints, which are a necessary condition for a
supersymmetric vacuum of the theory.

An important property of supersymmetric field theories is that the super-
potential is not renormalized in perturbation theory. That is, because of the
relations imposed by supersymmetry, all radiative corrections to the terms
arising from the superpotential vanish to all orders in perturbation theory.
The proof of this statements involves the structure of Feynman diagrams in
superspace, and we will not discuss it. In particular examples (for instance
for the Wess-Zumino model, i.e. a theory with one chiral multiplet and a cu-
bic superpotential), one can show it very explicitly exploiting the holomorphy
of the superpotential, see [?] for detailed discussion. Both arguments show
that there are important non-renormalization theorems involving terms in
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the action which involve intergration over half the superspace coordinates.
Another important observation is that the non-renomalization theorem in
general does not hold beyond perturbation theory, hence non-perturbative
corrections to the superpotential may appear. In some situations, they may
be exactly computable using the constraints from supersymmetry and reason-
able assumptions about the field theory dynamics. These non-perturbative
corrections usually have a nice physical interpretation (like instanton effects
or gaugino condensation). See [?] for more complete discussion.

C.4.3 The vector superfield

A vector superfield V is characterized by the condition V = V †. The expan-
sion in component fields can be expressed as

V (x, θ, θ̄) = C(x) + iθχ(x)iθ̄χ̄(x) +
i

2
θθM(x) − i

2
θ̄θ̄M∗(x)− θσµθ̄ Vµ(x) +(C.47)

+ iθθ θ̄ [ λ̄(x) +
i

2
σ̄µ∂µξ(x) ]− iθ̄θ̄ θ [λ(x) +

i

2
σµ∂µξ̄(x) ] +

1

2
θθ θ̄θ̄ D(x)

The peculiar choice of components in the θ2θ̄, θ̄2θ and θ2θ̄2 terms, is for
future convenience.

As we will see, the content of component fields of the vector superfield is
that of a massless vector superfield. Thus, it should describe the supersym-
metric version of a gauge boson. Hence there is a supersymmetric version of
a gauge transformation. For vector multiplets associated to U(1), it is given
by

V −→ V + (Λ + Λ†) (C.48)

where Λ(y, θ, θ̄) = A+
√

2θψ + θθF is a chiral superfield. Since

Λ + Λ† = Λ + Λ∗ +
√

2(θψ + θ̄ψ̄) + θθF + θ̄θ̄F ∗ + iθσµθ̄∂µ(Λ− Λ∗) +

+
i√
2
θθθ̄σ̄µ∂µψ + +

i√
2
θ̄θ̄θσµ∂µψ̄ +

1

4
θθθ̄θ̄ (Λ + Λ∗) (C.49)

the transformation of component fields is

Vµ → Vµ − i∂µ(Λ− Λ∗) ; C → C + Λ + Λ+

λ→ λ ξ → ξ − i
√

2ψ

D → D M →M − 2iF (C.50)
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So one can use the gauge transformation parameters Λ + Λ∗, ψ, F to gauge
away C, ξ and M . The vector supermultiplet then reduces to 2

V (x, θ, θ̄) = −θσµθ̄Vµ + iθθ θ̄λ̄− iθ̄θ̄ θλ+
1

2
θθ θ̄θ̄ D (C.51)

This partial gauge fixing, known as Wess-Zumino gauge, still allows for stan-
dard gauge transformations Vµ → Vµ− i∂µ(Λ−Λ∗). Hence the vector super-
multiplet provides the supersymmetric generalization of the Yang-Mills gauge
potential Vµ. In order to build gauge-invariant kinetic terms, we introduce
the field-strength superfields

Wα = −1

4
D̄D̄ DαV ; W̄α̇ = −1

4
DD D̄α̇V (C.52)

They are chiral superfields, which are invariant under the gauge transfor-
mations (C.48). In terms of components fields (in coordinates y, θ, θ̄), we
have

Wα = −iλα(y) + θαD(y)− i

2
(σµσ̄ν)α

βθβ Fµν(y) + θθ σµαα̇∂µλ̄
α̇(y) (C.53)

where Fµν = ∂[µVν]. There is a similar expression for W̄α̇ in terms of y†.
Hence the above superfields provide the supersymmetric completion of the
gauge-invariant field strength.

The gauge and Lorentz invariant expression W αWα has a highest-dimension
component

W αWα = . . .+ θθ (−2iλσµ∂µλ̄−
1

2
F µνFµν +D2 +

i

2
εµνσρF

µνF σρ ) (C.54)

precisely of the form of the kinetic term (and theta-term) for the U(1) gauge
boson, and the gauginos. Hence the action for the gauge boson can be
constructed as

S =
∫
d4x d2θW αWα +

∫
d4x d2θ̄ W̄α̇W̄

α̇ (C.55)

OBS: For U(1) gauge group, it is also possible to introduce an additional
term in the action, known as Fayet-Illiopoulos term, of the form

SFI = χFI

∫
d4x

∫
d2θ d2θ̄ V =

∫
d4xD (C.56)

2Notice that supersymmetry transformations do not preserve the WZ gauge. Hence
any supersymmetry transformation should be followed by a compensating gauge transfor-
mation to bring the supermultiplet to the WZ gauge.
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where χFI is a constant.

The discussion of non-abelian gauge bosons is similar, with slightly more
general definitions. Vectors superfields have the same structure, but trans-
form in the adjoint representation. The gauge parameters are given by a set
of chiral multiplets in the adjoint representation of the gauge group G,

Λij = T aijΛa (C.57)

The gauge transformation is given by

eV → e−iΛ
†

eV eiΛ (C.58)

This also allows for a WZ gauge, leaving V a
µ , λa, Da as degrees of free-

dom, with the standard gauge transformations for V a
µ . The non-abelian

field-strength superfields are given by

Wα = −1

4
D̄D̄e−VDae

V (C.59)

which transforms under (C.58) as

Wα → e−iΛ
†

Wαe
iΛ (C.60)

The supersymmetric Yang-Mills action is given by (C.55), with an implicit
trace over gauge indices.

C.4.4 Coupling of vector and chiral multiplets

We would like to discuss the construction of actions describing the interaction
of gauge and chiral supermultiplets. As expected, the coupling of chiral
multiplets to gauge vector multiplets is obtained by a suitable modification
of the chiral multiplet kinetic term so as to make it gauge invariant.

Let us start with the case of a U(1) vector multiplet, and several chiral
multiplets φi, transforming under U(1) with charges qi. Namely, under a
gauge transformation V → V + i(Λ− Λ†),

Φi → e−iqiΛΦi ; Φ†
i → eiqiΛ

†

Φ†
i (C.61)

Hence the expression Φ†
ie
qiV Φi is gauge invariant, and is the gauge-invariant

generalization of Φ†Φi.
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The full lagrangian for the vector and chiral multiplet interactions is

S =
∫
d4x d2θW αWα +

∫
d4x d2θ̄ W̄α̇W̄

α̇ +

+
∫
d4x d2θ d2θ̄Φ†

i e
qiV Φi +

∫
d4x d2θW (Φi) +

∫
d4x

∫
d2θ̄ W (Φ)∗(C.62)

In fact, one can generalize the gauge kinetic term to an expression
∫
d4xdθf(Φ)W αWα,

where f is a holomorphic function (known as gauge kinetic function) and Φ
are chiral multiplets. Notice that this can be regarded as promoting the
gauge coupling to a chiral superfield. In the following we however stick to
the simplest situation of constant f .

The term containing the chiral-vector coupling is
∫
d4x d2θ d2θ̄Φ†eqV Φ = FF ∗ + Φ Φ∗ + i∂µψ̄σ̄

µψ +
1

2
( qDΦ∗Φ ) + (C.63)

+qVµ (
1

2
ψ̄σ̄µψ +

1

2
Φ∗∂µΦ −

i

2
∂µΦ

∗Φ ) − i√
2
q ( Φλ̄ψ̄ − Φ∗λψ ) − 1

4
q2 VµV

µΦ∗Φ

One can integrate out the auxiliary field D, by using its equations of motion.
The field D appears in

LD =
1

2
D2 +

1

2

∑

i

qiDΦ∗
iΦi + χFID (C.64)

so the equations of motion give D = −1/2
∑
i qiΦ

∗
iΦi + χFI . The D-term

lagrangian becomes a potential term

VD =
1

2
(
1

2

∑

i

qiΦ
∗
iΦi − χFI)2 (C.65)

The condition D = 0 that it vanishes is a necessary condition for a super-
symmetric vacuum, known as D-term condition.

For non-abelian gauge symmetries, chiral multiplets transform in a rep-
resentation R of the gauge group,

Φ→ e−iΛΦ (C.66)

where Φ is regarded as a column vector and Λij = (tRa )ijΛ
a is a matrix acting

on it. The action for the complete system is given by

S =
1

4g2

∫
d4x d2θW αWα +

1

4g2

∫
d4x d2θ̄ W̄α̇W̄

α̇ +

+
∫
d4x

∫
d2θ d2θ̄Φ†

ie
tRa VaΦi +

∫
d4x d2θW (Φi) +

∫
d4x d2θ̄ W (Φ)∗(C.67)
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After integrating out the D field, the D-term potential has the explicit ex-
pression

VD =
1

2

∑

a

(
1

2

∑

k

Φ†
k(t

Rk
a )Φk)

2 (C.68)

where the sum in k runs over all chiral multiplets in non-trivial representa-
tions (denoted Rk) of the gauge group G.

In conclusion, the most general N = 1 supersymmetric action (up to
two derivatives) for a system of chiral and vector multiplets is specified by
three functions: the Kahler potential K(Φ,Φ†), which is a real function and
defines the chiral multiplet kinetic term, the superpotential W (Φ), which is
holomorphic and defines chiral multiplet interactions, and the gauge kinetic
functions f(Φ), which are holomorphic and define the gauge boson kinetic
term.

C.4.5 Moduli space

Supersymmetric gauge field theories often contain flat directions in the scalar
potential, namely there is a continuous set of (inequivalent) supersymmetric
vacuum states of the theory, parametrized by the vacuum expectation values
(vevs) for scalar fields. The scalars parametrizing flat directions in the scalar
potential are known as moduli (moduli fields in string theory, like the dilaton
etc, are indeed examples of such fields), and are massless. The set of vevs
corresponding to supersymmetric minima of the theory is known as moduli
space.

The conditions that scalar vevs should satisfy to belong to the moduli
space are that the F-terms and D-terms vanish, namely

∂W

∂Φi

= 0

∑

i

Φ†
i (t

Ri
a )Φi = 0 (C.69)

where i runs through the chiral multiplets in the theory (in a representation
Ri of the gauge group) and a runs through the generators of the gauge group.

Notice that supersymmetry is essential in maintaining the direction flat
after quantum corrections. Indeed the F-term conditions are obtained from
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the superpotential, which is protected against quantum corrections by su-
persymmetry. On the other hand, the D-term conditions follow from gauge
invariance, and are uncorrected as well. In non-supersymmetric theories,
fields which look like moduli at tree level typically acquire mass terms from
radiative corrections, and moduli space is lifted (a non-trivial scalar potential
develops).

Let us provide some typical examples of theories with flat directions.
Consider a U(1) gauge theory with one neutral chiral multiplet Φ, and

two chiral multiplets Φ1, Φ2 with charge +1, and two Φ1, Φ2 with charge −1.
We introduce a superpotential

W = ΦΦ1Φ
′
1 − ΦΦ2Φ

′
2 (C.70)

The F-term conditions on scalars give

Φ1Φ
′
1 = Φ2Φ

′
2 ; ΦΦi = 0 ; ΦΦ′

i = 0 (C.71)

while the D-term conditions read

|Φ1|2 + |Φ2|2 − |Φ′
1|2 − |Φ′

2|2 = 0 (C.72)

These equations are satisfied for the choice of vevs

〈Φ〉 = 0 ; 〈Φ1〉 = v ; 〈Φ′
1〉 = w ; 〈Φ2〉 = w ; 〈Φ′

2〉 = v ; (C.73)

So the moduli space is parametrized by two complex parameters. There is
a complex two-dimensions manifold of vacuum configurations for this theory
3.

Let us provide a second example, with non-abelian gauge symmetry. Con-
sider a U(N) supersymmetric gauge theory with three chiral multiplets Φi

in the adjoint representation (thus regarded as N × N matrices, and super-
potential

W = tr ( Φ1Φ2Φ3 − Φ1Φ3Φ2 ) (C.74)

3As we will see later, this theory is in fact N = 2 supersymmetric, with V and Φ
forming an N = 2 vector multiplet, and Φi, Φ′

i forming two hypermultiplets. The moduli
space is parametrized by the vevs of a hypermultimplet, given by a combination of the
latter.
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This theory has a very non-trivial moduli space 4. The F-term conditions
read

[Φi,Φj] = 0 (C.75)

This implies that the matrices of vevs for these fields should be commuting.
Then one can use gauge transformations to simultaneously diagonalize them,
so that the vevs are

(Φi)mn = (vi)nδmn (no sum) (C.76)

For adjoint multiplets expressed as n× n matrices, the D-term condition is

∑

i

[ (Φ†
i)mn(t

fund
a )np(Φi)pm − (Φ†

i )mn(t
fund
a )mq(Φi)nq ] = 0 (C.77)

These are automatically satisfied, upont substitution of the above vevs.
Hence the moduli space is parametrized by the n triples of complex eigen-

values (vi)n. Some realizations of this gauge theory in string theory (in terms
of configurations of D-branes) allow for a simple geometric interpretation of
this moduli space.

C.5 Extended 4d supersymmetry

C.5.1 Extended superalgebras

N -extended supersymmetry is generated by N Weyl spinor supercharges QI
α,

Q̄α̇I , with I = 1, . . . , N . Since each supercharge contains two-components,
the number of supercharges is 4N . The algebra that they satisfy is

{QI
α, Q̄α̇J} = 2σµαα̇Pµδ

I
J

{QI
α, Q

J
β} = εαβZ

IJ

{Q̄α̇I , Q̄β̇J} = εα̇β̇(Z
∗)IJ (C.78)

with ZIJ antisymmetric in its indices.
This is the most general superalgebra consistent with 4d Lorentz invari-

ance. The ZIJ (and their conjugates Z∗) commute with all supercharges Q,
Q̄, and are known as central charges. Each state (each supermultiplet) has

4As we will see later, this theory is in fact N = 4 supersymmetric.
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a particular value for the corresponding operators. For the most familiar
supermultiplets, the value of the central charges is zero, so we ignore them
for most of our discussion (however, the supermultiplets describing soliton
states of certain supersymmetric theories have non-trivial central charges.
Thus, we will make some useful comments on this case, towards the end).

Some remarks are in order: Notice that the R-symmetry of the super-
algebra is (for zero central charges) U(N), where the SU(N) acts on the
indices I (in the fundamental or antifundamental representation), while the
U(1) acts on supercharges as an overall phase rotation (just like in N = 1
supersymmetry). Notice also the fact that the N -extended supersymmery al-
gebra contains the supersymmetry algebras of M -extended supersymmetry,
for M < N . This implies that the supermultiplets of extended supersymme-
tries naturally decompose as sums of supermultiplets of their subalgebras.

C.5.2 Supermultiplet structure

Let us start by considering the construction of supermultiplets, in a sector
of zero central charges, so that the superalgebra reads

{QI
α, Q̄α̇J} = 2σµαα̇Pµδ

I
J

{QI
α, Q

J
β} = 0 ; {Q̄α̇I , Q̄β̇J} = 0 (C.79)

Let us start discussing massless supermultiplets. In the reference frame where
the momentum is (Pµ) = (−E, 0, 0, E), the non-trivial piece of the superal-
gebra reads

{QI
α, Q̄β̇J} = 2

(
2E 0
0 0

)
δIJ (C.80)

As in the N = 1 case, the supercharges QI
2, Q̄2̇J are realized as zero, and we

introduce

aI =
1

2
√

2
QI

1 ; a†I =
1

2
√

2
Q̄1̇I (C.81)

which satisfy

{aI , a†J} = δIJ ; {aI , aJ} = {a†I , a†J} = 0 (C.82)

We construct the supermultiplet by starting with a state Ω〉 of lowest helicity
j, annihilated by the aI (and the Q2, Q̄2̇), and applying the operators a†I to
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it. The number of states in such multiplet is 2N . As in the N = 1 case,
CPT invariance may require to combine these basic multiplets with their
conjugates to be realized in a local field theory.

We will discuss some explicit examples of massless supermultiplets below.

The construction of massive supermultiplets is also a simple generalization
of the N = 1 case. In the rest frame, we have

{QI
α, Q̄α̇J} = 2Mδαα̇δ

I
J

{QI
α, Q

J
β} = 0 ; {Q̄α̇I , Q̄β̇J} = 0 (C.83)

Rescaling the operators as

aIα =
1√
2M

QI
α ; aIα

† =
1√
2M

Q̄α̇I (C.84)

we have a set of 2N decoupled fermionic harmonic oscillators, which lead to
a supermultiplet of 22N degrees of freedom.

Finally, let us briefly sketch the construction of massive multiplets in a
sector of non-zero central charges. Using the R-symmetry of the theory, we
may bring the antisymmetric matrix ZIJ to a block form e.g. for N even (on
which we center in what follows)

Z = ε⊗D =
(

0 D
D 0

)
(C.85)

with D = diag (Z1, . . . , ZN/2). Splitting the indices I as (a,m), with a = 1, 2
and m = 1, . . . , N/2, the central charges read Zam,bn = εabδmn Zn (no sum).
The superalgebra reads

{Qam
α , Q̄α̇bn} = 2Mδαα̇δ

a
bδ
m
n

{Qam
α , Qbn

β } = εαβε
abδmnZn

{Q̄α̇am, Q̄β̇bn} = εα̇β̇εabδmnZn (C.86)

We can define the linear combinations

amα =
1√
2
[Q1m

α + εαβQ̄β̇2m]

bmα =
1√
2
[Q1m

α − εαβQ̄β̇2m] (C.87)
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and their adjoints. They satisfy

{amα , anβ} = {bmα , bnβ} = {amα , bnβ} = 0

{amα , (anβ)†} = δαβδ
mn(2M + Zn)

{bmα , (bnβ)†} = δαβδ
mn(2M − Zn) (C.88)

From this it follows that in a sector of given charges Zn, the masses of the
states satisfy 2M ≥ |Zn|, for all n. This conditions is known as the BPS
bound.

For generic mass M , we have 2×2×N/2 fermionic harmonic oscillators, so
that supermultiplets contain 22N states. On the other hand if 2M = ±Zn for
some n, then some of the operators anticommute, and are realized as zero, so
there are 2N − 1 harmonic oscillators, and the representation contains 22N−1

states, less than the generic supermultiplet. Supermultiplets saturating the
BPS bound are known as BPS states, and contain less states than generic
supermultiplets. This guarantees that BPS states cannot cease to be BPS,
and their mass is given by the central charge, which is part of the algebra.
Hence, for BPS states the mass is controlled by the symmetry of the theory
and is protected agains quantum corrections by supersymmetry.

C.5.3 Some useful information on extended supersym-
metric field theories

There is no simple superfield formalism for theories with extended super-
symmetry, hence supersymmetry transformations must be checked on-shell.
The simplest way to describe the supermultiplets and the supersymmetric
actions is thus to phrase them in terms of the supermultiplets and superfield
formalism of an N = 1 subalgebra.

In the following we discuss some basic features of N = 2, 4 supersymmet-
ric theories. N = 8 supersymmetry also appears in some applications, but
the smallest supermultiplet already contains spin-2 particles, namely gravi-
tons. They can be realized in theories describing gravitational interactions,
namely supergravity theories. Their discussion is beyond the scope of this
lecture. Finally, for even higher degree of supersymmetry, even the smallest
massless supermultiplet already contains fields with spin higher than 2. It is
not known how to write interacting theories for such fields, hence they are
not usually considered.
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N = 2 supersymmetric theories

The basic supermultiplets of N = 2 supersymmetric field theories are most
simply described by specifying their decomposition under aN = 1 subalgebra
of the theory. We describe some useful massless supermultiplets.

- The hypermultiplet: It decomposes as two chiral multiplets (in conjugate
representations of the gauge and global symmetries) of N = 1 supersymme-
try. Hence, one hypermultiplet contains two complex scalars and two Weyl
fermions. Notice that the latter have same chirality and conjugate quantum
numbers, hence the supermultiplet is non-chiral. It is possible to write super-
symmetric mass terms for hypermultiplets, hence the massive hypermultiplet
has the same supermultiplet structure.

- The N = 2 vector multiplet: It decomposes as one N = 1 vector
multiplet, and a chiral multiplet (in the adjoint representation). Hence, it
contains a gauge boson, two Majorana fermions, and one complex scalar.

Let us describe the general action (up to two derivatives) for an N = 2
supersymmetric theory with hyper- and vector multiplets. For N = 2, the
action is fully determined by the gauge quantum numbers of the hypermul-
tiplets. Let us denote V , Σ the N = 1 vector and chiral multiplets in the
N = 2 vector multiplets of the gauge group G, and Φi, Φ′

i the two chiral
multiplets in the ith hypermultiplet, in the representation Ri. The N = 2
action has the standard N = 1 form, with a superpotential fully determined
by gauge symmetry and supersymmetry

W (Φi,Φ
′
i,Σ) =

∑

i,a

ΦiΣa(t
Ri
a )Φ′

i (C.89)

The N = 2 supersymmetry implies additional non-renormalization theorems
beyond those in the N = 1 theory. For instance, in N = 1 language the
Kahler potential for the chiral multiplets splits in two pieces, K(Σ,Σ†) and
K(Φ,Φ′,Φ†,Φ′†). This implies that the kinetic terms for scalars in vector
multiplets do not depend on scalars in hypermultiplets, and viceversa. This
implies that the scalar field space (and hence the moduli space) factorizes as
the vector multiplet scalar field space times the hypermultiplet scalar field
space. Moreover, the former is a Kahler space, while the latter is even more
constrained, and is hyperKahler 5.

5Namely, admits three Kahler forms, with their product obeying the rules of quater-
nionic product.
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N = 4 supersymmetric theories

Let us now describe some facts on N = 4 supersymmetric theories 6.

The smallest supermultiplet is the N = 4 vector multiplet. Under an
N = 2 subalgebra, it contains one N = 2 vector multiplet and one hyper-
multiplet in the adjoint representation. In terms of N = 1, it contains a
vector multiplet and three chiral multiplets in the adjoint representation.
Finally, in component fields, it contains one gauge boson, four Majorana
fermions, and six real scalars.

Other supermultiplets contain spin-2 particles, namely gravitons, and so
appear only in supergravity theories. Their discussion is beyond the scope
of this lecture.

The general action for an N = 4 theory is extremely constrained. It
has the structure of an N = 2 theory, but with the gauge representation of
hypermultiplets fixed by the N = 4 supermultiplet structure. Using N = 1
language, we denote V , Φ1, Φ2, Φ3 the vector and chiral multiplets of the
N = 4 vector multiplet. The superpotential is given by

W (Φi) = Tr Φ1Φ2Φ3 − TrΦ1Φ3Φ2 (C.90)

Again, the action is protected by even more powerful non-renomalization
theorem. In particular, the Kahler potential for scalar fields are forced to
be canonical, and the gauge kinetic functions are non-renormalized. This
implies that N = 4 supersymmetric theories are finite (this in fact holds
even non-perturbatively).

C.6 Supersymmetry in several dimensions

C.6.1 Some generalities

In this section we sketch the basic structure of supermultiplets in theories
in more than four dimensions. The basic ideas are completely analogous to
those discussed for four-dimensional supersymmetry. The main difference
arises because of the larger number of components of higher-dimensional
spinors, as compared with four-dimensional ones.

6The supermultiplet structure and low-energy effective action of N = 3 is exactly as in
N = 4, so N = 3 supersymmetry is not so interesting.
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A detailed discussion of the construction of irreducible spinor representa-
tion of the Lorentz group in an arbitrary number of dimensions can be found
in appendix B of [71]. For our present purposes, it will be enough to just
mention that in an even number of dimensions, D = 2n, the representation
of the Clifford algebra has dimension 2n.

This spinor representation of SO(2n − 1, 1) is reducible into two Weyl
spinor representations, of opposite chiralities, and with 2n−1 components
each. Also, for odd n, namely D = 2k + 4 it is possible to define Majorana
spinors, which satisfy a reality condition, and thus have 2n−1 components.
In general, Majorana and Weyl conditions are incompatible ( namely, the
conjugation operation flips the chirality, so Majorana spinors contain com-
ponents with opposite chiralities). However, for D = 2k+8, the conjugation
operation does not flip the chirality, and one can define spinors satisfying
both the Majorana and Weyl conditions, and thus have 2n−2 components.

The basic features of supersymmetric theories in different dimensions
mainly depend only on the total number of supercharges. Indeed, any super-
algebra in a given dimension can be regarded as a superalgebra of lower di-
mensional supersymmetry, simply obtained by decomposing the Lorentz rep-
resentations of supergenerators with respect to the lower-dimensional Lorentz
group. This is usually knows as dimensional reduction. Notice that since
spinor representations in higher dimensions have larger number of compo-
nents than in lower dimensions, the original superalgebra in general descends
to an extended superalgebra in the lower dimension. Clearly, the same kind of
relation follows for representations of the superalgebras. Namely, supermul-
tiplets of the higher-dimensional supersymmetry can be recast as supermulti-
plets of the lower-dimensional one. An important point is that, since higher-
dimensional superalgebras are related to extended superalgebras in 4d, there
is no superfield formalism to describe the structure of higher-dimensional
supermultiplets.

In each dimension, it is conventional to define N = 1 supersymmetry
as that generated by supercharges in the smallest spinor representation.
Hence, N -extended supersymmetry corresponds to that generated by N su-
percharges in the smallest spinor representation. Since the number of com-
ponents of spinors jumps with dimension in a non-trivial way, it is sometimes
more useful to refer to the theories by its total number of supercharges, al-
though we will use the conventional N -extended susy notation as well.
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C.6.2 Some useful superalgebras and supermultiplets

in higher dimensions

In this section we provide some useful supermultiplets of certain superalge-
bras in six and ten dimensions. It is by no means a complete classification,
but rather a list of some structures which will appear in the main text. A
detailed classification of superalgebras and supermultiplets may be found in
[126] and [127].

Minimal Supersymmetry in six dimensions

In six dimensions D = 6, the Weyl spinor has 23/2 = 4 complex compo-
nents, hence the minimal supersymmetry, denoted N = 1, is generated by 8
supercharges. Thus D = 6 N -extended supersymmetry is generated by 8N
supercharges.

Let us center on the minimal supersymmetry, with 8 supercharges, de-
noted N = 1 (sometimes also N = (1, 0) or (0, 1) to indicate the left or right
chirality of the chosen supergenerators; clearly, both such superalgebras are
isomorphic). The R-symmetry of the theory is SU(2)R. Let us describe some
useful massless supermultiplets of this theory, providing their quantum num-
bers under the Lorentz (massless) little group SO(4)L = SU(2)×SU(2) and
the R-symmetry SU(2)L.

Vector multiplet: It contains fields transforming under SU(2)× SU(2)×
SU(2)R as

(2, 2; 1) + (1, 2; 2) (C.91)

namely a massless vector boson and a chiral right-handed Weyl spinor.
Hypermultiplet: It contains fields transforming as

(2, 1; 1) + (1, 1; 2) (C.92)

Unless it transforms in a pseudoreal representation of the gauge and global
symmetries, it must be combined with its CPT conjugate to form a physical
field. Then it contains two complex scalar fields, and a chiral left-handed
Weyl spinor.

Tensor multiplet: It contains fields transforming as

(3, 1; 1) + (1, 1; 1) + (2, 1; 2) (C.93)
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namely a self-dual two-form, a real scalar fields and a chiral left-handed Weyl
spinor.

Graviton multiplet: It contains fields transforming as

(3, 3; 1) + (1, 3; 1) + (2, 3; 2) (C.94)

namely a massless graviton, an anti-selfdual 2-form, and two left-handed
gravitinos.

This superalgebra can be dimensionally reduced to 4d N = 2 supersym-
metry. It is a simple exercise to match the above 6d supermultiplets with
supermultiplets of 4d N = 2 supersymmetry.

Extended supersymmetry in six dimensions

Let us discuss some features of N = 2 supersymmetry in six dimensions. The
superalgebra is generated by 16 supercharges, organized in two Weyl spinors.
There are two possible inequivalent superalgebras, depending on the relative
chirality of these two spinors. Namely, there is a 6d N = (2, 0) superalgebra,
where both supergenerators have the same chirality, and a 6d N = (1, 1)
superalgebra, where they have opposite chiralities. Let us describe some of
their massless multiplets in turn.

The N = (2, 0) supersymmetry has a USp(4) = SO(5) R-symmetry.
Some interesting massless supermultiplets are

Tensor multiplet: It contains fields transforming under SU(2)×SU(2)×
SO(5)R as

(3, 1; 1) + (1, 1; 5) + (2, 1; 4) (C.95)

namely a self-dual two-form, five real scalar fields and two chiral left-handed
Weyl spinors. Notice that it decomposes as a hyper- and a tensor multiplet
with respect to the 6d N = 1 subalgebra.

Graviton multiplet: It contains fields transforming as

(3, 3; 1) + (1, 3; 5) + (2, 3; 4) (C.96)

namely, a graviton, five anti-selfdual 2-forms and four left-handed gravitinos.

The N = (1, 1) supersymmetry has a SO(4) = SU(2) × SU(2) R-
symmetry. Some interesting massless supermultiplets are



C.6. SUPERSYMMETRY IN SEVERAL DIMENSIONS 481

Vector multiplet: It contains fields transforming under SU(2)× SU(2)×
[SU(2)× SU(2)]R as

(2, 2; 1, 1) + (1, 1; 2, 2) + (2, 1; 1, 2) + (1, 2; 2, 1) (C.97)

namely a massless vector boson, two complex scalars, one chiral left- and one
chiral right-handed Weyl spinors. Notice that it decomposes as a hyper- and
a vector multiplet with respect to the 6d N = 1 subalgebra.

Graviton multiplet: It contains fields transforming as

(3, 3; 1, 1) + (3, 1; 1, 1) + (1, 3; 1, 1) + (1, 1; 1, 1) + (2, 2; 2, 2) +

+ (3, 2; 1, 2) + (2, 3; 2, 1) + (1, 2; 1, 2) + (2, 1; 2, 1) (C.98)

namely, a graviton, a two-form, a real scalar, four vector bosons, two left-
and two right-handed gravitinos, and one left- and one right-handed spinor.

Supersymmetry in ten dimensions

In ten dimensions D = 10, the minimal spinor satisfies the Majorana and
Weyl constraints and has 25/4 = 8 complex components, hence the minimal
supersymmetry, denoted N = 1, is generated by 16 supercharges. Thus
D = 6 N -extended supersymmetry is generated by 8N supercharges. Indeed,
for N > 2 the smallest massless supermultiplet contains fields with spin
higher than two; it is not known how to write interacting theories for such
fields, hence they are not usually considered.

Let us center on the minimal N = 1 supersymmetry, with 16 super-
charges. The R-symmetry of the theory is trivial. Some useful massless
supermultiplets of this theory are

Vector multiplet, containing fields in the 8V + 8C of the SO(8) Lorentz
little group. Namely, a massless vector boson and a chiral 10d spinor.

Graviton multiplet, containing fields transforming under SO(8) as

35V + 28V + 1 + 8S + 56S (C.99)

namely, a graviton, a 2-form, a real scalar, a right-handed gravitino and a
right-handed spinor.

Concerning extended supersymmetry, with 32 supercharges organized in
two Majorana-Weyl spinors, there are two possibilities, according to their
relative chirality. The 10d N = (2, 0) supersymmetry is generated by spinors
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of same chirality. The R-symmetry is SO(2)R. The only relevant massless
supermultiplet is the graviton multiplet, with fields transforming as

35V + 28V + 1 + 35C + 28C + 1 +

+ 2× ( 8C + 56C) (C.100)

Namely, one graviton, two 2-forms, two real scalars, one self-dual 4-form and
two right-handed gravitinos and two right-handed spinors.

The 10d N = (1, 1) supersymmetry is generated by spinors of opposite
chirality. The R-symmetry is trivial. The only relevant massless supermulti-
plet is the graviton multiplet, with fields transforming as

35V + 28V + 1 + 8V + 56V +

+ + 8C + 56C + 8S + 56S (C.101)

Namely, one graviton, one 2-form, one real scalar, one 1-form, one 3-form,
one left- and one right-handed gravitino and one left- and one right-handed
spinor.

Finally, for completeness we provide the basic massless supermultiplet of
11d N = 1 supersymmetry, the gravity multiplet. It contains states trans-
forming as 44 + 84 + 128 under the SO(9) Lorentz little group. Notice that
it maps to the gravity multiplet of 10d N = (1, 1) supersymmetry upon
dimensional reduction.

Notice that going to higher dimensions requires introducing more super-
charges, which implies that even the smallest massless supermultiplet already
contains fields with spin higher than 2, so these theories are usually not con-
sidered. This underlies the statement that eleven is the maximal number
of dimensions allowed by supersymmetry (with the extra assumption of not
having massless fields with spins higher than 2). The maximal amount of
supersymmetry is thus 32 supercharges.



Appendix D

Rudiments of differential
geometry/topology

Useful references for this lecture are [117] and sections 12, 14 and 15 of [118].

D.1 Differential manifolds; Homology and co-

homology

D.1.1 Differential manifolds

An n-dimensional differential manifold M is a topological space, together
with an atlas, that is a collection of charts (Uα, x(α)) where Uα are open sets
of M and x(α) is a one to one map between Uα and an open set in Rn, such
that

i) M is covered by the Uα, that is
⋃
α Uα = M .

ii) If Uα
⋂
Uβ is non-empty, the map

x(β) ◦ x−1
(α) : x(α)(Uα

⋂
Uβ) ∈ Rn → x(β)(Uα

⋂
Uβ) ∈ Rn (D.1)

is differentiable.

Namely, the charts attach coordinates to the points in the Uα, such that
on intersections Uα

⋂
Uβ the x(β) are smooth functions of the x(α). This is

illustrated in figure D.1. Namely, a differential manifold is a space that at
each point looks locally like Rn (with respect to differential structures).

483
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RnRn

Uα βU

x α
x β

x αx β
−1

Figure D.1: Charts in a differential manifold.

By abuse of notation, we will often refer to a point P ∈ M by its co-
ordinates x (in some chart). Also, we will denote the map x(β) ◦ x−1

(α) as
x(β)(x(α)).

We refer to any introductory book on differential geometry for examples
of the description of familiar manifolds (like the n-sphere Sn or the n-torus
Tn in the above language).

In this lecture we will center on orientable manifolds. An orientable
manifold is such that the sign of the determinant of the jacobian matrix
J ji = ∂xj(β)/∂x

i
(α) is the same in all intersections Uα

⋂
Uβ.

In a differential manifold we can introduce the concept of a differentiable
(or smooth) function. A function f : M → R is differentiable if the functions

f ◦ x−1
(α) : x(α)(Uα) ∈ Rn → R (D.2)

are differentiable. And similarly for functions taking values in Rn, C, Cn,
etc.

We denote by F the set of smooth (real) functions over M . By abuse of
language we often write f(x) to denote f ◦ x−1

(α).

D.1.2 Tangent and cotangent space

A tangent vector to M at a point P ∈ Uα is a linear mapping from the
set of smooth functions F to R. A basis of tangent vectors is the set {∂i},
i = 1, . . . , n, which act as

∂i : F → R

f 7−→ ∂f

∂xi
(α)

∣∣∣∣∣∣
P

(D.3)
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The tangent space to M at P , denoted TP (M), is the vector space generated
by linear combinations of the ∂i, acting as

V = V i∂i : F → R

f 7−→ V i ∂f

∂xi
(α)

∣∣∣∣∣∣
P

(D.4)

A vector field is a set of tangent vectors, one per point of M , smoothly
varying with P . Namely, a set of linear combinations with coefficients given
by functions, defined on the Uα

V(α) = V i
(α)(x(α))∂i (D.5)

with the conditions that they agree on intersections Uα
⋂
Uβ, namely

V i
(α)(x(α)) =

∂x(α)i

∂xj(β)

V j
(β)(x(β)) (D.6)

We will define analogously the concept of field for other vector spaces below.
In section 2.1 we will see that they are simply sections of the corresponding
fiber bundle.

The cotangent space TP (M)∗ ofM at P is the vector space dual to TP (M).
Namely it is the vector space of linear mappings from TP (M) to R. We can
understand this better by introducing a basis for TP (M)∗, which is given by
the set {dxi}, which act as

dxi : TP (M) → R

∂j 7−→ δij (D.7)

A general linear combination u = uidx
i is hence defined by

u : TP (M) → R

∂j 7−→ uj (D.8)

The element of TP (M)∗ are also called 1-forms, see below.

A tensor of type (k, l) is a linear mapping from (TP (M)∗)k × TP (M)l to
R. It is the vector space of linear combinations

T = T i1...ikj1...jl
dxj1 ⊗ . . .⊗ dxjl ⊗ ∂i1 ⊗ . . .⊗ ∂ik (D.9)

with the obvious definition of the elements of the basis.
A simple examples is given by the metric, which is a tensor field of type

(0, 2), g = gijdx
i ⊗ dxj, or gij = g(∂i, ∂j).
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D.1.3 Differential forms

A differential p-form is a tensor of type (0, p), which has completely antisym-
metric component (this statement is true in any coordinates). So they are of
the form

A(p) = Ai1...ip dx
i1 ⊗ . . .⊗ dxip (D.10)

with completely antisymmetric Ai1...ip.
Equivalently, it is the vector space of linear combinations of the basis

elements

dxi1 ∧ . . . ∧ dxip =
1

p!
εi1...ipdx

i1 ⊗ . . . dxip (D.11)

(with i1 < . . . < ip), namely

A(p) = Ai1...ip dx
i1 ∧ . . . ∧ dxip (D.12)

The vector space of p-forms is denoted Λp(M). We define p-form fields as
usual, which will be denoted p-forms by abuse of language.

We define the wedge product of a p-form A(p) and a q-form B(q) to be the
(p+ q)-form

A(p) ∧ B(q) =
1

p!q!
Ai1...ip Bj1...jq dx

i1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq (D.13)

Notice the property A(p) ∧ Bq = (−1)pqB(q) ∧ A(p). Often, wedge products
are assumed and not explicitly displayed.

We define the exterior derivative d as a mapping from p-form fields to
(p+ 1)-form fields. For a p-form (field) A(p) its exterior derivative (dA)(p+1)

is defined by

dA = ∂i0Ai1...ip dx
i0 ∧ dxi1 ∧ . . . ∧ dxip (D.14)

Notice the property

d(Ap ∧ B(q)) = dA(p) ∧ B(q) + (−1)pA(p) ∧ dB(q) (D.15)

However, the main property of exterior differentiation for this lecture is

d2 = 0 (D.16)

in the sense that for any p-form A(p), d(dA) = 0. This follows easily from
the symmetry of double partial derivation ∂i∂j = ∂j∂i.

We refer to introductory books on differential forms to check that d re-
produces the familiar formulae for the gradient, divergence and curl of 3d
vector calculus.
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D.1.4 Cohomology

A p-form field A(p) is said to be closed if dA = 0. A p-form A(p) is said to be
exact if there exists a (p− 1)-form Bp−1 (globally defined on M , see below)
such that Ap = dB(p−1). Clearly, because d2 = 0 every exact form is also a
closed form.

A(p) = dB(p−1) → dA = ddB = 0 (D.17)

It is natural to ask to what extent the reverse is true. In general, it is not.
There exist manifolds where there are closed forms which are not exact. We
will see one example below.

However, there is one important case where the reverse is true, and every
closed form is also exact:

Poincare lemma: In Rn, any closed p-form, p > 0, is also exact.
(since there are no (−1)-forms, clearly 0-forms can never be exact). A

simple example is provided by 1-forms in R. Any 1-form A = f(x)dx in R
can be written as A = dF , where F is the 0-form (i.e. function)

F (x) =
∫ x

0
f(y) dy (D.18)

This is very important, and can be exploited to define a topological invari-
ant for any differentiable manifold M , the cohomology of M . The argument
is as follows.

Recall that M is a bunch of open sets Uα isomorphic to Rn, glued in some
way (specified by the transition functions x(β)(x(α))). A p-form (field) A(p) is
a bunch of p-forms Aα

(p) defined on the Uα’s, which agree on the intersections
Uα

⋂
Uβ

Aαi1...ip =
∂xi1(α)

∂x(β)j1

. . .
∂x

ip
(α)

∂x(β)jp

Aβj1...jp (D.19)

A closed p-form satisfies dA = 0 globally, hence dAα = 0 on every Uα. Since
each Uα is essentially Rn, Poincare ensures that there always exists some
(p− 1)-form Bα in Uα such that Aα = dBα. However, there is no guarantee
that the Bα glue in the right way at intersections to define a global (p− 1)-
form B satisfying A = dB globally. If this is not the case then A is closed
but not exact.
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x=
1

a) b)

x=
−1

x’=1x’=−1

x’=x+1x’=x−1

Figure D.2: Covering the circle with two charts.

In this argument, the local structure of M is not relevant, only the global
structure, defined by how the Uα patch together, is relevant. Therefore, the
existence of closed forms which are not exact is an statement which depends
only on the global topology of M , and not on its local properties.

To give a simple example, consider the circle S1, described using two
charts with local coordinates x, x′, as shown in figure D.2, running in (−1, 1),
each covering S1 except the norht and south poles repectively. The inter-
section is disjoint, and on its two disconneted pieces the transition functions
are x′ = x + 1 and x’=x-1. Let us construct a global 1-form A, by glueing
together the 1-form dx on U and dx′ on U ′; note they glue nicely with the
above transition functions. The global 1-form is closed, and on U and U ′

is is locally exact, it reduces to dx or dx′. However, it is not possible to
patch together x and x′ to form a 0-form f such that A = df globally (this
would be as much as finding a coordinate valid globally on S1, which is not
possible). By a strong and misleading abuse of language, the global 1-form
is often referred to as dx, although we know that x is not a global 0-form.

The natural object which can be defined from these observations, and
which depends only on the global structre of M is the de Rahm cohomology
groups. Let Zp be the set of closed p-form on M

Zp = {A(p) |dA(p) = 0 } (D.20)

and Bp the set of exact p-forms on M

Bp = {A(p) |A(p) = dB(p−1) for some B(p−1)} (D.21)

Since Bp ⊂ Zp, we can define the quotient

Hp(M,R) =
Zp

Bp
(D.22)
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known at pth de Rahm cohomology group of M . It is the set of closed forms
of M modulo the equivalence relation

A(p) ' A(p) + dB(p−1) (D.23)

Namely, two closed p-forms define the same equivalence class in cohomology
if they differ by an exact form. Notice that exact forms are also closed, they
correspond to the zero (or trivial) class in cohomology (the class correspond-
ing to an identically vanishing form). We denote by [A] the cohomology class
of a closed form A.

The sets Hp(M,R) have the structure of finite-dimensional vector spaces
(so in particular they are groups with respect to addition). Their structure
depens only on the topology of M . Their dimensions, denoted bp and known
as Bettin numbers of M , are the simplest topological invariants of manifolds.

D.1.5 Homology

We now aim at defining a related class of topological quantities. To define
them we need some additional concepts.

An m-dimensional submanifold N of M (m < n) is a subset of M which
has the structure of an m-dimensional differential manifold. We will be inter-
ested in allowing for submanifolds with boundary, so we define the concept
of boundary of a manifold.

A manifold M with boundary is a topological set together with an atlas
with two kinds of charts: the familiar (Uα, x(α) and charts (Vβ, x(β)), where
Vβ is isomorphic to an open set in ’half’ Rn. As before, the charts cover M ,
and the x(α), x(β) define differentiable transition functions. By ’half’ Rn we
mean the set of point

Rn
+ = {(x1, . . . ,xn)|x1 ≥ 0} (D.24)

The boundary ∂M of M is the set of points which are anti-images of the
points x1 = 0 in the maps x(β). See figure D.3. It is important, although
we do not discuss it in detail, to notice that the orientation in a manifold
induces a natural orientation on its boundary.

A p-chain a(p) is a formal linear combination (with real coefficients) of
p-dimensional submanifolds Nk (possibly with boundary) of M , namely a =
ckNk.
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Rn
Rn

Uα

αV

Figure D.3: Manifolds with boundary are described by two kinds of charts.

The operation of taking the boundary, which we call ∂, can be regarded
as a linear operator mapping a p-chain to a (p− 1)-chain, by

∂a(p) = ck ∂Nk (D.25)

An essential property of ∂, which is geometrically obvious is that

∂2 = 0 (D.26)

In the sense that for any p-chain, ∂(∂a) = ∅ is empty.
A p-chain a(p) without boundary is called a p-cycle, ∂a(p) = 0. A p-chain

is called trivial if it is the boundary of a (p+1)-chain, namely a(p) = ∂b(p+1).
Clearly, because ∂2 = 0 any trivial p-chain is a p-cycle.

a(p) = ∂b(b+1) → ∂a = ∂2b = 0 (D.27)

It is natural to wonder to what extent the reverse is true. In general it is
not: there exist manifolds M where there are p-cycles which are not trivial.
An example of non-trivial 1-cycles is shown in figure D.4.

However, there is an important n-dimensional manifold where any p-
cycle (p < n) is trivial 1. This is the case for Rn, see figure D.5. Again,
this implies that the existence of non-trivial p-cycles on a manifold M is
determined by the global structure of M , how it is patched together. It is ia
features insensitive to the local structure of M , since locally it looks like Rn,
where all p-cycles are trivial.

We are now ready to define the pth homology group Hp(M,R). Let Zp
be the set of p-cycles

Zp = {a(p)|∂a(p) = 0} (D.28)

1Since there are no (n+1)-cycles in an n-dimensional space, n-chains cannot be trivial.
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Figure D.4: Non-trivial 1-cycles in a two-torus.

Rn

Figure D.5: All cycles in R
n are boundaries of some higher dimensional chain.
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Figure D.6: A homologically trivial 1-cycles which is not homotopically trivial.

and let Bp be the set of trivial p-chains

Bp = {a(p)|a(p) = ∂b(p+1)} (D.29)

Since Bp ⊂ Zp, we can define the quotient

Hp(M,R) =
Zp

Bp

(D.30)

known as the pth homology group of M . It is formed by the set of p-cycles
modulo the equivalence

a(p) = a(p) + ∂b(b+1) (D.31)

namely two p-cycles define the same homology class if they differ by a bound-
ary. Trivial p-cycles correspond to the zero class in homology. We denote by
[a] the homology class of a cycle a. The spaces Hp(M,R) have the structure
of vector spaces, and their structure depends only on the topology of M . The
dimension of Hp(M,R) will be seen to be equal to bp, i.e. the dimension of
Hp(M,R).

Examples of non-trivial 1-homology classes on T2 are shown in figure D.4.
It is important to point out that homology is not the same as homotopy.
In particular, homotopically trivial cycles (contractible cycles) are always
homologically trivial (boundaries), but homologically trivial cycles may not
be homotopically trivial. One example is shown in figure D.6.

D.1.6 de Rahm duality

We can notice a close analogy between the construction of cohomology and
homology groups, as follows
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closed form cycle
exact form trivial chain

d ∂
Hp(M > R) Hp(M,R)

Indeed this is not accidental. There is a duality between the vector spaces
Hp(M,R) and Hp(M,R) which explains the analogies in their construction.
The duality is obtained via the operation of integration of forms over chains.

We define the integral of a p-form A(p) over a p-dimensional submani-
fold N of M , by splitting A into pieces Aα in the Uα, and integrating the
components of A over the Uα in the usual calculus sense

∫

N
A(p) =

∑

α

∫

Uα

Aαi1...ipdx
1 . . . dxn (D.32)

In fact, we should define this more carefully so as to make sure that we do
not overcount the points of M , because of overlapping of the patches Uα.
Each point in M should count only once in the integral. This can be done
by using partitions of unity (see e.g. [119], but we will not enter into this
detail, hoping the idea is clear. Note that on the overlaps it does not matter
which coordinates we use, since the integrand is invariant under coordinate
transformations (the change of the form component is an inverse jacobien
which cancels agains the change of the differential calculus measure).

One can now define the integral of a p-form A(p) over a p-chain a(p) =∑
k ckNk by

∫

a(p)

A(p) =
∑

k

ck

∫

Nk

A(p) (D.33)

An important property is Stokes theorem, which states that for any (p−
1)-form B(p−1) and p-chain a(p),

∫

a(p)

dB(p−1) =
∫

∂a(p)

Bp−1 (D.34)

A simple example is provided by 0-forms (functions) and the 1-chain [0, 1]
(or other similar chains of closed sets in R)

∫

[0,1]
df

def
=
∫

[0,1]

∂f

∂x
dx = f(x)|x=1

x=0 = f(0)− f(1) =
∫

∂[0,1]
f (D.35)
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(since the natural definition of an integral of a 0-form f over a 0d space
(point) is simply evaluation of f at the point; the sign is due to opposite
induced orientations).

Very interestingly, the integral of a closed p-form A(p) over a p-cycle a(p)

depends only of their cohomology and homology classes, [A] and [a], respec-
tively. Namely, the integral is unchanged if we take a different closed p-form
A′

(p) and a different p-cycle a′(p) in the same class A′
(p) = A(p) + dB(p−1),

a′(p) = a(p) + ∂b(p+1).

∫

a
A′ =

∫

a
A+

∫

a
dB =

∫

a
A+

∫

∂a
B =

∫

a
A

∫

a′
A =

∫

a
A+

∫

∂b
A =

∫

a
A+

∫

b
dB =

∫

a
A (D.36)

This is often called the period of [A] over [a].
This implies that integration is well defined for cohomology and homol-

ogy classes, since it does not depend on the particular representatives cho-
sen. Thus integration define a linear mapping Hp(M,R)×Hp(M,R)→ R.
Equivalently, this shows thatHp(M,R) is the vector space dual toHp(M,R),
and vice versa. Namely, a p-cohomology class [A(p)] can be regarded as a lin-
ear mapping

[A(p)] : Hp(M,R) −→ R

[a(p)] 7−→
∫

a(p)

A(p) (D.37)

This implies the promised result that the dimensions of the pth cohomology
and homology groups are the same.

Notice that the duality implies that it is always possible to choose basis
of cycles {ai} and forms {Aj} such that

∫
[ai]

[Aj] = δij. An example in T2

is given by the 1-forms dx, dy on the two independent circles, and the non-
trivial 1-cycles.

D.1.7 Hodge structures

Now consider that M is a Riemannian manifold, i.e. it is endowed with a
metric g of euclidean signature. The previous structures are topological and
independent of the metric (they were constructed without any metric at all).
In the presence of a metric, we can define some additional structures which
are important, but not topologically invariant.
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We define the Hodge operation ∗ as the map between p-forms and (n−p)-
forms defined by the action on the basis

∗(dxi1 ∧ . . . ∧ dxip) =
1

(n− p)!
√

det ggi1j1 . . . gipjpεj1...jpjp+1...jn dx
jp+1 ∧ . . . ∧ dxjn(D.38)

It has the property that for a p-form A(p), ∗ ∗ A(p) = (−1)p(n−p)A(p).
The Hodge operator defines an positive-definite inner product betwen

p-forms

(A(p), B(p)) =
∫

M
A(p) ∧ ∗B(p) (D.39)

Notice that this is not topological (however it is very important in physics,
since it corresponds to

(A(p), B(p)) =
∫

M

√
det gAi1...ipB

i1...ipdx1 . . . dxp (D.40)

which is used to define the kinetic term of (p − 1)-form gauge fields C(p−1)

by taking A(p) = B(p) = dC(p−1) the gauge invariant field strength).
It is natural to define the adjoint d† of d with respect to this inner product,

i.e. it is defined by

(A(p), dB(p−1)) = (d†A(p), B(p−1)) (D.41)

Hence d† maps p-forms to (p− 1)-forms. One can check that d† = ∗d∗ for n
even and d† = (−1)p ∗ d∗ for n odd.

There is a theorem that ensures that any p-form A(p) has a unique de-
componsition (known as Hodge decomposition) as

A(p) = B(p) + dC(p−1) + d†D(p+1) (D.42)

with B(p) a harmonic form, namely obeys dB(p) = 0, d+B(p) = 0.
For closed p-forms, dA(p) = 0 implies dd†D(p+1) = 0. Taking the inner

product with D(p+1),

(D(p+1), dd
†D(p+1)) = 0→ (d†D(p+1), d

†D(p+1)) = 0 (D.43)

the positive definiteness of the product implies d†D(p+1) = 0. Then

A(p) = B(p) + dC(p−1) (D.44)
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Thus in the cohomology class [A] there is a unique harmonic p-form repre-
sentative.

Namely, for each p-cohomology class, there exists a unique harmonic rep-
resentative. Namely the pth Betti number bp is the number of independent
harmonic p-forms on M . These are interesting statements: although the met-
ric determines which particular p-form in the class is the harmonic one, the
statement that there exists a unique one is independent of the metric. This
is one simple example of a result which is topological invariant, but which
is reached using additional non-topolocial structures, like a metric (there is
no paradox, the result is independent of the metric chosen). Later on we
will find more involved topological invariants which are easily defined using
additional structures, althogh they are independent of the particular choices
of these additional structures.

Harmonic p-forms will be quite useful in the study of KK compactification
on curved spaces. Namely, the harmonic forms will provide the internal part
of wavefunctions of the zero modes in the KK reduction of 10d p-form gauge
fields. See lecture on Calabi-Yau compactification.

Another useful property due to Hodge operation is Poincare duality. The
Hodge operator induces a homomorphism between Hp(M,R) andHn−p(M,R).
This can be seen by starting with a p-cohomology class, taking its harmonic
representative, taking its Hodge dual (which is also harmonic) and finally
taking the corresponding (n− p)-cohomology class.

This implies in particular bp = bn−p. Again this is an statement which we
reach by using a metric, but is a topological statement.

Another consequence is that for any p-homology class [a(p)] we can define
the Poincare dual (n−p)-cohomology class [A(n−p)], such that for any p-form
B(p)

∫

a(p)

B(p) =
∫

M
B(p) ∧ A(n−p) (D.45)

Intuitively, [A(n−p)] can be considered as the class of a (n−p)-form ‘delta
function’ with support on the volume of any p-cycle a(p) in the class [a(p)],
see figure D.7.

Finally for completeness we define the intersection numbers of a p-cycle
and a(p) and an (n− p)-cycle b(n−p) to be

#(a(p), b(n−p)) =
∫

M
A(n−p) ∧ B(p) (D.46)
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a p

n−pA

Figure D.7: The Poincare dual form of a cycle can be though of as a delta function
(bump form) with support on the cycle.

where A(n−p), B(p) are the Poincare dual forms. Recalling the interpretation
of Poincare dual forms as ‘delta functions’ localized on the corresponding cy-
cles, the above number is an integer which counts the number of intersections
(weighted with signs due to orientations) of the cycles a(p) and b(n−p).

D.2 Fiber bundles

Fiber bundles are a useful geometric concept in physics when studying fields
that transform not only with respect to spacetime coordinate changes, but
also have some particular behaviour under some internal gauge symmetries.

D.2.1 Fiber bundles

A vector bundle or fiber bundle E over a differential manifold M is a family
of vector spaces VP for each P ∈ M (all isomorphic to an m-dimensional
vector space V ), which varies smoothly with P . VP is called the fiber of E
over the point P . The spaces M and V are referred to as the base and fiber
of the bundle.

Equivalently, E can be defined with a set of charts (Uα × V, (v(α), x(α))),
with (Uα, x(α)) being charts describing M , and v(α) being coordinates in V ,
such that on Uα

⋂
Uβ coordinates on the base and fiber are related by

x(β) ◦ x(α))
−1

v(β) = R(αβ)(x(α)) · vα (D.47)
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Figure D.8: Construction of the Moebius strip as a nontrivial bundle with fiber
R over S

1.

where R(αβ) are (point dependent) matrices inGL(m,R), known as transition
functions. Notice that coordinate indices in V are implicit here (α, β denote
the patches).

Intuitively, a bundle is locally identical to Rn × V, and different local
patches are glued on the base, and on the fiber, up to a linear transformation
on the fiber.

A bundle E is therefore specified by the set of patches Uα × V and the
transition functions for the base and fiber, the latter satisfying the consis-
tency condition R(αγ)R(γβ)R(βα) = 1.

The total bundle E has a natural projection π to the base M given by
the map defined by ‘forgetting the fiber’

π : E −→M

(P, v) 7−→ P (D.48)

The simplest example of bundle is a trivial bundle, which is simply a
space of the form M × V . All transition functions R = 1 in this case.

A less trivial example is given by a Moebius strip. Consider M = S1,
and V = R. To build the bundle, cover S1 with two patches U , U ′ with
coordinates x, x′, as in section 1.4 and put coordinates y, y′ on R, and use
the glueing conditions

x′ = x + 1 y′ = y and x′ = x− 1 y′ = −y (D.49)

on the two disconnected pieces of U
⋂
U ′. The result is a non-trivial bundle.

This is schematically shown in figure D.8.
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A richer example is provided by the bundle formed by all tangent spaces
TP (M) to a manifold M . The base is M , the fiber over P ∈ M is TP (M),
and the transition functions on the fiber on Uα

⋂
Uβ are

vi(β) =
∂xi(β)

∂xj(α)

vj(α) (D.50)

Similarly one can define the cotangent bundle, the tensor bundles, the p-form
bundle, etc...

A section σ of a bundle E is a mapping, such that π ◦ σ = 1, i.e. of the
form

σ : M −→ E

P 7−→ (P, σ(P )) (D.51)

That is for each point P ∈ M we pick a point (vector) in VP .
A simple example is a vector field, which is a section of the tangent

bundle: V i(x)∂i defines a tangent vector for each point x on M . Similarly
the cotangent vector fields, tensor fields, p-form fields,... are sections of the
corresponding bundles.

D.2.2 Principal bundles, associated bundles

It is useful to extend the notion of vector bundle to other possible fibers with
some structure.

A principal G-bundle is a bundle where the fiber is a group G 2. Namely,
on the overlaps of the patches of the base Uα

⋂
Uβ, the fibers (which are

isomorphic to G) are glued up to an (point dependent) tranformation in G.
The elements of the fiber G in Uα and Uβ, denoted g(α) and g(β) are related
by

g(β) = fαβ(x(α))g(α)fαβ(x(α))
−1 (D.52)

This kind of bundle underlies the geometric description of gauge theories.
For instance, a gauge transformation is nothing but a section of a principal
G-bundle: g(x) a group element for each point of M .

2We will center on compact Lie groups in this lecture.
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When we have a group G, we can consider its representations R and
the representation vector spaces on which the group acts. Given a principal
G-bundle we can define the associated fiber bundles, which are vector bun-
dles with the fiber the represention space of a representation R of G, and
transition functions on the fiber

v(β) = R(f(αβ)) · v(α) (D.53)

In a gauge theory, fields in a representation R of the gauge group are sections
of the corresponding associated bundle. The fact that the transition funcions
for different associated bundles are simply different representations of the
same transitions function of the principal G-bundle reflects the fact that the
gauge group is unique, and we only have different fields charged differently
under it. With the above definitions, all the gauge transformation properties
of fields charged under a gauge group are recovered.

Notice that a general vector bundle can be regarded as the associated
bundle of a principal GL(m,R)-bundle (corresponding to the vector repre-
sentation of GL(m,R). (since the transition funcions are matrices, which
represent the action of the group GL(m,R) on vectors of V ).

D.3 Connections

In physics, vector bundles usually come equipped with an additional struc-
ture, a connection. The main idea is that in a vector bundle there is in
principle no canonical way to compare two basis of the fiber at different
points. A connection is an additional structure which allows to do so.

In a bundle with connection, in a patch where the point P has coordinates
xi, the canonical change of a basis {ea} of VP as P changes in the direction
i is given by

Die
a(x) = ∂ie

a(x) + ω a
i b(x)e

b(x) (D.54)

where ω is the connection. On overlaps Uα
⋂
Uβ the connection transforms

not just as a 1-form, but has the additional transformation

ωi,(β) = R(αβ)ωiR
−1
(αβ) − (∂iR(αβ))R

−1
(αβ) (D.55)

which ensures that for a section σ of E, its covariant derivative Diσ(x) trans-
forms as a section of E as well.
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There are two classes of physical theories where fiber bundles with connec-
tions appear. The first is the case of gauge theories, where charged fields are
sections of bundles associated to a principal G-bundle, and carry connections
given by the representation of the connection of the principal G-bundle. For a
representation R of G, the associated bundle has connection ω a

i b = Ami (TR)ab,
where A is the connection on the principal G-bundle, m runs over the gen-
erators of the Lie algebra, and TR is the representation of a generator in the
representation R.

The second situation is in theories of gravity. The introduction of a metric
g in a manifold M can be described in terms of fiber bundles as follows. At
each point x ∈ M introduce a set of tangent vectors {ea(x)}, orthonormal
with respect to the metric g

gije
a,ieb,j = δab (D.56)

which also implies eai ea,j = gij. All the information of the metric is encode
in the ’tetrad’ {ea}.

The tetrad is however defined up to SO(N) rotations at each point, so
this behaves as a local gauge invariance of the system. Indeed, such local
rotations are sections of a principal SO(N)-bundle, and the tangent bundle
is an associated bundle (for the vector representation).

Clearly one can construct other associated bundles; one of the most in-
teresting ones is the spinor bundle, whose associated connection (see below)
is known as the spin connection.

The metric induces a preferred connection on the tangent bundle, namely
the Christoffel connection on vectors. One can then obtain a connection in
terms of the tetrad, from the condition

Die
a
j = ∂ie

a
j − Γkije

a
k + ω a

i be
b
j = 0 (D.57)

which defines a connection in the principal SO(N)-bundle. The latter then
defines connections in all associated bundles, like the spinor bundle. In fact
the tetrad formalism was originally deviced to be able to define parallel trans-
port of spinors.

Given a general connection on a fiber bundle, we define its curvature by

R a
ij b = ∂iω

a
j b −−∂jω a

i b + [ωi, ωj]
a
b (D.58)

they behave as 2-form with respect to coordinate reparametrizations, and
transform covariantly under gauge transformations.
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P

C

RC vv’

Figure D.9: The holonomy group is given by the set of rotation RC suffered by a
vector under parallel transport around all possible closed loops in the manifold.

In gauge theories, the curvature of the connection of the principal bundle
are denoted Fij = Fm

ij t
m, where tm are the Lie algebra generators. In a vector

bundle associated to a representation R, it is given by F a
ij b = Fm

ij (TmR )ab .

D.3.1 Holonomy of a connection

We start with a vector bundle E (with fiber V over a base manifold M) with
connection. Consider a point P ∈ M , and consider the set of closed loops
which start and end at P . It is a group under the operation of adjoining
loops. Consider a vector v in the fiber VP and parallel transport it along a
loop C with the connection. It will come back to a vector v ′ in VP , related to
the original v by some GL(m,R) rotation RC . The set of such rotations for
all closed loops is a group, known as the holonomy group of the connection.
See figure D.9.

For a connection induced from a metric, the holonomy of the connection
is often referred to as the holonomy of the metric or of the Riemannian
manifold.

For a metric connection, the norm of the tangent vector is preserved
during parallel transport, hence the holonomy of the connection is necessarily
a subgroup of SO(n). For a principal G-bundle, and its associated bundles,
like in gauge theories, the holonomy of a connection is necessarily a subgroup
of G.
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D.3.2 Characteristic classes

Our motivation is to construct topological quantities for fiber bundles, that
characterize non-trivial bundles. In this section we see that there are certain
quantities, which are computed using additional structures, like metrics or
connections, but which at the end turn out to be independent of the par-
ticular metric or connection chosen. They are therefore topological. Before
constructing them, it will be useful to give a simple example of a non-trivial
fiber bundle.

The Wu-Yang magnetic monopole
Consider a U(1) gauge theory on M = S2. The underlying geometry is

a principal U(1)-bundle over the base S2. Let us classify all topologically
inequivalent non-trivial gauge bundles. To do so, we cover S2 with two open
sets, U+ and U−, which cover the North and South hemispheres, see figure
D.10. The bundle over each patch is trivial, so all the information about
the bundle over S2 is encoded in the transition function in U+

⋂
U−, which

is an S1, the equator. For a principal U(1)-bundle, the transition function
g(φ) takes values on U(1) which is also a circle. Therefore the topologically
different bundles are classified by topologically different maps from the equa-
tor S1 to the fiber S1. Such topologically different maps are classified by
the homotopy group Π1(S

1) = Z. Namely, there exist inequivalent classes of
maps labeled by an integer. Simple representatives of these maps are

gn : S1 −→ S1

eiφ 7−→ einφ (D.59)

Namely, the label n corresponds to how many time one goes around the
target S1 when going once around the origin S1.

This example is simple enough to be more explicit about the connec-
tions we can put on these bundles (that is, the gauge field configurations
corresponding to these bundles). Here we describe a simple case.

Consider polar coordinates θ, φ, and introduce the U(1) gauge potentials
on U±

A± =
1

2

±1− cos θ

sin θ
dφ (D.60)

On the intersection of U±, namely at θ = π/2 they differ by a gauge trans-
formation

A+ − A− = dφ (D.61)
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U+

U −

S1

Figure D.10: .

so they define a global connection for the bundle. The curvatures on U±
agree on the intersection F+ = F−.

The above expression shows that the transition function for this bundle
is the map

g1 : S1 −→ S1

eiφ 7−→ eiφ (D.62)

So the bundle is non-trivial.

There is a nice general relation between the winding of the map g(φ)
and the flux of F on S2. This provides a way of characterizing non-trivial
bundles which we will generalize in next section. In a bundle defined by the
transition function gn, the gauge potentials A± satisfy A+ − A− = ndφ on
the equator. Hence we have

∫

S2
F =

∫

U+

F+ +
∫

U−

F− =
∫

U+

dA+ +
∫

U−

dA− =
∫

S1
A+ −

∫

S1
A− =

∫

S1
n dφ = 2πn(D.63)

This example is familiar in the study of magnetic monopoles: When the S2

is taken to describe the angular part of 3d space, the gauge configuration
describes a magnetic monopole sitting at the origin or R3.

Since F is closed and its integral over S2 does not vanish, it defines a
non-trivial cohomology class. Indeed, F

2π
defines an integer cohomoly class

[F/2π], which characterizes the bundle. Notice that although we used a
connection to define this quantity, it finally depends only on the transition
functions, and therefore is a topological invariant of the bundle. It is known
as first Chern class of the bundle.
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Another simple example of non-trivial bundle is obtained by considering a
U(1) gauge field configuration on T2, with a constant magnetic field; abusing
of language, this can be described by a gauge potential A = kxdy.

A final example, familiar from nonabelian 4d gauge theories, is the clas-
sification of topological sectors of gauge configurations by the value of

k =
1

8π2

∫

4d
trF ∧ F (D.64)

known as the instanton number of the configuration.

All these topological invariants are simple examples of characteristic classes.
Let us generalize the U(1) case for a general manifold M . To do that, on each
Uα we introduce the local form of the connection Aα, such that on overlaps
Uα

⋂
Uβ we have

Aβ = Aα + dφ(αβ) (D.65)

Then F = dAα is globally defined, and satisfies dF = 0, hence defines a
cohomology class [F ]. We know show that his class is a topological invariant
of the bundle. Namely, although to define it we have used a connection, the
final class depends only on the transition functions of the bundle φ(αβ), and
is independent of the particular connection chosen.

To show that, consider a different connection defined by A′
α, still with the

same transition functions

A′
β = A′

α + dφ(αβ) (D.66)

From (D.65) and (D.66), it follows that Aα−A′
α = Aβ−A′

β so the differences
are patch independent and define a global 1-form B. Then F − F ′ = dB
globally, which implies that they define the same cohomology class [F ], as
we wanted to show.

More sophisticated tools can be used to show that [F/2π] is in fact an
integer cohomology class, known as first Chern class of the U(1) bundle.

The generalization to principal G-bundles with arbitrary group is analo-
gous. One simply constructs polynomials in wedge products of the curvatures
of the connection, tracing in the Lie algebra indices. The resulting form is
closed and the corresponding cohomology class is a topological invariant of
the bundle. These are known as characteristic classes.
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We now give some examples appearing often for SU(N) and SO(N).
Consider the closed 2k-form

Ω2k =
∑

m1,...,mk

(Fm1 ∧ . . . ∧ Fmk)Str(tm1 . . . tmk) (D.67)

where Str denoted the symmetrized trace of the generators. This is usually
written Ω2k = trF k (with wedge products implied). The corresponding
cohomology class is a topological invariant of the corresponding bundle. For
U(N) it is known as the kth Chern class, and has the generating function

ch(E) = tr (eF/2π) (D.68)

known as the Chern character. For SO(2N), Ω2k automatically vanishes
unless k is even k = 2r; the cohomology class is in this case known as rth

Pontryagin class. The Pontryagin classes also appear often in a generating
function

Â = 1 +
1

8π2
trR2 + . . . (D.69)

known as A-roof genus.

Characteristic classes are very useful in characterizing the topology of
nontrivial bundles 3. Clearly much more can be said about bundles and
their characterization. However, this will be enough for our purposes and
applications.

3Although this characterization is not complete, different gauge bundles may still have
all characteristic classes equal, and differ in some additional topological quantities. We
may see some of this in the discussion of K-theory when discussing stable non-BPS branes.
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